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Charge transport through open driven two-level systems with dissipation
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We derive a Floquet-like formalism to calculate the stationary average current through an ac driven double
quantum dot in the presence of dissipation. The method allows us to take into account arbitrary coupling
strengths both of a time-dependent field and a bosonic environment. We numerically evaluate a truncation
scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.
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I. INTRODUCTION

Coupled quantum systems with small effective Hilb
spaces are useful tools in order to study coherence, diss
tion, and the interaction properties of few-particle system
In an electronic context, an example are coupled quan
dots,1–5 where strong interactions between electrons6–8 de-
fine a Coulomb blockade regime with tunnel-splitted man
body ground states separated from the remaining exc
states. The ultimate limit of two states defines a two-le
system for the charge degree of freedom, with electrons
fixed spin tunneling between two quantum dots. Study
transport and dissipation then leads to a nonequilibrium
‘‘open’’ ~pseudo!spin-boson problem, where the coupling
external reservoirs opens the path to investigate prope
such as shot noise9 or decoherence in a controllable semico
ductor environment.

Additional insight into the quantum dynamics of electro
can be gained by making the parameters of the problem
dependent. When the time dependence is slow, this can
rise to a variety of adiabatic phenomena such as cha
pumping,10–19 adiabatic control of state vectors,20,21 or op-
erations relevant for quantum information processing in
condensed-matter setting.22–28 Different physics occurs in
the high-frequency regime where monochromatic time va
tion induces photoexcitations, such as for coupling of
fields to quantum dots,29–34 which has been teste
experimentally35–40 recently.

In general, ac driven systems41,42 and their application to
various mesoscopic transport43–50and tunneling51–63regimes
have quite a long history, although the inclusion of intera
tions and correlations is a relatively new area. In lo
dimensional systems, investigations have concentrated
one-dimensional models,64–68 the modification of Kondo
resonances by ac fields,69,70 mean-field-type approxima
tions,71 or exact studies of driven few-electron systems.72,73

In this paper, we combine ac driving with thedissipative
dynamicsof a two-level system~double quantum dot! under
transport conditions, i.e., in a situation where electrons in
Coulomb blockade regime can tunnel from reservoirs i
and off two tunnel-coupled quantum dots, with the possib
ity to absorb from or emit bosons into a heat bath wh
simultaneously interacting with a classical time-period
electrical field. At first sight, combining such a multitude
0163-1829/2004/69~20!/205326~12!/$22.50 69 2053
t
a-
.

m

-
d
l
a

g
r

es
-

e
ve
ge

a

-
c

-
-
on

e
o
-

possible interactions within one and the same model m
look unsuitable for a useful theoretical discussion. Howev
as we will demonstrate in this paper, it is possible to cal
late experimentally relevant observables such as the ti
averaged stationary current, with the help of the~heat bath!
boson spectral densityJ(v) as single, main input of the
theory only. In particular, we show how within the polaro
transformation approach and for a givenJ(v), one can cal-
culate the current for arbitrarily strong coupling to boson
modesand an ac field.

The paper is organized as follows: in Sec. II, we descr
the model Hamiltonian and derive a Floquet-like formalis
for the stationary density operator. In Sec. III, we compa
analytical results for limiting cases with numerical data, a
conclude with a short discussion and an outlook in Sec.

II. MASTER EQUATION FORMALISM FOR ac DRIVEN
DOUBLE QUANTUM DOTS

In the following, we shall develop the general framewo
leading to explicit expressions for the stationary curre
through dissipative driven double quantum dots. Our
proach is in part similar to the treatment of closed dissipat
two-level systems with ac driving as reviewed by Grifo
and Hänggi.74 Here, we generalize this approach to take in
account tunneling between the dots and the leads. In
nondissipative case, this problem was treated by Gurvitz
Prager75,76 for nondriven double dots, and for coherently
driven double dots by Stoof and Nazarov.33

A. Model Hamiltonian

We assume that the driven two-level system is defined
a double quantum dot device.3 In the regime of strong Cou
lomb blockade, these can be tuned into a regime where
internal dynamics is governed by a time-dependent~pseudo!
spin-boson model~dissipative two-level system77!, HSB(t).
The latter describes one additional ‘‘transport’’ electr
which tunnels between a left~L! and a right~R! dot with
time-dependentenergy difference«(t) and interdot coupling
Tc(t), and is coupled to a dissipative bosonic bath (HB

5(QvQaQ
† aQ),

HSB~ t !5F«~t!

2
1(

Q

gQ

2
~a2Q1aQ

† !G ŝz1Tc~t!ŝx1HB . ~1!
©2004 The American Physical Society26-1



a

ul

m
m
e

n

ad
io
th
th
-
m
s.
th
th

es
m

g:
f,
rn
el

r

su
n

po
te
le
fo
th

ce

rs
to
he
xi-
ce-
s

er-

that

the

b-

ce-

x

al-
en

res-
c-

BRANDES, AGUADO, AND PLATERO PHYSICAL REVIEW B69, 205326 ~2004!
The effective Hilbert space of double dot~without any cou-
pling to electron leads or bosons! then consists of two
~many-body! states uL&5uNL11,NR& and uR&5uNL ,NR

11& and is defined by a pseudospinŝz[uL&^Lu2uR&^Ru
[n̂L2n̂R and ŝx[uL&^Ru1uR&^Lu[ p̂1 p̂†.

The effects of the bosonic bath are fully described
usual by a spectral density

J~v![(
Q

ugQu2d~v2vQ!, ~2!

wherevQ are the frequencies of the bosons and thegQ de-
note interaction constants. When showing particular res
we will be using

J~v!52ave2v/vc, ~3!

corresponding to a generic Ohmic bath. More realistic for
can be easily incorporated into our formalism, but for si
plicity in this work we restrict ourselves to the Ohmic cas

The coupling to external free electron reservoirsHres

5(ka
eka

cka

† cka
is described by the usual tunnel Hamiltonia

HT5(
ka

~Vk
acka

† sa1H.c.!, ~4!

