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Charge transport through open driven two-level systems with dissipation
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We derive a Floquet-like formalism to calculate the stationary average current through an ac driven double
quantum dot in the presence of dissipation. The method allows us to take into account arbitrary coupling
strengths both of a time-dependent field and a bosonic environment. We numerically evaluate a truncation
scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.
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[. INTRODUCTION possible interactions within one and the same model might
look unsuitable for a useful theoretical discussion. However,

Coupled quantum systems with small effective Hilbertas we will demonstrate in this paper, it is possible to calcu-
spaces are useful tools in order to study coherence, dissiptate experimentally relevant observables such as the time-
tion, and the interaction properties of few-particle systemsaveraged stationary current, with the help of theat bath
In an electronic context, an example are coupled quanturRoson spectral density(w) as single, main input of the
dots!~ where strong interactions between electfofigle-  theory onIy.. In particular, we show how within the polaron
fine a Coulomb blockade regime with tunnel-splitted many-transformation approach and for a givéfw), one can cal-
body ground states separated from the remaining excitegulate the current_ for arbitrarily strong coupling to bosonic
states. The ultimate limit of two states defines a two-levefmodesandan ac field. _ .
system for the charge degree of freedom, with electrons of a The paper is organized as follows: in Sec. Il, we describe
fixed spin tunneling between two quantum dots. Studying}he model I.—Iamlltonlan'and derive a Floquet-like formalism
transport and dissipation then leads to a nonequilibrium ofor the stationary density operator. In Sec. Ill, we compare
“open” (pseudgspin-boson problem, where the coupling to analytical re_sults for I|m_|t|ng cases with numerlcal_ data, and
external reservoirs opens the path to investigate propertie%onC'Ude with a short discussion and an outlook in Sec. IV.
such as shot noider decoherence in a controllable semicon-
ductor environment. Il. MASTER EQUATION FORMALISM FOR ac DRIVEN

Additional insight into the quantum dynamics of electrons DOUBLE QUANTUM DOTS
can be gained by making the parameters of the problem time
dependent. When the time dependence is slow, this can gi\{g
rise to a variety of adiabatic phenomena such as char
pumping!®~1® adiabatic control of state vecto?$?! or op-
erations relevant for quantum information processing in
condensed-matter settift.2® Different physics occurs in
the high-frequency regime where monochromatic time varia
tion induces photoexcitations, such as for coupling of a
fields to quantum dot$3* which has been tested
experimentally®*°recently.

In general, ac driven systef$?and their application to
various mesoscopic transpbft®®and tunneling*~*3regimes
have quite a long history, although the inclusion of interac-
tions and correlations is a relatively new area. In low- We assume that the driven two-level system is defined in

dimensional systems, investigations have concentrated o double gquantum dot devicen the regime of strong Cou-
one-dimensional modef; %8 the modification of Kondo lomb blockade, these can be tuned into a regime where the
resonances by ac fiel63/° mean-field-type approxima- internal dynamics is governed by a time-dependpagudo
tions/? or exact studies of driven few-electron systefh&  spin-boson modeldissipative two-level systeff), Hsg(t).

In this paper, we combine ac driving with tléssipative ~ The latter describes one additional “transport” electron
dynamicsof a two-level systentdouble quantum dptunder ~ Which tunnels between a left) and a right(R) dot with
transport conditions, i.e., in a situation where electrons in théme-dependengnergy difference (t) and interdot coupling
Coulomb blockade regime can tunnel from reservoirs intol(t), and is coupled to a dissipative bosonic baftig(
and off two tunnel-coupled quantum dots, with the possibil-zEQwQagaQ),
ity to absorb from or emit bosons into a heat bath while ® g
simultaneously interacting with a classical time-periodic _| &8V 2Q IRy -
electrical field. At first sight, combining such a multitude of Hselt) 2 * 2 (8-qtag) |oxt TelortHe. (1)

In the following, we shall develop the general framework
ading to explicit expressions for the stationary current
gﬁ’wough dissipative driven double quantum dots. Our ap-

roach is in part similar to the treatment of closed dissipative
wo-level systems with ac driving as reviewed by Grifoni
and Hanggi.”* Here, we generalize this approach to take into
account tunneling between the dots and the leads. In the
Cnondissipative case, this problem was treated by Gurvitz and
Pragef®’® for nondriven double dots, and for coherently ac
driven double dots by Stoof and Nazarbv.

