10.1 Physics

10.1.1 Motion of a charge

A charge -e is moving in the x-y-plane in the potential $\Phi(x, y) = \frac{c}{\sqrt{x^2 + y^2}}$, where c is a constant. Make a sketch of $\Phi(x, y)$!

1. Calculate the change $d\Phi(x, y)$ (total differential) of the potential if the charge moves from (x, y) to (x + dx, y + dy).

2. Calculate the change in energy, $-e\frac{d}{dt}\Phi(x(t), y(t))$, if the charge moves a) along a circle $(r\cos\omega t, r\sin\omega t)$, b) along a straight, radial line (a + vt, a + vt), a, v, t > 0.

10.2 Math Practise

10.2.1 Partial Derivatives

Calculate 1. $\frac{\partial}{\partial x} \cosh(x^2 + y^2)$; 2. $\frac{\partial}{\partial y} \sinh[\sin(xy)]$.

10.2.2 Gradient of $f(x, y) = x^2 + y^2$.

a) Calculate the gradient $\nabla f(x, y)$ of $f(x, y) = x^2 + y^2$.

b) Sketch the 'vector field' of the gradients in the x-y-plane: make a sketch by 'attaching' small arrows $\nabla f(x_0, y_0)$ at points (x_0, y_0) .

c) From the sketch in b), sketch the equipotential lines of f(x, y).

10.2.3 Gradient of $f(x, y) = x^2 - y^2$.

a) Calculate the gradient $\nabla f(x, y)$ of $f(x, y) = x^2 - y^2$.

b) Sketch the 'vector field' of the gradients in the x-y-plane: make a sketch by 'attaching' small arrows $\nabla f(x_0, y_0)$ at points (x_0, y_0) .

c) From the sketch in b), sketch the equipotential lines of f(x, y).

10.3 Math Problems

10.3.1 Stationary Points of Functions f(x, y)

A) Find the stationary points (x, y) (if there are any), defined by

 $\nabla f(x,y) = (0,0) \rightarrow (x,y)$ is a stationary point

of the following functions:

1. f(x,y) = y; 2. f(x,y) = x; 3. $f(x,y) = -(x^4 + y^4)$; 4. f(x,y) = xy; 5. $f(x,y) = x^4 - y^4$.

2

*B) Discuss the case 4, f(x, y) = xy, in some more detail by sketching the 'vector field' $\nabla f(x, y)$ in the x-y-plane.

10.3.2 Taylor-expansion in two dimensions

The lowest order Taylor-expansion (up to the linear terms) of a function f(x, y) around $(x = x_0, y = y_0)$ is, in analogy with a function of one variable, given by

$$f_1(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

Show that $f_1(x, y)$ defines a two-dimensional *plane* and sketch (or demonstrate in a 'three-dimensional model') this plane for $f(x, y) = x^2 + y^2$, $(x_0, y_0) = (0, 1)$.

10.3.3 *Differential Equation, Graphical Representation

Consider the differential equation $y'(x) = -\frac{x}{y(x)}$. a) Make a sketch in the upper x-y-halfplane: to each point (x_0, y_0) , attach a small piece of a straight line (arrow) with slope $-\frac{x_0}{y_0}$.

piece of a straight line (arrow) with slope $-\frac{x_0}{y_0}$. b) Argue how this sketch can be used to graphically solve the differential equation. c) Solve the differential equation exactly, and show that b) is consistent with that solution.

10.3.4 * Second order surfaces

Discuss and sketch the following:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad \text{ellipsoid}, \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{hyperboloid type 1,} \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 \quad \text{hyperboloid type 2,} \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 \quad \text{cone,} \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = z \quad \text{elliptical paraboloid,} \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = z \quad \text{hyperbolic paraboloid.}$$

10.3.5 Revision: Differential Equations

Consider the differential equation $y''(x) + 4y(x) = 2e^{i3x}$.

a) Write down the general solution of the homogeneous equation, using exponentials. b) Write a particular solution $y_p(x)$ of the inhomogeneous equation as $y_p(x) = Ce^{i3x}$ and determine the constant C.

c^{*}) Determine the general solution of the differential equation, and solve it for y(0) = 1, y'(0) = 0.