
2. SECOND ORDER LINEAR DIFFERENTIAL

EQUATIONS

2.1 Ordinary 2nd Order Linear Differential Equations

2.1.1 Origin of Differential Equations: the Harmonic Oscillator as an Example

We consider a particle of mass m that is moving along a straight line in x–direction.
At time t, its coordinate is x = x(t). It is attached to springs with spring constant
k > 0 so that there is a ‘restoring’ force fr(x) = −kx acting on the particle. At
x = 0, the mass is in equilibrium and no force is acting. In addition, there is a
friction force ff (v) = −γv acting on the particle which is proportional (with friction
constant γ > 0) to its velocity v = ẋ(t), and an external force fe(x) that could have
its origin in, e.g., some crazy experimentalist fiercly forcing the mass to follow her
hand.

Newton’s law states that mẍ(t) equals the sum fr(x)+ff(x)+fe(x) of all forces
on the particle, i.e.

mẍ(t) = −kx− γẋ(t) + fe(x) ⇔

ẍ(t) +
γ

m
ẋ(t) +

k

m
x(t) =

1

m
fe(x), k > 0, γ > 0. (2.1)

To find the position x of the particle at time t, i.e. the function x(t), we have to solve
the differential equation of the forced, damped linear harmonic oscillator,
Eq. (2.1). Learn this standard form of the forced damped harmonic oscillator by
heart and it will save you from much misery in the future.
CHECK: to which forces do the terms ‘forced’, ‘damped’, and ‘harmonic’ refer ?

Is this a well–defined task? No, in order to know x(t) at all times later than,
say, t = 0, we must specify the initial conditions, i.e. the initial position of the
particle x(t = 0) and its initial velocity ẋ(t = 0).

Eq. (2.1)is called 2nd order differential equation because the highest deriva-
tive appearing is a second derivative. Because Newton’s law (for a general force)
leads to second derivatives (acceleration term!), 2nd order differential equations be-
long to the most important differential equations in physics.



14 2. Second Order Linear Differential Equations

Eq. (2.1) is called linear because we don’t have terms like ẍ2(t) or x4(t). In
general and in more complicated cases (e.g., motion in three dimensions), such terms
can leads to chaos. The study of differential equations therefore is of paramount
importance in order to understand chaos.

Eq. (2.1) is called Ordinary because the desired function x is a function of one
variable (t) only and not more than one variable, in which case differential equations
are called partial differential equations.

2.1.2 Definitions

In the mathematic literature, people sometimes don’t care about the physical back-
ground of equations and introduce other notations. In the following, instead of x(t),
ẋ(t) etc we discuss differential equations for functions y(x) of one variable x, with
y′(x) denoting the first and y′′(x) the second derivative, respectively.
A 2nd order inhomogeneous linear differential equation for the function

y(x) has the form

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x), (2.2)

where p(x), q(x), and f(x) are known functions of x and y(x) is the function one
would like to calculate.

In general, there is no method to obtain a solution y(x) of Eq. (2.2 that could
be written down in a simple form, such as y(x) = sin(x) etc.
A 2nd order homogeneous linear differential equation for the function

y(x) has the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, (2.3)

i.e. the term f(x) is zero on the r.h.s. of Eq.(2.2).
A 2nd order inhomogeneous linear differential equation for the function

y(x) with constant coefficients has the form

y′′(x) + py′(x) + qy(x) = f(x), (2.4)

where p and q are real numbers, f(x) is a known function of x, and y(x) is the
function one would like to calculate.
A 2nd order homogeneous linear differential equation for the function

y(x) with constant coefficients has the form

y′′(x) + py′(x) + qy(x) = 0, (2.5)

where p and q are real numbers, and y(x) is the function one would like to calculate.
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Initial Value Problem for 2nd order differential equation for a function

y(x): To solve the initial value problem for a 2nd order differential equation for a
function y(x) means to solve y(x) for the specific, given initial conditions

y(x = x0) = y0, y′(x = x0) = y′
0. (2.6)

In the example of our harmonic oscillator this means that we start the motion at
t = t0 = 0 at the initial position x(t0) = x0 with the initial velocity ẋ(t0) = ẋ0.