ŝa5u0&^au (a5L,R). Here, a third stateu0&5uNL ,NR& de-
scribes an ‘‘empty’’ double quantum dot. Its presence le
to strong modifications both in the mathematical descript
as well in the physics of this problem, as compared to
case of an isolated spin-boson Hamiltonian. Here,
reservoir-related parameters ofHres and HT have been as
sumed to be time independent which again is an approxi
tion which might not be always fulfilled in experiment
Again, we concentrate on the simplest possible case in
work and neglect the effect of, e.g., a time dependence in
external electrochemical potentials.

The full model as described by

H~ t !5HSB~ t !1Hres1HT , ~5!

now offers the possibility to study nonequilibrium properti
of a time dependent, ‘‘open’’ dissipative two-level syste
Note that in spite of the third, empty stateu0& we continue to
use the term ‘‘two-level system’’ here and in the followin
although the presence ofu0& leads to strong modifications o
e.g., the equations of motion of the density operator, it tu
out that the internal dynamics of the system is still clos
related to that of the dissipative spin-boson problem.

The time dependent spin-boson problem is in gene
characterized by the fact thatboth «(t) and Tc(t) are time
dependent. One can then investigate interesting effects
as adiabatic charge pumping, dissipative Landau-Ze
tunneling,78 or for the closed system~no coupling to the
leads! the control of quantum superpositions.79 Although this
general time dependence offers the richest spectrum of
sible physical phenomena, one is clearly strongly restric
by the fact that nearly no analytical solutions are availab
In this paper, our goal is to develop a systematic theory
the stationary state of a somewhat simpler situation, i.e.,
case whereTc(t)[Tc is constant, with the time dependen
solely contained in the bias«(t).
20532
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B. Equations of motion

In the following, we treat the coupling to the reservoi
within the Born and Markov approximation with respect
HT ,33,80such that higher-order effects like cotunneling or t
Kondo effect are not considered. This Born-Markov appro
mation becomes exact in the limiting case of infinite sour
drain voltage.75 Specifically, one sets the Fermi distribution
for the left ~right! reservoirf L51 ( f R50) where the chemi-
cal potentials of the leads no longer play any role. Furth
more, the tunnel rates which are given by

Ga52p(
ka

uVk
au2d~e2eka

!, a5L/R, ~6!

are assumed to be independent of energy. We mention
the generalization to intermediate voltage regimes~finite
bias! for double dots is a difficult and nontrivial problem
even in the undriven case, which is why we only discuss
infinite-bias limit in this paper.

The derivation of the equations of motion for the dot o
servables is now very similar to the nondriven case.80 The
time dependence of the Hamiltonian enters via the repla
ment of the phase factorsei«(t2t8) in the free undriven time

evolution of the dots, byei *
t8
t

ds «(s) for the driven case.
Introducing the vectors A[(n̂L ,n̂R ,p̂,p̂†), G5GLe1
(e1 , . . . ,e4 are unit vectors! and a time dependent matri
memory kernelM, the equations of motion~EOM! can be
formally written as9 @^•••&[Tr . . . r(t)#,

^A~ t !&5^A~0!&1E
0

t

dt8$M ~ t,t8!^A~ t8!&1G%. ~7!

This formulation is a useful starting point for, e.g., the c
culation of shot noise. Note that in contrast to the undriv
case, the memory kernelM depends on both timest and t8
because there is no time translation invariance in the p
ence of driving. Explicitly, the equations for the dot expe
tation values read

]

]t
^nL& t52 iTc$^p& t2^p†& t%1GL@12^nL& t2^nR& t#,

]

]t
^nR& t5 iTc$^p& t2^p†& t%2GR^nR& t ,

^p& t52E
0

t

dt8ei *
t8
t

ds «(s)F S GR

2
^p& t81 iTc^nL& t8DC~ t2t8!

2 iTc^nR& t8C* ~ t2t8!G ,
^p†& t52E

0

t

dt8e2 i *
t8
t

ds «(s)F S GR

2
^p†& t82 iTc^nL& t8D

3C* ~ t2t8!1 iTc^nR& t8C~ t2t8!G . ~8!

Here, half the decay rate~tunnel rateGR/2) of the system
appears in the off-diagonal termsp andp†, acting as a source
6-2
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of dephasing due to tunneling of an electronout of the right
dot. Furthermore, the boson correlation function for a h
monic bath with spectral densityJ(v), Eq. ~2!, and at equi-
librium temperaturekBT51/b enters,

C~ t ![e2Q(t),

Q~ t ![E
0

`

dv
J~v!

v2 F ~12cosvt !cothS bv

2 D1 i sinvt G .
~9!

In deriving the equations for the off-diagonal elemen
^p(†)&, we used the polaron transformation~POL! and fac-
torized the bosonic correlation functions from the dot ope
tors in the equations of motions for the reduced density
erator of the~pseudo! spin-boson system. This means th
Eq. ~8! is perturbative~though to infinite order! in the inter-
dot couplingTc .

Alternatively, one can perform a perturbation theory in t
electron-boson couplinggQ ~weak coupling perturbative
‘‘PER’’ approach!. In a calculation for an undriven doubl
quantum dot, both approaches have been compared rec
for the stationary current81 and the frequency-dependent cu
rent noise.9 For the spin-boson problem withGR/L50, it is
well known that POL is equivalent to a double-path integ
‘‘noninteracting blip approximation’’~NIBA ! that works well
for zero bias«50 but for «Þ0 does not coincide with PER
at small couplings and very low temperatures. PER work
the correct bonding and antibonding eigenstate basis of
hybridized system, whereas the energy scale« in POL is that
of the two isolated dots (Tc50). This difference reflects the
general dilemma of two-level-boson Hamiltonians: eith
one is in the correct basis of the hybridized two-level syst
and perturbative ingQ , or one starts from the ‘‘shifted os
cillator’’ polaron picture that becomes correct forTc50. In
fact, the polaron~NIBA ! approach does not coincide wit
standard damping theory82 because it does not incorpora
the square root, nonperturbative inTc hybridization form of
the level splitting D5A«214Tc

2. However, for largeu«u
@Tc , D→u«u, and POL and PER turn out to agree very w
for the undriven case.81

C. Stationary quantities

In a quantum system that is continuously driven by
external, time-dependent source, stationary quantities ca
defined for expectation values approaching a fixed point
quasistationary, periodic motion for large timest. In particu-
lar, we will be interested in quantities like the time averag
electronic current. It is then useful to split the time depend
part off «(t) as

«~ t !5«1 «̃~ t !, ~10!

and to introduce the Laplace transformf̂ (z)5*0
`dte2ztf (t)

of a function f (t). The time evolution of the isolated spin
boson system forTc50 is governed by the correlation func
tion C(t)5C* (2t). The Laplace transform of these,
20532
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Ĉ«~z![E
0

`

dte2ztei«tC~ t !,

Ĉ«* ~z![E
0

`

dte2zte2 i«tC* ~ t !, ~11!

defines free propagators for quasiparticles in the uncoup
dots and in absence of coupling to electron reservoirs
absence of electron-boson coupling, this simply describes
free time evolution of a particle described by the diago
Hamiltonian«ŝz , whereas for nonzero boson coupling the
become ‘‘dressed’’ polarons. In addition, the decay via
right reservoir at rateGR leads to a finite quasiparticle life
time and consequently a renormalization of the propaga
as

D̂«~z![
Ĉ«~z!

