5. TWO-BY-TWO MATRICES

5.1 Two—-by—Two Matrices: Introduction

5.1.1 Linear Equations of Two Unknowns

Consider the system of linear equations for the two unknowns = and y,

ar+by = e
cx+dy = |, (5.1)

where a,b,c,d, e, f are constant numbers. This system can be easily solved: solve
the first equation for y,

e —ax
= 2
y 7 (5.2)
and insert it into the second equation,
cr+dy = c:c—i—@ = f~ (cb—ad)x = fb—de
A de — fb
~ ad—cb
e—azr e(ad—cb) —a(de— fb) af —ec
4 b b(ad — cb) ad — cb (5:3)

For this general solution for x and ¥ to be valid, the denominator ad — cb apparently
has to be different from zero.

5.1.2 Two—-by—Two Matrices: Definition

We write the two unknowns x and y as the components of a two—dimensional vector

X 1= < ‘; ) (5.4)
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Then, we write the two constants e and f as the components of a two—dimensional

vector v
L e
V= ( f > . (5.5)

The two—by—two system of linear equations, Eq. (5.1), maps the vector x onto
the vector v. We write this in the following abstract form:

oo (1)G)() e

where we defined the two—by—two matrix

A::(i Z) (5.7)

A two-by—two matrix is a quadratic scheme which, upon operating on a vector x on
its right, transforms this vector into another vector v according to the rule

[ a b x\ [ av+by \
w0 (2)= () o 59
By comparison we recognise that this matrix equation, Ax = v, is equivalent to
the system Eq.(5.1).

5.1.3 Linear Mappings and Matrix Operatings

Definition: A linear mapping A from R?> — R? maps a vector x onto the vector Ax.
The mapping is represented by a two-by-two matrix A. The mapping fulfills

x — Ax (5.9)
X{ + X9 — A(X1 + Xg) = Axq + Axy (510)
Ax — A(\x)=MAx, el (5.11)

Examples

-

AX2 = <

G me() e (0) mens ()
2) (%)= (IS )= ()
4)0)=(0) 13

N
|
—_
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We compare this to

() me () () e (0)
s = (3 2)(3)=(3)~(F) (1) e i

5.2 Two—-by—Two Matrices: Linear Mappings

Definition: The determinant det(A) of a two—by—two matrix A is defined as

a b\ _
det(c d>:

5.2.1 Specific Linear Mappings 1: the Unit Matrix

Z ‘ := ad — cb. (5.13)

a
C

This is the trivial mapping represented by the unit matrix F,
10
b-(19) 610
We have det(E) = 1. Check that Ex = x for any vector x.

5.2.2 Specific Linear Mappings 2: Stretching and Shrinking

These are linear mappings A represented by the multiples of the unit matrix, where

¢ is a real number such that
c 0
(2 0) 19

We have det(A) = ¢? > 1. Check that in this case Ax = cx for any vector x.

5.2.3 Specific Linear Mappings 3: Projections

These are linear mappings A such as

A:(é 8) (5.16)

We have det(A) = 0. Check that in this case, for any vector x = (x,y), Ax = (z,0):
the vector is projected onto the x-axis.
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5.2.4 Specific Linear Mappings 4: Rotations

These are mappings R(6) that rotate vectors around the origin by an angle 6,

R(6) = ( cosf —sinf ) (5.17)

sinf  cosf
In this case, det(R()) = cos? — (—sin? ) = 1. A vector x = (z,v) is rotated into
F0x= (g oo ) (3 )= (imorrems ) 9
Examples for rotations are
( c.os¢9 —sind > < 1 > _ < C.OSQ >’ ( 0980 —sind > < 0 > _ ( —sind >(5.19)
sind  cosf 0 sin 6 sind cosf 1 cos 6

Special Rotations: # =0

In this case,

RO =0)= < (1) [1) > = F (unit matrix). (5.20)
Special Rotations: 0 = 5
In this case,
R (9 = g) = < (1) _01 > = —ioy, (—i times Pauli Matrix o). (5.21)

5.2.5 Specific Linear Mappings 5: Reflections

These are mappings S(6) that reflect a vectors at a fixed axis:

cosf)  sind
5(0) = < sinf —cosf ) ' (522)
In this case, det(S(0)) = —cos?f —sin?f = —1. A vector x = (z,y) is transformed

into

S(0)x = ( cosf sind > < x > _ < x cos O + ysin ) (5.23)

sinf —cosf Y xsinf — ycos b
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Examples:
cosf siné cos %9 _ [ cos %90089+sin %HSiHQ _ [ cos %9 (5.24)
sinf —cosf sin %9 cos %081110 — sin %9 cos 0 sin%@ '

where we have a formula for trigonometric functions (CHECK). Furthermore, we
have

cos siné 1\ [ cost cosf siné 0\ sin 0 (5.25)
sinf —cosf 0 ) \ sinf )’ sinf —cosf 1) \ —cosf '

Sketch this in the z-y-plane (lecture). We recognise that S(6) defines a reflection at
the axis defined by the direction of the vector (cos %0, sin %9)

