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6.1 Physics

6.1.1 RLC-circuit

Consider a closed circuit with a resistor R, an inductor L, and a capacitor C in
series (figure). The time—-dependent charge Q(t) on the capacitor, the corresponding
voltage drop U (t), and the current I(¢) through the circuit are related by

Q) = CU®), I(t)=-Q(). (6.1)

Furthermore, the voltage U (t) must be equal to the sum of the two voltage drops
LI(t) (inductor) and RI(t) (resistor), i.e.,

U(t) = LI(t) + RI(t). (6.2)

1. Use these two equations to eliminate the charge Q(t) and the current I(¢) in order
to find a differential equation for U(t). Show that this differential equation reads

3} R. 1

U(t) + EU + EU(t) =0. (6.3)
2. Classify 6.3 (nonlinear/linear ?, homogeneous/inhomogeneous 7)
3a. Find two independent solutions of 6.3 for the special case R = 0 (zero
resistance) with our ‘secret weapon’ (insert exp(izt) and find possible values for z).
3b. Show that the general solution can be written as U(t) = [A cos(wt) + B sin(wt)]
with w = /1/LC.
4a. Find two independent solutions of 6.3 for the general case R # 0 (finite
resistance) with our ‘secret weapon’ (insert exp(izt) and find possible values for z).
You can assume that R < 2,/L/C.
4b. Show that the general solution can be written as U (t) = e[ A cos(wt)+ B sin(wt)]
with
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4c. Show that your solution in part 4. is consistent with your solution in part 3.

6.1.2 RLC—circuit with external voltage

Consider the RLC circuit with the external voltage V() = Visin(Qt), Vo > 0 (fig-
ure). The voltage V(¢) must fulfill

Li(t) + RI(t) = éQ(t) V), (6.5)
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where I(t) = Q(t) is the time-dependent current through the circuit.
1. Find the differential equation for I(t) = —Q(t) (hint: differentiate this equation),

LI(t)+ RI(t) + %I(t) = QV cos(Qt). (6.6)

2. Classify 6.6 (nonlinear/linear ?, homogeneous/inhomogeneous 7)
3. Consider the ‘auxiliary’ differential equation to (6.6), where cos(Qt) = Re e™¥ is

replaced by e*¥,

LI*(t) + RI(t) + %I“(t) = QVpe™®, (6.7)
and solve this equation by inserting I%(t) = Ine** and determine I,.
4a. Calculate the polar form of the complex number Iy = |Iy|e’® (note that Vp > 0
is real!),
4b*. Prove the following: i) If the complex current I%(¢) is a solution of (6.7), the
complex conjugate [I%(t)]* is a solution of (6.7) with e** replaced by e~**, and ii)
consequently, the ‘true’ current I(t) = Re 1%(t) is a solution of (6.6).
4c. Use 4a to find the ‘true’ current I(¢) = Re I%(t) = Re Ipe* = |Io| cos(t + ¢),
i.e. the solution of (6.6). What is the value of ¢ in the case R = 0 (zero resistor),
and what is the phase shift between the current I(¢) and the voltage U(t) in that
case ?

6.2 Math Practise

6.2.1 Homogeneous Differential Equation

Find the general solution of a) y”(z) + 12y(z) = 0; b) y"(z) + v'(z) + 12y(x) = 0.

6.2.2 Sketch the following Curves (normal stream)

f(&) = 1= (LORENTZIAN), [(@) = ¢~** (GAUSSIAN), f(x) =

6.3 Math Problems

6.3.1 Inhomogeneous Differential Equation

a) Consider the differential equation y”(x) + 4y(z) = 2€*. Write a particular
solution y,(z) of this inhomogeneous equation as y,(z) = Ce’3® and determine the
constant C.

b*) Determine the general solution of this differential equation, and solve it for

y(0) =1, y'(0) = 0.