11GRĈ«~z!/2
, Ê«~z![

Ĉ2«* ~z!

11GRĈ«~z!/2
,

D̂«* ~z![
Ĉ«* ~z!

11GRĈ«* ~z!/2
, Ê«* ~z![

Ĉ2«~z!

11GRĈ«* ~z!/2
.

~12!

These expressions appear in the calculation in Appendix
where Eq.~8! is solved for the coherences^p& and ^p†& in
order to obtain two closed equations for the occupanc
^nL/R&,

zn̂L~z!2^nL&052E
0

`

dte2zt@^nL& tK̂~z,t !2^nR& tĜ~z,t !#

1GLF1

z
2n̂L~z!2n̂R~z!G ,

zn̂R~z!2^nR&05E
0

`

dte2zt@^nL& tK̂~z,t !2^nR& tĜ~z,t !#

2GRn̂R~z!,

K̂~z,t ![E
0

`

dt8e2zt8@Tc~ t1t8!Tc* ~ t !D«~ t8!

1Tc* ~ t1t8!Tc~ t !D«* ~ t8!#,

Ĝ~z,t ![E
0

`

dt8e2zt8@Tc~ t1t8!Tc* ~ t !E«~ t8!

1Tc* ~ t1t8!Tc~ t !E«* ~ t8!#, ~13!

where here and in the following we omit the^•••& in the
Laplace transformed expectation values to simplify the no
tion, and we defined

Tc~ t ![Tce
1 i *0

t ds«̃(s), Tc* ~ t ![Tce
2 i *0

t ds«̃(s). ~14!

Up to here the transformations have been valid for an a
trary time dependence in«(t). From now on, we specify to
the time-periodic form
6-3
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«~ t !5«~ t12p/V!, ~15!

where 2p/V is the period of the time-dependent field~we
further specify to a sinusoidal time dependence of«(t) be-
low!.

We expect the system to approach an asymptotic qu
stationary state. Then, the time evolution of all quantit
f (t) can be decomposed into Fourier series

f ~ t !→ f as~ t !5(
n

e2 inVt f n , ~16!

with multiples of the angular frequencyV of the external
field. Following Grifoni and Ha¨nggi,74 we decomposeK̂(z,t)
andĜ(z,t) into Fourier series,

K̂~z,t !5(
m

Km~z!e2 imVt,

Ĝ~z,t !5(
m

Gm~z!e2 imVt. ~17!

The corresponding Fourier expansions ^nL& t
asy

[(mnme2 imVt and ^nR& t
asy[(mmme2 imVt of the

asymptoticoccupancies can then easily be Laplace tra
formed,

n̂L
asy~z!5(

m

nm

z1 imV
, n̂R

asy~z!5(
m

mm

z1 imV
~18!

and inserted back into Eq.~13!. Comparing the complex
poles atz52 iM V in the two equations forn̂L(z) andn̂R(z)
and assuming thatKm(z) and Gm(z) are regular there, one
obtains an infinite system of linear equations for the Fou
coefficientsnm andmm ,

2 iM VnM52(
n

@nnKM2n~2 iM V!2mnGM2n~2 iM V!#

1GL@dM ,02nM2mM#,

@GR2 iM V#mM5(
n

@nnKM2n~2 iM V!

2mnGM2n~2 iM V!#. ~19!

Upon adding these two equations, one has

2
mM

nM
[r M[F11

GR

GL2 iM VG21

, MÞ0, ~20!

and Eq.~19! can be transformed into a single matrix equati
for the coefficientsnn ,

(
n52`

`

Amnnn5bm , ~21!

where
20532
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Amn[~GL2 inV2r nGL!dm,n1Km2n~2 imV!

1r nGm2n~2 imV!,

bm[
GLGR

GR1GL
dm01

GL

GR1GL
Gm~2 imV!. ~22!

D. Charge current

In the Master equation approach, the expectation val
of the electron current through the double dot is obtained
a fairly easy manner. One has to consider the average ch
flowing through one of the three intersections, i.e., left le
left dot, left dot/right dot, and right dot/right lead. This give
rise to the three corresponding electron currentsI L(t), I R(t),
and the interdot currentI LR(t). From the equations of mo
tion, Eq.~8!, one recognizes that the temporal change of
occupancieŝnL/R& t is due to the sum of an ‘‘interdot’’ cur-
rent }Tc and a ‘‘lead-tunneling’’ part. Specifically, the cur
rent from left to right through the left~right! tunnel barrier is

I L~ t !52eGL^n0& t52eGL@12^nL& t2^nR& t#,

I R~ t !52eGR^nR& t , ~23!

and the interdot current is

I LR~ t !52 ieTc$^p& t2^p†& t%52e
]

]t
^nR& t1I R~ t !

5e
]

]t
^nL& t1I L~ t !. ~24!

In the stationary case, all the three currents are the sa
adding the two equations, Eq.~19!, for M50, we first obtain

GRm05GL~12m02n0!. ~25!

Using furthermore the Fourier expansion of^nL/R& t
asy, we

recognize from Eqs.~23! and ~24! that

Ī 5I L~ t !5I LR~ t !5I R~ t !52eGRm0 , ~26!

where the bar denotes the temporal average of the asymp
quantities over one periodt[2p/V. This simple result
means that the stationary current is determined by the F
rier componentm0 only. Note, however, thatm0 is part of the
solution of an infinite set of the linear equations, Eq.~21!.
Using Eqs.~19! and ~20!, one can expressm0 in terms of
mNÞ0 for the alternative expression

Ī 52eGR

K0~0!2 (
nÞ0

@K2n~0!/r n1G2n~0!#mn

GR1K0~0!/r 01G0~0!
.