A. Model Hamiltonian
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The effective Hilbert space of double datithout any cou- B. Equations of motion
pling to electron leads or bosgnshen consists of two In the following, we treat the coupling to the reservoirs

(many-boqy states |L)=INL+1Ng) _Aand IRY=INL.NR  within the Born and Markov approximation with respect to
+1) and is defined by a pseudospin=|L){(L|—|R)}R|  #;,3®such that higher-order effects like cotunneling or the

=n,_—ng ando,=|L)(R|+|R){L|=p+p. Kondo effect are not considered. This Born-Markov approxi-
The effects of the bosonic bath are fully described agnation becomes exact in the limiting case of infinite source-
usual by a spectral density drain voltage’® Specifically, one sets the Fermi distributions
for the left(right) reservoirf, =1 (fg=0) where the chemi-
Jw)=> |gql25(w—wq), (2)  cal potentials of the leads no longer play any role. Further-
Q more, the tunnel rates which are given by

wherewq are the frequencies of the bosons and dhede-
note interaction constants. When showing particular results T :2772 IVE]28(e— e ), a=LIR (6)
we will be using “ ok o’ ’

Jw)=2awe ', (3)  are assumed to be independent of energy. We mention that

corresponding to a generic Ohmic bath. More realistic formghe generalization to intermediate voltage regintésite

can be easily incorporated into our formalism, but for sim-bias for double dots is a difficult and nontrivial problem

plicity in this work we restrict ourselves to the Ohmic case.even in the undriven case, which is why we only discuss the
The coupling to external free electron reservoits,;  INfinite-bias limit in this paper.

=3, € ci ¢, is described by the usual tunnel Hamiltonian ~ The derivation of the equations of motion for the dot ob-
@ e Ta Ta servables is now very similar to the nondriven c#s&he

time dependence of the Hamiltonian enters via the replace-

_ a T . ’
HT_kE (VkCy, So+H.C)), ment of the phase factoe*( ") in the free undriven time

5.=|0)(a| (@=L,R). Here, a third staté0)=|N, ,Ng) de-  evolution of the dots, byeififds’i(s) for the driven case.
scribes an “empty” double quantum dot. Its presence leadsntroducing the vectors A=(n_,ng,p,p"), TI'=T e
to strong modifications both in the mathematical descriptior(e;, ... ,64 are unit vectorsand a time dependent matrix
as well in the physics of this problem, as compared to thenemory kernelM, the equations of motiotEOM) can be
case of an isolated spin-boson Hamiltonian. Here, thdormally written ad[(---)=Tr...p(t)],

reservoir-related parameters #f..s and H; have been as- .

sumed to be time independent which again is an approxima- _ J / , /

tion which might not be always fulfilled in experiments. (AD)=(AON+ odt MALU)IAE) L (@)
Again, we concentrate on the simplest possible case in this

work and neglect the effect of, e.g., a time dependence in th&MiS formulation is a useful starting point for, e.g., the cal-
external electrochemical potentials. culation of shot noise. Note that in contrast to the undriven

The full model as described by case, the memory kern&l depends on both timasandt’
because there is no time translation invariance in the pres-
H(t)=Hsp(t) + Hres+Hr, (5)  ence of driving. Explicitly, the equations for the dot expec-