2.1.3 How to Solve Them

In general, there is no recipe or general method of how to solve a given differential
equation. In this lecture, we only discuss the 2nd order inhomogeneous linear dif-
ferential equation for the function y(x) with constant coefficients, for which there is
a general method. ‘Differential Equations’ is a difficult topic, and still today a re-
search subject in mathematics. Generations of people have tried to solve differential
equations by finding new exact solutions, developing approximation techniques etc.
For example, a big problem in Einstein’s theory of gravitation is that the fundamen-
tal (partial) differential equations are known, but only very few exact solutions are
known. This is still a hot topic today.

To warm up a bit, we solve a few simple cases of Eq.(2.1).

EXAMPLE: a particle of mass m under a constant external force fe(x) = fe that
does not depend on x. We have

ẍ(t) =
1

m
fe  ẋ(t) =

1

m
fet + ẋ(0) 

x(t) =
1

2m
fet

2 + ẋ(0)t + x(0). (2.7)

Here, the values x(0) and ẋ(t = 0) determine the initial condition at t = 0.

CHECK: go back to Pisa (Galilei) and establish the relation between this equa-
tion and the experiment of a freely falling mass m. In a ‘Gedankenexperiment’
(thought experiment), change the initial conditions ẋ(t = 0) and x(0) and discuss
what changes then. What does a positive or a negative fe mean?

2.2 2nd order homogeneous linear differential equations with constant

coefficients I

We recall that this type of equation has the form

y′′(x) + py′(x) + qy(x) = 0, (2.8)
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where p and q are real numbers, and y(x) is the function one would like to calculate.
An example is the differential equation of the damped linear harmonic oscillator

ẍ(t) +
γ

m
ẋ(t) +

k

m
x(t) = 0, k > 0, γ > 0, (2.9)

cf. Eq.(2.1).

2.2.1 y′′(x) + qy(x) = 0, q > 0

This is the case p = 0 of Eq. (2.8). An example for this is the differential equation
of the undamped linear harmonic oscillator

ẍ(t) +
k

m
x(t) = 0, (2.10)

where k > 0 here, cf. Eq.(2.1). From our physical intuition, we know that the
mass point described by Eq.(2.10) performs oscillations at an angular frequency

ω. Therefore, we try sin and cos functions as solution: If we write

x(t) = x1 sin(ωt) ẋ(t) = x1ω cos(ωt)

 ẍ(t) = −x1ω
2 sin(ωt) = −ω2x(t). (2.11)

Here, x1 is an arbitrary constant. The function x(t) = x1 sin(ωt) fulfills the differ-
ential equation Eq. (2.10), if

ω2 =
k

m
. (2.12)

If on the other hand we write

x(t) = x2 cos(ωt) ẋ(t) = −x2ω sin(ωt)

 ẍ(t) = −x2ω
2 cos(ωt) = −ω2x(t), (2.13)

we again recognise that the functionx(t) = x2 cos(ωt) fulfills the differential equation
Eq. (2.10), if ω2 = k/m (same as before). Again, x2 is an arbitrary constant.
Therefore, we find two solutions of the second order differential equation

Eq. (2.10). Now we are a bit confused. Let us summarize what we have found so
far, using our ‘mathematical notation’,

y′′(x) + qy(x) = 0, q > 0 

y(x) = y1(x) = y1 sin(
√

qx), y(x) = y2(x) = y2 cos(
√

qx). (2.14)

We now make an important observation:
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THEOREM: With two solutions y1(x) and y2(x) of a linear homogeneous

differential equation, also the sum y1(x) + y2(x) is a solution of the linear

homogeneous differential equation.
PROOF:

y′′
1(x) + p(x)y′

1(x) + q(x)y1(x) = 0, y′′
2 (x) + p(x)y′

2(x) + q(x)y2(x) = 0 
[

y′′
1(x) + y′′

2(x)
]

+ p(x)
[

y′
1(x) + y′

2(x)
]

+ q(x) [y1(x) + y2(x)] = 0 

[y1 + y2]
′′ (x) + p(x) [y1 + y2]

′ (x) + q(x) [y1(x) + y2(x)] = 0.