~27!

This form is in particular useful for the discussion of th
Tien-Gordon limit below.
6-4
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E. Sinusoidal time dependence

In the following, we specify the time dependence of t
bias«(t) to a monochromatic sinusoidal field

«~ t !5«1D sin~Vt !, ~28!

where the constant part is denoted by«. We introduce the
notation,

Ĉ«~2 iv!5Ĉ«1v~z501![Ĉ«1v ,

Ĉ«* ~2 iv!5Ĉ«2v* ~z501![Ĉ«2v* , ~29!

and correspondingly for the propagatorsD, D* , E, andE* ,
Eq. ~12!. Then, invoking the decomposition of the phase fa
tor into Bessel functions,

Tc~ t1t8!Tc* ~ t8!5Tc
2ei * t

t1t8dsD sin(Vs),

5Tc
2(

nn8
i n82nJnS D

V D Jn8S D

V D
3e2 inVt8e2 i (n2n8)Vt, ~30!

and the definitions of the Fourier componentsKm(z) and
Gm(z), cf. Eqs.~13! and ~17!, one obtains

Km~2 im8V!5 i 2mTc
2(

n
FJnS D

V D Jn2mS D

V D D̂«1(m82n)V

1JnS D

V D Jn1mS D

V D D̂«2(m81n)V
* G ,

Gm~2 im8V!5 i 2mTc
2(

n
FJnS D

V D Jn2mS D

V D Ê«1(m82n)V

1JnS D

V D Jn1mS D

V D Ê«2(m81n)V
* G . ~31!

III. ANALYTICAL RESULTS

In the following, we first discuss the limits where analy
cal results for the stationary currentĪ can be obtained, and
then turn to a comparison with numerical calculations.

A. Time-independent case

For D50, i.e., in absence of the time-dependent~driving!
part in «(t), we recover previous results80 for stationary
transport in dissipative double quantum dots. One then
K̂(z,t)5K̂(z) and Ĝ(z,t)5Ĝ(z) such thatKn(z)5Gn(z)
50 for nÞ0. UsingK0(0)52Re@Tc

2Ĉ« /(11GRĈ«/2)#, to-

gether withG0(0)52ReTc
2@Ĉ2«* /(11GRĈ«/2)#, after some

algebra we rederive the previous result80 for the stationary
current,

Ī 52eTc
2 2Re~Ĉ«!1GRuĈ«u2

u11GRĈ«/2u212Tc
2B«

,

20532
-

as

B«[ReH ~11GRĈ«/2!F Ĉ2«

GR
1

Ĉ«*

GL
S 11

GL

GR
D G J ~32!

~note the absence of the factor 2 in the definition of the ra
here80!. The result, Eq.~32!, which can be compared81 to an
alternative derivation using perturbation theory in the bos
couplinga, generalizes the case of elastic tunneling throu
double quantum dots to inelastic tunneling with coupling
an arbitrary bosonic heat bath. Fora50, we rederive the
Stoof-Nazarov expression for the stationary current with
dissipation,33

Ī a5052e
Tc

2GR

«21GR
2/41Tc

2~21GR /GL!
. ~33!

B. Lowest order Tc
2 : Tien-Gordon result

In the time dependent case, we are able to derive ana
cal results by considering the limit of small interdot couplin
Tc , or large frequenciesV. These two limits do not yield
identical results because apart fromTc andV, there are four
other energy scales~bias«, ratesGL , GL , boson cutoffvc)
in the problem.

Considering Eq.~33! for the undriven, nondissipative cur
rent, lowest order perturbation theory inTc is valid for
TcA21GR /GL!GR ,u«u. The additional energy scaleV due
to ac driving requires that this condition is generalized to

TcA21
GR

GL
!V,GR ,u«1nVu, n560,1,2, . . . ,

~34!

which indicates that at the resonance points«5nV such a
perturbation theory must break down, as is corroborated
our numerical results discussed below.

Considering the expression formM in Eq. ~19!, one rec-
ognizes thatmM5O(Tc

2) because the Fourier components
the functionsK and G are proportional toTc

2 , cf. Eq. ~13!.
Owing to the full expression, Eq.~27!, the stationary curren
in lowest order ofTc is Ī 5 Ī TG1O(Tc

4) with

Ī TG[2eK0~0!. ~35!

For a sinusoidal«(t)5«1D sin(Vt), the explicit expression
Eq. ~31!, yields

Ī TG52eTc
2(

n
Jn

2S D

V DReS 2C«1nV

11
GR

2
C«1nV

D . ~36!

Note that Eq.~36! is the Tien-Gordon formula. This can b
easily demonstrated by expanding the nondriven station
current, Eq. ~32!, to lowest order inTc , namely, Ī 5 Ī 0

1O(Tc
4), such that, for the driven case

Ī TG[(
n

Jn
2S D

V D Ī 0u«→«1nV
D50 . ~37!
6-5
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To lowest order inTc , the stationary current therefore
given by the Tien-Gordon formula: the current in the driv
system is expressed by a sum over current contributions f
sidebands«1nV, weighted with squares of Bessel fun
tions. Note that the perturbative resultĪ TG[2eK0(0), Eq.
~35!, does not refer to any specific form of the periodic fun
tion «(t); it is valid for arbitrary periodic driving when the
corresponding Fourier componentK0(0) is used.

C. Nonadiabatic approximation

This approximation assumes that the frequencyV is the
largest energy scale in the problem,

V@Tc ,«,GR ,GL . ~38!

On the rhs of the integral equation, Eq.~13!, for n̂L/R(z), one
then replaces the integral kernelsK̂(z,t) andĜ(z,t) by their
averages over one period of the ac field,

K̂~z,t !→ V

2pE0

2p/V

dtK̂~z,t ![K0~z! ~39!

and similarly forĜ(z,t). The Fourier coefficientsKn(z) and
Gn(z) with nÞ0 then vanish and one obtainsĪ ' Ī fast, where

Ī fast[
2eGRK0~0!

GR1G0~0!1K0~0!@11GR /GL#
. ~40!