. . . tation values read
now offers the possibility to study nonequilibrium properties

of a time dependent, “open” dissipative two-level system. d .
Note that in spite of the third, empty std@ we continue to EmL)‘_ —iTel(p)e= (PN A+ TLUL= ()= (nR)],
use the term “two-level system” here and in the following:
although the presence [f) leads to strong modifications of,
e.g., the equations of motion of the density operator, it turns
out that the internal dynamics of the system is still closely
related to that of the dissipative spin-boson problem. ()= — ftdt,eifi,dsg(s)
The time dependent spin-boson problem is in general t 0
characterized by the fact thabth ¢(t) and T,(t) are time
dependent. One can then investigate interesting effects such
as adiabatic charge pumping, dissipative Landau-Zener
tunneling’® or for the closed systenino coupling to the
leads the control of quantum superpositioffsAlthough this t t
general time dependence offers the richest spectrum of pos- (pM)i= —f dt’e”Hudsel
sible physical phenomena, one is clearly strongly restricted 0
by the fact that nearly no analytical solutions are available.
In this paper, our goal is to develop a systematic theory for XC*(t_t,)"_iTc<nR>t’C(t_t,)}- (8)
the stationary state of a somewhat simpler situation, i.e., the
case wherd . (t)=T, is constant, with the time dependence Here, half the decay ratéunnel ratel'gz/2) of the system
solely contained in the bias(t). appears in the off-diagonal termpsandp’, acting as a source

J .
St (R =IT(P) = ()~ Tr(nR)

Te,
(7<p>v+1Tc<nL>v)C<t—t'>

—iTc<nR>vC*(t—t')},

T
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of dephasing due to tunneling of an electimut ofthe right R it
dot. Furthermore, the boson correlation function for a har- CE(Z)EJO dte”*e'*'C(1),
monic bath with spectral densiti(w), Eqg.(2), and at equi-
librium temperaturkgT=1/8 enters, " _
C’;(z)zf dte 2le'#IC* (1), (11)
C(’[)Ee_Q(t), 0
defines free propagators for quasiparticles in the uncoupled
dots and in absence of coupling to electron reservoirs. In
. absence of electron-boson coupling, this simply describes the
) free time evolution of a particle described by the diagonal
Hamiltoniane o-,, whereas for nonzero boson coupling these
In deriving the equations for the off-diagonal elementsbecome “dressed” polarons. In addition, the decay via the
(p'M), we used the polaron transformati6ROL) and fac-  right reservoir at ratd' leads to a finite quasiparticle life-
torized the bosonic correlation functions from the dot operatime and consequently a renormalization of the propagators
tors in the equations of motions for the reduced density opas
erator of the(pseud® spin-boson system. This means that

+i sinwt

(1— COSwt)COﬂ’( 'B—w

N
Q(t)zf do ) >

0 (0]

Eq. (8) is perturbativethough to infinite ordérin the inter- B.(2)= C.(2) E (2)= C*.(2)

dot couplingT.. , . © 1+TsC. (22" ° 1+TrC.(2)/2'
Alternatively, one can perform a perturbation theory in the

electron-boson couplingy, (weak coupling perturbative &*(2) &_(2)

“PER” approach. In a calculation for an undriven double D*(z2)=————, EX(g)=——i——.

quantum dot, both approaches have been compared recently 1+TRrC(2)/2 1+TI'rC; (2)/2

for the stationary currefttand the frequency-dependent cur- (12

rent noise’. For the spin-boson problem withg, =0, it is

well known that POL is equivalent to a double-path integralWhere Eq.(8) is solved for the coherencég) and (p') in

“noninteracting blip approximation{NIBA) that works well ; ; ;
. L ) order to obtain two closed equations for the occupancies
for zero biase =0 but fore#0 does not coincide with PER Anur& q P

at small couplings and very low temperatures. PER works i
the correct bonding and antibonding eigenstate basis of the _ = ) )
hybridized system, whereas the energy seaile POL is that zn (z)— (N )o=— f dte”#[(n.)K(z,t) = (ng)G(z,1)]
of the two isolated dotsT,=0). This difference reflects the 0
general dilemma of two-level-boson Hamiltonians: either