We have used the fact that the sum of the derivatives of two functions is the deriva-
tive of the sum of the functions.

The general solution of y′′(x) + qy(x) = 0, q > 0 can be written as the sum

y′′(x) + qy(x) = 0 y(x) = y1 sin(
√

qx) + y2 cos(
√

qx). (2.15)

2.2.2 Initial Value Problem for ẍ(t) + ω2x(t) = 0

This is the equation of the undamped linear harmonic oscillator. Note that we write
x(t) instead of y(x) here. We have found the general solution as

x(t) = x1 sin(ωt) + x2 cos(ωt), (2.16)

where x(t) is the position x at time t. As mentioned above, in order to know x(t)
at all times later than, say, t = 0, we must specify the initial conditions, i.e. the
initial position of the particle x0 = x(t = 0) and its initial velocity v0 = ẋ(t = 0),
i.e.

x0 = x(t = 0) = x1 sin(ω0) + x2 cos(ω0) = x2

v0 = ẋ(t = 0) = x1ω cos(ωt)− x2ω sin(ωt)|t=0 = x1ω. (2.17)

Therefore, we can express the parameters x1 and x2 by the given initial values x0

and v0 and obtain

x(t) =
v0

ω
sin(ωt) + x0 cos(ωt). (2.18)

2.2.3 y′′(x) + qy(x) = 0, q < 0

We notice that for q < 0 the argument in the sin and cos in Eq.(2.15) becomes
imaginary since

√
q =

√

−|q| = i
√

|q| for q < 0. Let us find a solution by recalling
that the exponential function f(x) = exp(x) fulfills

f(x) = ex
 f ′(x) = ex

 f ′′(x) = ex
 ... (2.19)
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More generally, we have

f(x) = eλx
 f ′(x) = λeλx

 f ′′(x) = λ2eλx
 f ′′(x) = λ2f(x) (2.20)

f(x) = e−λx
 f ′(x) = −λe−λx

 f ′′(x) = (−λ)2e−λx
 f ′′(x) = λ2f(x).

Comparing this to our differential equation,

y′′(x)− |q|y(x) = 0 ⇔ y′′(x) = |q|y(x), (2.21)

we recognize by comparing with Eq. (2.20) that two independent solutions of Eq.
(2.21) are

y′′(x)− |q|y(x) = 0, q 6= 0 

y1(x) = y1e
√

|q|x, y2(x) = y2e
−
√

|q|x. (2.22)

As above, the most general solution again is the sum of these two, i.e. the linear

combination of e−
√

|q|x and e
√

|q|x with the two independent constants y1 and y2,

y′′(x)− |q|y(x) = 0 

y(x) = y1e
√

|q|x + y2e
−
√

|q|x. (2.23)

2.2.4 y′′(x) + qy(x) = 0, summary

We summarize the two pairs of solutions for q > 0 and q = −|q| < 0 of y ′′(x)+qy(x) =
0 in a table:

y′′(x) + qy(x) = 0, q > 0 y′′(x) + qy(x) = 0, q = −|q| < 0

two solutions two solutions

y1(x) = y1 sin(
√

qx), y2(x) = y2 cos(
√

qx) y1(x) = y1e
√

|q|x, y2(x) = y2e
−
√

|q|x

general solution general solution

y(x) = y1 sin(
√

qx) + y2 cos(
√

qx) y(x) = y1e
√

|q|x + y2e
−
√

|q|x

character: character:
oscillatory (sin and cos) exponential (decreasing and incr.)

Note that the sign of q makes all the difference!

2.3 2nd order homogeneous linear differential equations with constant

coefficients II

Now we attack the case of arbitrary p and q in our differential equation

y′′(x) + py′(x) + qy(x) = 0. (2.24)
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Remember that for p > 0 and q > 0 this corresponds to the differential equation
Eq. (2.1) of the damped linear harmonic oscillator. We already know that this
system performs oscillations ( sin, cos) that can be exponentially damped ( exp).
Therefore, we expect something related to sin, cos, exp functions. But these are all
related to each other if we recall what we have learned about complex numbers:

exp(ix) = cos(x) + i sin(x), xreal

cos(x) =
eix + e−ix

2
= Re[eix]

sin(x) =
eix − e−ix

2i
= Im[eix]. (2.25)

Furthermore, for arbitrary complex z = x + iy,

ez = ex+iy = exeiy = ex[cos(y) + i sin(y)] = ex cos(y) + iex sin(y). (2.26)

The function ez with complex z comprises the real exponential as well as sin and
cos.