We observe that within lowest order of the static tunnel
Tc , Eq. ~40! coincides with the Tien-Gordon expression, E
~35!, which one obtains by settingG0(0)}Tc

2 and K0(0)
}Tc

2 to zero in the denominator of Eq.~40!. In fact, for the
undriven caseD50 one can prove81 that the expression fo
the stationary current sums up an infinite number of ter
}Tc

2 , a fact that can be traced back to the integral equa
structure of the underlying master equation. Here, Eq.~40!
demonstrates that a similar summation effectively can
achieved in the ac driven case.

D. Higher-order corrections to Tien-Gordon

In order to systematically go beyond the Tien-Gordon
proximation, Eq.~35!, one has to perform an expansion
the current in powers ofTc

2 . This can be achieved bytrun-
cating the infinite set of linear equations, Eq.~22!, in order to
obtain approximations for then50,61,62th sideband val-
ues ofnn andmn . The simplest way to do this in practice
by a numerical solution of these equations as discussed
low.

Barata and Wreszinski83 have considered higher orde
corrections to dynamical localization in aclosed, coherent
two-level system, i.e., without coupling to external electr
reservoirs or dissipation. They found that the next order
perturbation theory given a contribution different from ze
was the third-order one, giving a contribution to a renorm
ization of the tunnel couplingTc :
20532
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s
n

e
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e-

n

l-

dTc
(3)[2

2Tc
3

V2

3 (
n1 ,n2PZ

J2n111S D

V D J2n211S D

V D J22(n11n211)S D

V D
~2n111!~2n211!

.

~41!

We now recall our expression

K0~0!5(
n

FTcJnS D

V D G2

2ReD«1nV ~42!

~and G0(0) correspondingly with D«1nV replaced by
E«1nV), cf. Eq. ~31!, which enters the Tien-Gordon resu
Eq. ~35!, and the resummed nonadiabatic approximation
~40!. We use the renormalizedTc , Eq. ~41!, in order to de-
fine a renormalized functionK0

(3)(0),

K0
(3)~0![(

n
FTcJnS D

V D1dTc
(3)G2

2ReD«1nV , ~43!

and G0
(3)(0) correspondingly. This yields an expression f

the current, renormalized up to third order inTc , according
to

Ī (3)[
2eGRK0

(3)~0!

GR1G0
(3)~0!1K0

(3)~0!@11GR /GL#
. ~44!

In the following, we discuss and compare our above
sults.

IV. DISCUSSION

A. Comparison of two numerical schemes

In order to numerically solve the integro-differential sy
tem, Eq.~8!, it is convenient to write

expS i E
t8

t

ds«~s! D[eiw te2 iw t8, ~45!

with w t[«t2(D/V)cosVt, remembering our choice«(t)
5«1D sinVt. We then introduce the real and imaginary pa
of ^p&, useeix5cosx1i sinx, and specify to the Ohmic dis
sipation case forC(t),

C~ t !5uC~ t !ue2 iC t, C t52a arctanvct,

uC~ t !u5@11~vct !
2#2aUG~111/bvc1 i t /b!

G~111/bvc!
U4a

. ~46!

We have solved Eqs.~8! numerically as a function of time
with the result for large times used to obtain the station
current as a function of«. For each value of«, the time
dependent equations have been solved up to a fixed
time t f with a subsequent time average over the interval@ t f
2Dt,t f #. t f has to be chosen sufficiently large, in particula
for larger values ofa. Consequently, one then also has
increase the number of steps to achieve sufficient accurac
6-6
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CHARGE TRANSPORT THROUGH OPEN DRIVEN TWO- . . . PHYSICAL REVIEW B 69, 205326 ~2004!
the data. We have used these numerical results to check
method for the stationary quantities as obtained from tr
cating Eq.~22! at a finite photosideband number, and fou
good agreement between both methods. Whereas the d
integration of the equations of motion is somewhat slow
than the truncation method, it has the advantage that it d
not require analytic forms of the Laplace transform for t
bosonic correlation functionsĈ« , Eqs. ~11! and ~29!. The
latter are required for the matrix scheme Eq.~22!. In Appen-
dix B we derive explicit expressions for zero temperatu
(T50) and Ohmic dissipation. Note that in contrast to us
‘‘ P(E)’’ theory, we require both the real part Re@Ĉ«(0)#
5pP(«) @whereP(«) is the probability for inelastic tunnel
ing with energy transfer«82#, and the imaginary part ofĈ« .

In the following, we show numerical results obtained w
the truncation method.

B. Photosidebands„coherent case…

1. Comparison with Tien-Gordon approximation

In Fig. 1, we compare the exact numerical result for
average stationary current with the Tien-Gordon express
Eq. ~37!, in the coherent casea50. One clearly recognize
the symmetric photoside peaks which, according to Eq.~37!,
appear at6n\«. The Tien-Gordon approximation overes
mates the current close to these resonances, where term
higher order inTc become important due to the nonlineari
~in Tc) of the exact bonding and antibonding energ
6A«214Tc

2 of the isolated two-level system. This aga
confirms that the Tien-Gordon result is perturbative in
tunnelingTc .

2. RWA and Bloch-Siegert shift

Close to the first side peak, Stoof and Nazarov have u
a rotation wave approximation~RWA! to obtain analytical
predictions for the first current side peak. In this approxim
tion, one transforms into an interaction picture where
fast-rotating terms with angular frequency6V are trans-
formed away, and terms with higher rotation frequenc
~such as62V) are neglected. The resulting expression
the current is33

FIG. 1. Average current through double dot in Coulomb bloc
ade regime with bias«1D sinVt. Coupling to left and right leads
GL5GR5G. Dotted lines indicate Tien-Gordon result, Eq.~37!.
20532
ur
-

ect
r
es

e
l

e
n,

of

s

e

ed

-
e

s
r

I SN5
D2GR~a224!

c~cGR
21bD2!

w2

w21~«2« r !
2

, ~47!

with the resonance point«R[AV224Tc
2 and parametersa

5V/Tc , b[GR /GL12, c[a21b24, and the half-width
w5(a/@2Aa224#)AGR

21(b/c)D2. We compareI SN with
the exact result in Fig. 2.