one is in the correct basis of the hybridized two-level system +I',
and perturbative irgg, or one starts from the “shifted os-

cillator” polaron picture that becomes correct fog=0. In -
fact, the polaron(NIBA) approach does not coincide with ZhR(Z)_<nR>0:f dte 2 (n K (z,t)— (nR);G(z,1)]
standard damping thed#/because it does not incorporate 0

the square root, nonperturbative T hybridization form of

These expressions appear in the calculation in Appendix A,

1 . A
E_nL(Z)_nR(Z)

the level splitting A= \/z2+4T2. However, for large|e| ~T'rnr(2),
>T., A—|e|, and POL and PER turn out to agree very well .
for the undriven cas®: R(Z,t)zf dt’e*Zt'[TC(tth’)T:(t)Ds(t’)
0
C. Stationary quantities +TE(t+t) T(HD* (1],

In a quantum system that is continuously driven by an
external, time-dependent source, stationary quantities can be
defined for expectation values approaching a fixed point or a
guasistationary, periodic motion for large timtesn particu-
lar, we will be interested in quantities like the time averaged +TE(t+t)T(HES ()], (13

electronic current. It is then useful to split the time dependent h h din the followi it t in th
part off £(t) as where here and in the following we omit te- -) in the

Laplace transformed expectation values to simplify the nota-
tion, and we defined

G(z,t)zf:dt’e’z"[Tc(tH’)T’é(I)Es(t')

e(t)=e+s(t), (10
_ R B T(O=T +iftdse(s) T*()=T.e edss(s) 14
and to introduce the Laplace transfoffitz) = [{dte™ 2'f(t) o()=Tce 0 » Te(D=Tcee 70 (14
of a functionf(t). The time evolution of the isolated spin- Up to here the transformations have been valid for an arbi-
boson system fof ;=0 is governed by the correlation func- trary time dependence ien(t). From now on, we specify to
tion C(t)=C*(—t). The Laplace transform of these, the time-periodic form
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e(t)=e(t+27/Q), (15 Ann= L —inQ—r ') énntKnon(—imQ)
where 27/Q) is the period of the time-dependent fidlde +r,Gm_n(—1imQ),
further specify to a sinusoidal time dependence:(f) be-
A - - SLYRY. B L G(—imQ 22
We expect the system to approach an asymptotic quasi- m= Tt T, mot Tptl, m(—1mQ). (22)

stationary state. Then, the time evolution of all quantities
f(t) can be decomposed into Fourier series
D. Charge current

f(t)—fas(t)= >, e nf, (16) In the Master equation approach, the expectation values
n of the electron current through the double dot is obtained in
_ ) a fairly easy manner. One has to consider the average charge
with multiples of the angular frequenc of the external  f5wing through one of the three intersections, i.e., left lead/
field. Following Grifoni and Haggi,”* we decompos&(z,t)  left dot, left dot/right dot, and right dot/right lead. This gives
andG(z,t) into Fourier series, rise to the three corresponding electron currépts), | z(t),
and the interdot current g(t). From the equations of mo-
- imot tion, EqQ.(8), one recognizes that the temporal change of the
K(z,t)=§ Km(z)e , occupanciegn, ,r); is due to the sum of an “interdot” cur-
rent =T, and a “lead-tunneling” part. Specifically, the cur-
rent from left to right through the lefright) tunnel barrier is

G(z)=2 Gp(z)e M. (17)
m lL(t)=—el'(ng)i=—el [1—(n )= (Nr)],
The corresponding  Fourier  expansions{n, )%
=S rme ™ and  (NR)3V=3_ume ™ of the Ir(t)=—elr(NR)t, (23
]?Osr)r/nn;%totlcoccupanmes can then easily be Laplace transémd the interdot current is
~asy, Vm ~asy, Hm I gr(t)y=—ieT {(p) —(pT) }=—ei(n ) +1g(t)
D=2 srma W@=2 g (19 a P AT Ea VRIETR
and inserted back into Eq13). Comparing the complex :e%<nL>t+lL(t)- (24)

poles atz= —iM Q) in the two equations fom, (z) andng(z)

and assuming tha&,(z) and G(z) are regular there, one |, yhe stationary case, all the three currents are the same:

obtal_ns_ an infinite system of linear equations for the Fou”erédding the two equations, EQL9), for M =0, we first obtain
coefficientsy,,, and w,,