Let us therefore try an exponential Ansatz in Eq. (2.24),

y(x) = ezx
 y′′(x) + py′(x) + qy(x) = [z2 + pz + q]ezx = 0. (2.27)

We recognize that y(x) = ezx fulfills the differential equation, if the bracket [...] is
zero:

[z2 + pz + q] = 0. (2.28)

This is a quadratic equation which in general has two solutions,

z2 + pz + q = 0 z1/2 = −p

2
±

√

p2

4
− q. (2.29)

2.3.1 Case p2

4 − q > 0

In this case,

z1/2 = −p

2
±

√

p2

4
− q (2.30)

are both real and the two solutions fulfilling Eq. (2.24) are

p2

4
− q > 0 y1(x) = y1e

[− p

2
+

�
p2

4
−q]x, y2(x) = y2e

[− p

2
−

�
p2

4
−q]x (2.31)

The general solution is the linear combination of the two,

p2

4
− q > 0 y(x) = y1e

[− p

2
+

�
p2

4
−q]x + y2e

[− p

2
−

�
p2

4
−q]x. (2.32)

In this case there are no oscillations at all. The ‘damping term’ py ′(x) is too strong.
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2.3.2 Case
p2

4 − q < 0

In this case, the two zeros become complex:

z1/2 = −p

2
±

√

−
∣

∣

∣

∣

p2

4
− q

∣

∣

∣

∣

= −p

2
± i

√

∣

∣

∣

∣

p2

4
− q

∣

∣

∣

∣

=: −p

2
± iΩ, (2.33)

where we define an angular frequency Ω =
√

|p2/4− q|. Now, the two solutions
fulfilling Eq. (2.24) are

p2

4
− q < 0 y1(x) = y1e

[− p

2
+iΩ]x, y2(x) = y2e

[− p

2
−iΩ]x, Ω :=

√

∣

∣

∣

∣

p2

4
− q

∣

∣

∣

∣

.(2.34)

The general solution is the linear combination of the two,

p2

4
− q < 0 y(x) = y1e

[− p

2
+iΩ]x + y2e

[− p

2
−iΩ]x, Ω :=

√

∣

∣

∣

∣

p2

4
− q

∣

∣

∣

∣

. (2.35)

We re–write this as

y(x) = y1e
[− p

2
+iΩ]x + y2e

[− p

2
−iΩ]x = e−px

{

y1e
iΩx + y2e

−iΩx
}

= e−px {y1[cos(Ωx) + i sin(Ωx)] + y2[cos(Ωx)− i sin(Ωx)]}
= e−px {[y1 + y2] cos(Ωx) + i[y1 − y2] sin(Ωx)} . (2.36)

Now, this seems a bit odd since we have got a complex solution due to the term
i(y1−y2). However, the constant coefficients y1 and y2 can be complex anyway (and
still y(x) is a solution of the differential equation). If we are only interested in real
functions y(x), we can re–define new constants c1 := y1 + y2 and c2 := i[y1 − y2]
such that the general solution becomes

y′′(x) + py′(x) + qy(x) = 0,
p2

4
− q < 0 

y(x) = e−px {c1 cos(Ωx) + c2 sin(Ωx)} . (2.37)

Still c1 and c2 could be complex numbers, but we can choose them real if we only
want real functions y(x).

2.3.3 The Marginal Case p2

4 − q = 0

2.4 Inhomogeneous Equations

Now we arrive at the most general case we treat here, the second order inhomo-

geneous linear differential equation for the function y(x) with constant
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coefficients

y′′(x) + py′(x) + qy(x) = f(x), (2.38)

where p and q are real numbers, f(x) is a known function of x, and y(x) is the
function one would like to calculate. In the following, we become a bit more ‘physical’
and discuss the differential equation of the forced, damped linear harmonic oscillator,
Eq. (2.1),

ẍ(t) + 2γẋ(t) + ω2x(t) =
1

m
f(x), γ > 0. (2.39)

instead of Eq. (2.38). Since this means that p > 0 and q > 0 in Eq. (2.38), we are
not that general, but the results shown here can be trasfered to the general case,
too.