Special Reflection: 8 =0

In this case,

SO =0)= < (1) _01 > =0, (Pauli Matrix o). (5.26)
Special Reflection: 6 = 5
In this case,
T 01 . .
S (9 = 5) = < 10 > =0, (Pauli Matrix o). (5.27)

5.3 Two-by—Two Matrices: Index Notation and Multiplication

5.3.1 Basis Vectors and Index Notation
Vectors

Definition: The vectors

we (1) en(9) 29

are called basis vectors of R?. Any arbitrary vector a € R? is written as a linear
combination

2
a = aje; + agsey = Z a;€;. (529)
=1
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In this representation, sometimes Einstein’s summation convention is used: We
. 2 e g . . .

write a = )7 | aje; = a;e;, omitting the sum symbol in order to simplify the

notation. The sum is automatically carried out over equal indices. Here, the index

is 1.

Matrices

Definition: The element A;; of a matrix A is the entry in its i-th row and its j-th
column. For two-by-two matrices, this reads

Ann A >
. 5.30
( Ay A (5:30)
Note: be very careful not to mix up the row and the column index!

Matrix operating on vector

The result of a linear mapping x — y = Ax can be written in index form, too:
T2 Y2
2
j=1

This means that the first and second components, y; and y,, of y = Ax are given
by

2 2
Y1 = Z A1j$j7 Yo = ZAQJ'I‘]'. (532)
j=1 j=1
Note that the index j runs over the columns of the matrix A.

5.3.2 Multiplication of a Matrix with a Scalar

(20

This is simple,

( iz iz > (5.33)
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5.3.3 Matrix Multiplication: Definition

A matrix A moves a vector x into a new vector y = Ax. This new vector can
again be transformed into another vector y’ by acting with another matrix B on it:
y' = By = BAx. The combined operation C = BA transforms the original vector
x into y’ in one single step. This matrix product is calculated according to

. as by o ar by
b= <C2 d2>’ A_<01 d1>

aza1 + b201 a2b1 + b2d1
~ BA = . 5.34
< coa1 +dacir  c2by + dady > (5:34)
In general, the matrix product does not commmute, i.e.,
AB # BA. (5.35)

This means that in contrast to real or complex numbers, the result of a multiplication
of two matrices A and B depends on the order of A and B.
Definition: The commutator [A, B] of two matrices A and B is defined as

[A,B] = AB — BA. (5.36)

The commutator plays a central role in quantum mechanics, where classical variables
like position x and momentum p are replaced by operators(matrices) which in
general do not commute, i.e., their commutator is non—zero.

Example:

1 0 0 1
o, = <0 _1> az—<1 O> (5.37)
0 1 0 -1 0 1
0,0y = < 1 0 > y O0z0z = < 1 0 > 7& 020z, [Umo'z] = 2( 1 0 > .

5.3.4 Matrix Multiplication: Index Notation
The abstract way to write a matrix multiplication with indices:

2
C=BA~Cj = Z BiAgj. (= BirAg; in the summation convention). (5.38)
k=1

To get the element in the ith row and jth column of the product BA, take the scalar
product of the ith row-vector of B with the j-th column vector of A. This looks
complicated but it is not, it is just another formulation of our definition Eq.(5.34).
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5.4 Inverse of a Matrix

5.4.1 Motivation

Solving the linear two-by-two system, Eq. (5.1, for the components x, y of the
vector X, is equivalent to the matrix equation

(1)) (51) = (5) o

We recognise that in order to explicitely solving this for x, we have to invert the
operation A.

5.4.2 Definition and Theorem

Definition: The inverse A~! of a two—by—two matrix A is defined as the matrix
fulfilling

ATA=AA =1, 1= ( (1) ; > (5.40)

with the unit matrix 1.
Definition: The determinant det(A) of a two—by—two matrix A is defined as

a b\ _
det < e d ) =
Theorem Consider the two—by—two matrix

A:(‘;‘ Z) (5.42)

If the determinant of A is non-zero, i.e. det(A) = ad — c¢b # 0, the inverse of A
exists and is given by

_ d —b
A—l — 1 d b = ad_—ccb ad(;cb . (5‘43)
ad —cb —¢c a ad—cb  ad—cb
For the proof of this, we just multiply A with A~ and A~! with A:
aat_ (@ b 1 d —-b\ 1 ad—bc —ab+ba \ (1
\e d/)ad—cb\ —¢c a ) ad—cb\ cd—dc —cb+da ) \ 0

Exercise: Check the same for A1 A.

a b
e d ' = ad — cb. (5.41)

0
1

><5.44)
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Examples
(1 3 _ gL (/=1 =3\ _ [1 2
A = (2 _1>wdet(A)_—1—67é0, A __—7<_2 ) >_<§ ]
3 6 1 .
A = 9 4 ~ det(A) =3-4—2-6 =0~ A" "does not exist.

Solving the Linear Equations (5.1)

We are now in a position to solve Eq. (5.1) by the inverse of a matrix:

Ax = ve A ' Ax=A" vex=A4A"1v

AREEEEEOL AT -
W<y> B ad—cb(—c a><f>_<%jbif . (5.45)