For smaller driving amplitudeD, the agreement is very
good but becomes worse with increasingD. The position of
the side-peak resonance point, which is independent ofD in
the Stoof-Nazarov approximation Eq.~47!, starts to shift to-
wards slightly larger values of the bias«. In fact, for stron-
ger ac driving the RWA is known to break down: in isolate
two-level systems, the first corrections to the RWA lead
the well-known Bloch-Siegert shift84 of the central resonanc
towards larger energies, which is consistent with the ex
result in Fig. 2.

C. Dynamical localization and its lifting

In a quantum system driven by a periodic electric field
phenomenon termed coherent destruction of tunne
~CDT! @also denoted dynamical localization~DL!# occurs
under certain parameters of the external field.52,85 The peri-
odicity of the external field allows to write the solutions
the Schro¨dinger equation as:c(t)5exp@2iejt#fj(t), wheree j
is called the quasienergy, andf j (t) is a function with the
same period as the driving field: the Floquet state.

When two quasienergies approach degeneracy, the
scale for tunneling between the states diverges, produ
the phenomenon of CDT.52 The time scale for localization is
the inverse of the energy separation of the quasienergies

In the case of an isolated two-level system driven by
monochromatic, sinusoidal field«(t)5«1D sin(Vt), Eq.
~28!, CDT can be physically understood from the renorm
ization of the couplingTc of the two levels,

Tc→Tc,eff[TcJ0S D

\V D . ~48!

This expression is obtained from first-order perturbat
theory in the tunnelingTc .85 At the first zero of the Besse

-
FIG. 2. Comparison between RWA, Eq.~47!, and exact result

for first current side peak.
6-7
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BRANDES, AGUADO, AND PLATERO PHYSICAL REVIEW B69, 205326 ~2004!
functionJ0, namely, whenD/\V52.4048 . . . , theeffective
tunnel splitting vanishes, leading to a complete localizatio
of the particle in the initial state.

In the following, we discuss how stronger tunnel amp
tudesTc , the coupling to the external leads, and dissipat
modify this picture.

1. Current suppression

In Fig. 3, we show results for the average current anda
50 ~no dissipation! in the DL regime. Here, we define thi
regime byD5z0V, wherez052.4048 . . . is thefirst zero of
the Bessel functionJ0. For this specific value of the ac driv
ing D, to lowest order inTc the average current is strong
suppressed foru«u&V as compared with the undriven ca
D50. For smallTc , this suppression is well described b
the Tien-Gordon expression~not shown here!: since atD
5z0V, the n50 term in the sum, Eq.~37!, is absent, the
current is dominated by the shifted~undriven! current con-
tributions at bias«1nV with unu>1, which, however, are
very small due to the resonance shape of the undriven
rent.

2. Central current peak and third-order result

Surprisingly, however, the coherent suppression of
current islifted again very close to«50, where a small and
sharp peak appears. This peak becomes broader with inc
ing tunnel couplingTc , but its height is suppressed for in
creasing reservoir couplingG, cf. Fig. 3 right. This feature is
analyzed in Fig. 4, where we show results for the cen
current peak around«50 in the DL regime for coheren
(a50, left! and incoherent (a.0, right! tunneling. As one
recognizes, the Tien-Gordon description~which is perturba-
tive in the tunnel couplingTc) breaks down close to«50
where higher order terms inTc become important. As a mat
ter of fact, for «50 the only relevant energy scale of th
isolated two-level systems isTc itself. In contrast, thethird-
order approximation, Eq. ~44!, reproduces very well the ad
ditional peak at«50, which indicates the importance o
higher-order terms in that regime. At«50, the charge be-

FIG. 3. Average current for ac driving amplitudeD5z0V (z0

first zero of Bessel functionJ0) and various tunnel couplingsTc .
Coupling to left and right leadsGL5GR5G.
20532
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tween the two dots is strongly delocalized in the undriv
case, and this tunneling-induced quantum coherence per
into the strongly driven regime where its signature is a ‘‘li
ing’’ of the DL close to«50.

The width of the corresponding current peak is det
mined by the tunneling rateG. An increase of incoheren
electron tunneling from the left lead therefore washes out
coherent lifting of the DL. This argument in emphasized
the right part of Fig. 4 which shows that the central peak
the DL regime vanishes for increasing dissipation strengtha.

D. Dissipation and average current

1. Dissipative photosidebands

As mentioned above, for simplicity we restrict ourselv
to an Ohmic dissipative bath at zero temperature (T50) in
this paper, leaving the finite-temperature case or the cas
more complicated spectral functionsJ(v) for future work.

For D50, we reproduce the analytical result, Eq.~32!,
and the corresponding inelastic current part for«.0 due to
spontaneous boson emission.3,80 In Fig. 5, we show the sta
tionary current as a function of bias« for various Ohmic
dissipation strengthsa at zero temperature and finite ac dri
ing amplitudesD. ForD5V, apart from the central resonan
tunneling peak, sidebands at«5nV appear which reproduce
the asymmetry of the central peak around«50. This asym-
metry is a clear signature of the coupling to the dissipat
environment strongly modifying the current even at ze
temperature.

The specific form of the inelastic current depends on
boson spectral densityJ(v).80 Note that in general, there i
no monotonic dependence on the dissipation strengtha since
the boson correlation functionĈ« appears both in the de
nominator and the numerator of the expression for the c
rent Eq.~32!.

2. Dissipation and dynamical localization in the current

If the ac driving amplitudeD is increased towardsz0V
(z0 is the first zero of the Bessel functionJ0), one expects to

FIG. 4. Central peak of average current through ac driv
double quantum dot. ParametersTc50.1, D5z0V ~all rates in units
of V). Left: coherent casea50 for different tunnel ratesG5GL

5GR , dots indicate third order results Eq.~44!, squares indicate the
Tien-Gordon result Eq.~37! for the caseG50.005. Right: disap-
pearance of central peak with increasing dissipationa.
6-8
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CHARGE TRANSPORT THROUGH OPEN DRIVEN TWO- . . . PHYSICAL REVIEW B 69, 205326 ~2004!
enter the regime of dynamical localization and a strong s
pression of the central current peak. In the coherent casa
50 ~see above!, resonant tunneling is usually strongly inhib
ited due to coherent suppression of tunneling.