Prio=T"1(1—uo—vo). (25
—iMQuvy=— v Ky—n(—IMQ)— unGu_n(—iMQ
M En: [vaKm—nl )= Gl )] Using furthermore the Fourier expansion @f_ )2, we

recognize from Eqs(23) and (24) that
+ L[ Om0= vm—ml, 9 qs(23) and (24)

| | T=10(t) =1 r(t) =1r(t)= — el 'rpuo, (26
[Tr=iMQIuy=2 [7oKy-n(—IMQ) ,
n where the bar denotes the temporal average of the asymptotic
_ r quantities over one period=27/Q). This simple result
HnGr—n(—IMO)]. (19 means that the stationary current is determined by the Fou-

Upon adding these two equations, one has rier componenjx, only. Note, however, that, is part of the
solution of an infinite set of the linear equations, E2{1).
Y I'r -1 Using Egs.(19) and (20), one can expresgg in terms of

- WETME 1+ TEER M#0, (200 puy»o for the alternative expression

and Eq.(19) can be transformed into a single matrix equation

for the coefficients,,, Ko(0)— n;O [K_n(0)/1y+G_4(0)]un

IZ_eFR

. I'r+Kg(0)/rg+ Gy(0)
2 AmnnVn=bm, (21 @7
n=—owx
This form is in particular useful for the discussion of the
where Tien-Gordon limit below.
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E. Sinusoidal time dependence

In the following, we specify the time dependence of the

biase(t) to a monochromatic sinusoidal field
e(t)=e+ A sin(Qt), (28

where the constant part is denoted oy We introduce the
notation,

Co(—iw)=C, ,(z=0")=C,,,,

C*(—iw)=C*_ (z=0")=C*_,,

(29)
and correspondingly for the propagat@sD*, E, andE*,

Eq.(12). Then, invoking the decomposition of the phase fac-

tor into Bessel functions,
Tc(t+t’)T’c*(t'):TgeiI{“'dsA sin(@2s)
A A
-T2 in"—nq [ -
R gl
X @~ inQt’ g=i(n-n")at (30

and the definitions of the Fourier componetts(z) and
Gn(2), cf. Egs.(13) and(17), one obtains

- —— A Als
Kn(—=im'Q) =i Tc; JIn O Jn-m O Ds+(m’fn)9.
A A\,
+Jn Q Jn+m Q Ds*(m’+n)0 ’
_ B A A\
Gu(—im’Q)=i ng; [Jn(ﬁ)‘]n—m(ﬁ)Ew—(m’—n)Q
A A,
+J, a Jn+m a Ee—(m’+n)&) . (31

IIl. ANALYTICAL RESULTS

In the following, we first discuss the limits where analyti-

cal results for the stationary currehtcan be obtained, and
then turn to a comparison with numerical calculations.

A. Time-independent case

ForA=0, i.e., in absence of the time-dependg@rtving)
part in e(t), we recover previous resuifsfor stationary

transport in dissipative double quantum dots. One then has

K(z,t)=K(z) and G(z,t)=G(z) such thatK,(z)=G,(2)
=0 for n#0. UsingK,(0)=2Rd T2C, /(1+TxC./2)], to-
gether withG,(0)=2ReT?[C* /(1+T'rC./2)], after some
algebra we rederive the previous re8Ufor the stationary
current,

, 2R4C,)+TR|C,|?
‘|1+TRC,./2%+2T2%B, "

PHYSICAL REVIEW B 69, 205326 (2004

e, &
T, T,

I

I+,

] (32

BSERe{ (1+TRC,/2)