2.4.1 Initial Conditions for the Homogeneous Case

The solution for the homogeneous equation f ≡ 0 was obtained above,

yh(x) = e−
p

2
x {c1 cos(Ωx) + c2 sin(Ωx)} , Eq.(2.38)

xh(t) = e−γt {x1 cos(ωt) + x2 sin(ωt)} , Eq.(2.39). (2.40)

Specifying to the initial conditions

xh(t = 0) = x0, ẋh(t = 0) = v0, (2.41)

we find

xh(t) = x0

{

e−γt cos(ωt) +
δ

ω
e−γt sin(ωt)

}

+ v0e
−γt sin(ωt)

ω
. (2.42)

xh(t) describes the motion of the harmonic oscillator for f ≡ 0 (homogeneous case).
If we choose the initial time t = t0 instead of t = 0, we have

xh(t) = x0

{

e−γ[t−t0] cos(ω[t− t0]) +
δ

ω
e−γ[t−t0 ] sin(ω[t− t0])

}

+ v0e
−γ[t−t0 ] sin(ω[t− t0])

ω
, (2.43)

i.e. everything remains the same; only the ‘origin’ of time t0 is shifted, i.e the time
scale is shifted by t0.

EXERCISE: check that Eq. (2.42) fulfills the correct initial conditions!
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2.4.2 The Inhomogeneous Case: Effect of the External Force

Now let us discuss the additional effect of the external force, i.e. the inhomogeneous
term f(t)/m in Eq. (2.39). First of all, we recognize that f(t)/m is an additional
acceleration, a(t) = f(t)/m, of the mass m due to the force f(t) (NEWTON !).
What is the additional displacement, ∆x(t), of the mass due to that acceleration?
In a very short time interval from time t = t′ to t = t′ + δt′, due to the acceleration
a(t′) the mass aquires the additional velocity

v(t′) = a(t′)δt′ =
f(t′)

m
δt′. (2.44)

The subsequent additional displacement ∆x(t > t′) has to be proportional to that
additional velocity and can be calculated using Eq.(2.43) with ‘initial’ additional
shift x0 = 0 and ‘initial’ additional velocity v0 = v(t′),

∆x(t > t′) = e−γ[t−t′] sin(ω[t− t′])

ω
× v(t′)

= e−γ[t−t′] sin(ω[t− t′])

ω
× f(t′)

m
δt′,

=: G(t− t′)× f(t′)

m
δt′, (2.45)

where in the last line we introduced an abbreviation for the term e−γ[t−t′ ]sin(ω[t− t′])/ω.
The function G(t − t′) is called response function (Green’s function) of the
harmonic oscillator since it describes its response to an additional, infinitesimal ac-
celeration f(t′)δt′/m. Note that we have made no additional assumptions on how
this force f(t′) actually behaves as a function of time.

The total additional shift xf (t) at time t can be calculated from Eq.(2.45) by
integrating the contributions from all times t′ with t0 < t′ < t,

xf (t) =

∫ t

t0

dt′∆x(t > t′) =

∫ t

t0

dt′G(t− t′)
f(t′)

m
. (2.46)

The position x(t) at time x now is given by the contribution xh(t) (force f = 0) plus
the additional shift xf (t) (force f 6= 0),

x(t) = xh(t) + xf (t) = xh(t) +

∫ t

t0

dt′G(t− t′)
f(t′)

m
. (2.47)

Putting everything together, we find a somewhat lengthy, but very convincing ex-
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pression (we set the initial time t0 = 0 for simplicity),

x(t) = x0

{

e−γt cos(ωt) +
δ

ω
e−γt sin(ωt)

}

+ v0e
−γt sin(ωt)

ω

+

∫ t

0
dt′e−γ[t−t′] sin(ω[t− t′])

ω

f(t′)

m
. (2.48)