For a.0, however, we find that the current suppress
strongly depends on the static bias«: we find suppression fo
«.0 and, in general,larger values of the current for«,0 as
compared to the case of smaller ac amplitudesD. We explain
this feature in the following: the dependence of the aver
current on the driving amplitudeD for fixed a is clearly
visible in Fig. 6. A small driving amplitudeD&0.2 nearly
does not change the current at all. However, the origin
strongly asymmetric current curve becomes flattened
whenD is tuned to larger values up to the dynamical loc
ization valueD5z0V. There, the ac field nearly complete
destroys the strong asymmetry between the spontan
emission («.0) and the absorption side («,0) of the cur-
rent. The centraln50 photoband is completely suppress
and the dominant contribution to the current comes from
n561 bands. For«,0, the current forV.u«u is due to

FIG. 5. Average current through double dot in Coulomb bloc
ade regime with bias«1D sinVt for various Ohmic dissipation
strengthsa at zero temperature. Driving amplitudeD5V for lines
without symbols,D5z0V (z0 first zero of Bessel functionJ0) for
lines with symbols. Tunnel coupling between dotsTc50.1V, bath
cutoff vc5500V, and lead tunnel ratesGL5GR50.01V.

FIG. 6. Average current through driven double dot for vario
ac driving amplitudesD and fixed dissipationa50.05, tunnel cou-
pling Tc50.1V.
20532
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photoexcitation of the electron into the first upper photosi
bands and subsequent spontaneous emission of boso
energyE1[V2u«u to the bath. In contrast, forV.«.0,
photon emission blocks the current because atT50 there is
no absorption of bosons from the bath. The remaining pho
absorption channel then leads to boson emission at an en
E2[V1«, which is larger as compared to the case for«
,0, namely,E2.E1, and therefore has a smaller probabili
P(E)}E2a21e2E/vc, cf. Eq. ~B9!, leading to a smaller cur-
rent. A similar argument can be used to explain why t
current increasesas one reduces«, say from «/V50 to
«/V520.5. In particular, the strongest effect of the dissip
tive bath occur near one-photon resonance conditions,
when«/V'61, where the current is regulated by the spe
tral function of the bosonic bath at very low frequencie
either by absorption («,0) or emission («.0) of a photon.
These processes appear in the current as nonanalytic c
reflecting the power-law behavior ofP(E). This has to be
compared with the Lorentzian shape of the photosideba
in the absence of dissipation~Fig. 1!. If one tunes to even
larger values ofD.z0V, the centraln50 photoband reap-
pears and the original strong asymmetry of the current cu
is restored.

V. CONCLUSION AND OUTLOOK

Our results suggest that the combination of ac fields
dissipation in double quantum dots leads to a rich variety
nontrivial effects. In particular, we have shown that a tim
dependent monochromatic field drastically modifies the d
sipative inelastic stationary current, in particular, for strong
ac driving in the dynamical localization regime. Correctio
to the Tien-Gordon formula appear at larger tunnel coupl
between the dots and become extremely important near
bias in the DL regime, also in the nondissipative case.

The method presented in this work has the benefit of
counting for an arbitrary dissipative environment via the c
relation functionĈ« . In the generic case, explicit analytica
forms for this function are difficult to obtain and it might b
easier to integrate the original equations of motion direc
Alternatively, one can numerically evaluateĈ« and use it as
an input into our Floquet-like formalism. We also mentio
that the entire approach is based on the decoupling of
bosonic degrees of freedom in the polaron transformed m
ter equation. One is therefore always restricted to the ra
of validity of the NIBA of the original spin-boson
problem.74,82 Discussing larger temperaturesT should thus
lead to more reliable results as compared to the ‘‘test m
els’’ C« which were discussed here forT50.

A future extension of our approach should therefore
the derivation of a systematic perturbation theory in t
electron-boson coupling, starting from the bondin
antibonding basis of the double dots. In a calculation for
undriven double quantum dot, such an approach has b
successfully used recently to extract dephasing and re
ation times from the frequency-dependent noise spectrum9

Even for the coherent casea50, our results have shown
that there are nontrivial effects due to the combined quan
coherence inherent in the double dot, and the coherence

-

6-9
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BRANDES, AGUADO, AND PLATERO PHYSICAL REVIEW B69, 205326 ~2004!
duced by the external driving field. In particular, we fou
systematic corrections to standard approximation such as
Tien-Gordon formula or the rotating wave approximatio
The constituing quantitiesKm andGm of our theory, cf. Eqs.
~27! and~31!, describe dissipative tunneling}Tc

2 of one ad-
ditional quasiparticle between the two dots under the in
ence of the ac field, which again indicates that our appro
is essentially perturbative inTc , although to infinite order
and exact fora50. We showed that partial resummatio
beyond the Tien-Gordon result are justified in a nonadiaba
high-frequency approximation, but for the general case
has to rely on a systematic evaluation of Eq.~27!.
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APPENDIX A: DOT OCCUPANCIES IN LAPLACE SPACE

Here, we derive Eq.~13! for the occupancieŝnL/R&. We
define

q~ t ![^p& te
2 i *0

t ds«̃(s), q†~ t ![^p†& te
1 i *0

t ds«̃(s). ~A1!

This is inserted into the equations of motion in the tim
domain, Eq.~8!, which upon Laplace transformation be
comes

zn̂L~z!2^nL&052 i E
0

`

dte2zt$Tc~ t !q~ t !2Tc* ~ t !q†~ t !%

1GLF1

z
2n̂L~z!2n̂R~z!G ,

zn̂R~z!2^nR&05 i E
0

`

dte2zt$Tc~ t !q~ t !2Tc* ~ t !q†~ t !%

2GRn̂R~z!,

q̂~z!52
G0

2
q̂~z!Ĉ«~z!2 i F E

0

`

dt8e2zt8Tc* ~ t8!@^nL& t8Ĉ«~z!

2^nR& t8Ĉ2«* ~z!#G ,
q̂†~z!52

G0

2
q̂†~z!Ĉ«* ~z!1 i F E

0

`

dt8e2zt8Tc~ t8!