(note the absence of the factor 2 in the definition of the rates
herd®). The result, Eq(32), which can be comparétito an
alternative derivation using perturbation theory in the boson
coupling e, generalizes the case of elastic tunneling through
double quantum dots to inelastic tunneling with coupling to
an arbitrary bosonic heat bath. Fa=0, we rederive the
Stoof-Nazarov expression for the stationary current without
dissipatior®®

Telg
—e 5 5 :
g2+ TR/4+ T2+ TRIT))

Tozo (33

B. Lowest order T2: Tien-Gordon result

In the time dependent case, we are able to derive analyti-
cal results by considering the limit of small interdot coupling
T., or large frequencie$). These two limits do not yield
identical results because apart frdmand(), there are four
other energy scalebiase, ratesl’; , I'|, boson cutoffw,)
in the problem.

Considering Eq(33) for the undriven, nondissipative cur-
rent, lowest order perturbation theory ih, is valid for
T2+ TR/T <Tg,|e|. The additional energy scale due
to ac driving requires that this condition is generalized to

r
T.\/2+ F—R<Q,FR,|s+nQ|, n=+012...,
L

(34)

which indicates that at the resonance poisntsn{) such a
perturbation theory must break down, as is corroborated by
our numerical results discussed below.

Considering the expression fary, in Eg. (19), one rec-
ognizes thajy, = O(T2) because the Fourier components of
the functionsK and G are proportional tng, cf. Eq. (13).
Owing to the full expression, Eq27), the stationary current

in lowest order ofT, is | =1TC+O(T2) with

178=—eKy(0). (35)

For a sinusoidat (t) = & + A sin(QQt), the explicit expression,
Eq. (31), yields

— A 2C,
ITe=—eTe) Jﬁ(a) Re —R“‘Q (36)
1+ ?CernQ

Note that Eq.(36) is the Tien-Gordon formula. This can be
easily demonstrated by expanding the nondriven_sta_tionary

current, Eq.(32), to lowest order inT., namely, | =1,
+O(T‘C‘), such that, for the driven case

A=0
e—e+n -

me= Jﬁ(%)l_o (37)
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To lowest order inT., the stationary current therefore is oT3
given by the Tien-Gordon formula: the current in the driven 5T(3)= — —2°
system is expressed by a sum over current contributions from Q
sidebandse +n(), weighted with squares of Bessel func- A A A
tions. Note that the perturbative resuift®=—eKy(0), Eq. J2n1+1(5)J2n2+1(5>JZ(nﬁnzﬂ)(ﬁ)
(35), does not refer to any specific form of the periodic func- X >
tion e(t); it is valid for arbitrary periodic driving when the npingeZ (2n;+1)(2n,+1)
corresponding Fourier componeiig(0) is used. (41)
o L We now recall our expression
C. Nonadiabatic approximation
2

This approximation assumes that the frequeficys the K (0)= T3 (é) 2ReD 42

largest energy scale in the problem, 0(0) ; c’nl ) etn (42)

(and Gg(0) correspondingly withD,,,o replaced by
E. . na), cf. Eq.(31), which enters the Tien-Gordon result,

) ] . Eq. (35), and the resummed nonadiabatic approximation Eq.
On the rhs of the integral equation, Ed3), for njr(2), one  (40). We use the renormalizeB,, Eq. (41), in order to de-
then replaces the integral kern&$z,t) andG(z,t) by their  fine a renormalized functio}(gf)(o),

averages over one period of the ac field,

Q>TC,8,FR,FL. (38)

A 2
O (20 K (0)=> [Tan q) tOTE| 2RD, ho, (43
~ A~ n
K(z,t)— 2—f dtK(z,t)=Ky(2) (39 .
mJo and G)(0) correspondingly. This yields an expression for

. the current, renormalized up to third orderTig, according
and similarly forG(z,t). The Fourier coefficient&,(z) and to

G,(2) with n#0 then vanish and one obtaihs 1™ where

T —el'RKE(0)

TTasi —el'gKo(0) 40 e+ GP0)+KP(0)[1+TR/T ]
T Tr+Gy(0)+Ko(0)[1+TR/T, ]

(44)

In the following, we discuss and compare our above re-

We observe that within lowest order of the static tunnelingsSults.

T., EQ.(40) coincides with the Tien-Gordon expression, Eq.

(35), which one obtains by settinG,(0)<T2 and K,(0) IV. DISCUSSION

«TZ to zero in the denominator of E¢40). In fact, for the A. Comparison of two numerical schemes
undriven casél =0 one can prov& that the expression for ) i ) )
the stationary current sums up an infinite number of terms [N order to numerically solve the integro-differential sys-
OcT(Z:, a fact that can be traced back to the integral equatioﬁem' Eq.(8), it is convenient to write
structure of the underlying master equation. Here, @q) ;

demonstrates that a similar summation effectively can be exp{if d&:(s))ze‘@te‘“’t’,
achieved in the ac driven case. v

(49)

with ¢,=et—(A/Q)cosQt, remembering our choice(t)
D. Higher-order corrections to Tien-Gordon =¢+ A sinQt. We then introduce the real and imaginary part

iX= . . . . . _
In order to systematically go beyond the Tien-Gordon ap-Of (p), usee™=cosxisinx, and specify to the Ohmic dis

proximation, Eq.(35), one has to perform an expansion of sipation case fo(t),

the current in powers of 2. This can be achieved byun- C(t)=|C(t)|e” ™, ¥,=2aarctanwt,

catingthe infinite set of linear equations, E&2), in order to

obtain approximations for the=0,+1,+2th sideband val- _ra+ 1/,8wc+it/ﬁ)‘4“

ues ofv, andu,. The simplest way to do this in practice is IC(H)|=[1+(w)*]“ F(1+ oy | (46)
by a numerical solution of these equations as discussed be- ¢

low. We have solved Eqg¢8) numerically as a function of time,

Barata and Wreszinski have considered higher order with the result for large times used to obtain the stationary
corrections to dynamical localization in dosed coherent current as a function oé. For each value ot, the time
two-level system, i.e., without coupling to external electrondependent equations have been solved up to a fixed final
reservoirs or dissipation. They found that the next order irtime t; with a subsequent time average over the intefval
perturbation theory given a contribution different from zero — At,t¢]. t; has to be chosen sufficiently large, in particular,
was the third-order one, giving a contribution to a renormal-for larger values ofa. Consequently, one then also has to
ization of the tunnel coupling: increase the number of steps to achieve sufficient accuracy of

205326-6



CHARGE TRANSPORT THROUGH OPEN DRIVEN TWO. . PHYSICAL REVIEW B 69, 205326 (2004

1 0.1

A=1.00 r=001 — A<03Q ——
| - A=0.6Q
0.1} )5’39\ RWA oo
_ 001}
G g 001}
= 0001 | -
0.0001 |
10° : : . . :
. i 0.001 ;
2 ! 0 ! 2 0 0.5 1 15 2 25

e/Q
€/Q

FIG. 1. Average current through double dot in Coulomb block-
ade regime with bias + A sinQt. Coupling to left and right leads
I' =T'r=T". Dotted lines indicate Tien-Gordon result, £E§7).

FIG. 2. Comparison between RWA, E@7), and exact result
for first current side peak.

the data. We have used these numerical results to check our A’Tr(a%—4) w?2
method for the stationary quantities as obtained from trun- lsn= 2 N 2
cating Eq.(22) at a finite photosideband number, and found C(CI'R+bA%) Wit (e—e/)
good agreement between both methods. Whereas the dir€gli, the resonance points= \/ﬁ’z and parametera
integration of the equations of motion is somewhat slower_ IT,, b=Tg/T +2, c=a’+b—4, Cand the half-width

than the truncation method, it has the advantage that it does_ 7 2 > .
not require analytic forms of the Laplace transform for theW_(a/[z%'jl 4)) VT (b/c)A% We comparelsy with