3@^nL& t8Ĉ«* ~z!2^nR& t8Ĉ2«~z!#G , ~A2!

where we used the convolution theorem in the equations
q̂(z) and q̂†(z) and the definitions Eq.~11!. Using the defi-
20532
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nitions for the propagatorsD andE, Eq.~12!, we obtain upon
solving for q̂(†)(z) and Laplace back transforming,

q~ t !52 i E
0

t

dt8Tc* ~ t8!@^nL& t8D«~ t2t8!2^nR& t8E«~ t2t8!#,

q†~ t !5 i E
0

t

dt8Tc~ t8!@^nL& t8D«* ~ t2t8!2^nR& t8E«* ~ t2t8!#,

~A3!

involving the propagators in the time domain. Insertion in
Eq. ~A2! yields

zn̂L~z!2^nL&052E
0

`

dte2ztE
0

t

dt8^nL& t8@Tc~ t !Tc* ~ t8!

3D«~ t2t8!1Tc* ~ t !Tc~ t8!D«* ~ t2t8!#

1E
0

`

dte2ztE
0

t

dt8^nR& t8@Tc~ t !Tc* ~ t8!

3E«~ t2t8!1Tc* ~ t !Tc~ t8!E«* ~ t2t8!#

1GLS 1

z
2n̂L~z!2n̂R~z! D . ~A4!

At this point, it is useful to use a relation for a generaliz
convolution of a functionK(t,t8) and f (t8),

E
0

`

dte2ztE
0

t

dt8K~ t,t8! f ~ t8!

5E
0

`

dte2ztf ~ t !E
0

`

dt8e2zt8K~ t1t8,t !, ~A5!

which can be easily proven by substitutions. Note that
usual Laplace convolution theorem is recovered from E
~A5! if K(t,t8)5K(t2t8) is only a function of the differ-
ence of its two arguments. Eq.~A4! and a similar equation
for n̂R(z) then lead to Eq.~13!.

APPENDIX B: CALCULATION OF THE BOSON
CORRELATION FUNCTION

Explicit expressions for the bosonic correlation functio
Ĉ« , Eqs. ~11! and ~29!, which can be obtained in the zer
temperature (T50) case for Ohmic dissipation. In this cas

J~v!52av exp~2v/vc!,

C~ t !5~11 ivct !
22a, g[2a. ~B1!

We have

Ĉ~z![E
0

`

dte2zt~11 ivct !
22a

5~ ivc!
22az2a21e2 iz/vcG~122a,2 iz/vc!,

~B2!
6-10
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where we used Gradstein-Ryshik 3.3824 andG denotes the
incomplete Gamma function. We setvc51 for a moment to
simplify notations and obtain

Ĉ~2 i«!52 i ~2«!2a21e2«G~122a,2«!. ~B3!

Note that« must have a small positive imaginary part he
(Rez.0 in the definition of the Laplace transformation!: the
incomplete Gamma functionG(122a,z) has a branch poin
at z50. However, we can use the series expansion

G~122a,x!5G~122a!2 (
n50

`
~21!nx122a1n

n! ~122a1n!
,

122aÞ0,21,22, . . . , ~B4!

to obtain

Ĉ~2 i«!52 i ~2«!2a21e2«G~122a!

1 ie2« (
n50

`
«n

n! ~122a1n!
, 2aÞ1,2,3, . . . .

~B5!

The second term is an analytic function of«.
Now we write

2 i ~2«!2a215H 2 i u«u2a21, «,0

«2a21e2p i (1/212a21), «.0.

5H 2 i u«u2a21, «,0

«2a21~sin 2pa1 i cos 2pa!, «.0.

~B6!

Recall the reflection formula for the Gamma function,
ns
tt

nd

R

.

p

-

.

20532
G~12z!5
p

G~z!sinpz
. ~B7!

This yields

«.0: Ĉ~2 i«!5
p

G~2a!
«2a21e2«

1 i F p

G~2a!
«2a21e2«cot 2pa

1e2« (
n50

`
«n

n! ~122a1n!G .

«,0: Ĉ~2 i«!5 ie2«F2
p

G~2a!sin 2pa
u«u2a21

1 (
n50

`
«n

n! ~122a1n!
. ~B8!

From this, we can read off the real and the imaginary par
Ĉ(2 i«). The real part is

ReĈ~2 i«![pP~«!5
p

G~2a!
«2a21e2«u~«!. ~B9!

The imaginary part is

ImĈ~2 i«![e2«F (
n50

`
«n

n! ~122a1n!

1
pu«u2a21

G~2a!sin 2pa H 21, «,0

cos 2pa, «.0G .
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69R. López, R. Aguado, G. Platero, and C. Tejedor, Phys. Rev. L

81, 4688~1998!.
70A. Kaminski, Yu.V. Nazarov, and L.I. Glazman, Phys. Rev. Le

83, 384 ~1999!.
71R. Aguado and G. Platero, Phys. Rev. Lett.81, 4971~1998!.
72C.E. Creffield and G. Platero, Phys. Rev. B65, 113304~2002!.
73C.E. Creffield and G. Platero, Phys. Rev. B66, 235303~2002!.
74M. Grifoni and P. Ha¨nggi, Phys. Rep.304, 229 ~1998!.
75S.A. Gurvitz and Ya.S. Prager, Phys. Rev. B53, 15 932~1996!.
76S.A. Gurvitz, Phys. Rev. B57, 6602~1998!.
77A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher,

Garg, and W. Zwerger, Rev. Mod. Phys.59, 1 ~1987!.
78T. Brandes and T. Vorrath, Phys. Rev. B66, 075341~2002!.
79T. Hayashi, T. Fujisawa, H.-D. Cheong, Y.-H. Jeong, and

Hirayama, Phys. Rev. Lett.91, 226804~2003!.
80T. Brandes and B. Kramer, Phys. Rev. Lett.83, 3021~1999!.
81T. Brandes and T. Vorrath, Int. J. Mod. Phys. B28, 5465~2003!.
82U. Weiss,Quantum Dissipative Systems, Series of Modern Con-

densed Matter Physics, Vol. 2~World Scientific, Singapore,
1993!.

83J.C.A. Barata and W.F. Wreszinski, Phys. Rev. Lett.84, 2112
~2000!; M. Frasca, Phys. Rev. B68, 165315 ~2003!;
cond-mat/0404692.

84L. Allen and J.H. Eberly,Optical Resonance and Two-Level A
oms~Dover, New York, 1987!.

85For a recent review see, e.g., G. Platero and R. Aguado, P
Rep.395, 1 ~2004!; cond-mat/0311001~unpublished!.
6-12