. . .2 the exact result in Fig. 2.
bosonic correlation function€,, Egs.(11) and (29). The

) o For smaller driving amplitudé\, the agreement is very
latter are required for the matrix scheme E2P). In Appen- 544 byt becomes worse with increasig The position of

dix B we derive explicit expressions for zero temperatureyhe side_peak resonance point, which is independent iof
(T=0) and Ohmic dissipation. Note that in contraAst to usuakyo stoof-Nazarov approximation E@i7), starts to shift to-
“P(E)” theory, we require both the real part R&,(0)]  wards slightly larger values of the bias In fact, for stron-
=mwP(e) [whereP(e) is the probability for inelastic tunnel- ger ac driving the RWA is known to break down: in isolated

(47)

ing with energy transfes®?], and the imaginary part of:s. two-level systems, the first corrections to the RWA lead to
In the following, we show numerical results obtained with the well-known Bloch-Siegert shiftof the central resonance
the truncation method. towards larger energies, which is consistent with the exact
result in Fig. 2.

B. Photosidebands(coherent cas¢

1. Comparison with Tien-Gordon approximation C. Dynamical localization and its lifting

In Fig. 1, we compare the exact numerical result for the In a quantum system driven by a periodic electric field, a

; : - .- bhenomenon termed coherent destruction of tunneling
B e ot e one ooy ecnan [CDT) a5 denced ynamica ocalzatbl| ocur
the symmetric photoside peaks which, according to(B@), undgr certain parameters of the eXtem"’." fiélt The pert-
appear atnhe. The Tien-Gordon approximation overesti- odicity of _the externa_l field allows to write the solutions of
mates the current close to these resonances, where terms!Bf Schrdinger equation as(t) =exl —igtld(t), wheree;
higher order inT. become important due to the nonlinearity is called Fhe quasienergy, apﬁ% (_t) is a function with the
(in T, of the exact bonding and antibonding energiessame period as the driving field: the Floquet state.

. . . When two quasienergies approach degeneracy, the time
+ /g2 2 - ’
£ ve“+4T, of the isolated two-level system. This again scale for tunneling between the states diverges, producing

conflrms that the Tien-Gordon result is perturbative in thethe phenomenon of CDE. The time scale for localization is
tunnelingT. the inverse of the energy separation of the quasienergies.
2. RWA and Bloch-Siegert shift In the case of an isolated two-level system driven by a
monochromatic, sinusoidal field(t)=¢+ A sin(Xt), Eq.
Close to the first side peak, Stoof and Nazarov have usegg), CDT can be physically understood from the renormal-
a rotation wave approximatiotRWA) to obtain analytical jzation of the couplingT, of the two levels,
predictions for the first current side peak. In this approxima-

tion, one transforms into an interaction picture where the

fast-rotating terms with angular frequencyQ are trans- Tc_’Tc,eﬁETcJO(m)- (48)
formed away, and terms with higher rotation frequencies

(such as+2(Q)) are neglected. The resulting expression forThis expression is obtained from first-order perturbation
the current i¥ theory in the tunneling’. .2° At the first zero of the Bessel
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3

log; I/eQ2
A

110

|
W

-0.03 0 0.03 -0.03 0 0.03
€/Q e/Q

FIG. 4. Central peak of average current through ac driven
double quantum dot. Parametdis=0.1, A=z} (all rates in units
of Q). Left: coherent casee=0 for different tunnel rate§’=I",
=TI"g, dots indicate third order results Eg4), squares indicate the
Tien-Gordon result Eq(37) for the casel’=0.005. Right: disap-

FIG. 3. Average current for ac driving amplitude=z,Q) (z,
first zero of Bessel functiody) and various tunnel couplings, .
Coupling to left and right leadE, =I'g=T".

functionJgy, namely, whem\/2Q)=2.4048 . .., theeffective  pearance of central peak with increasing dissipation
tunnel splitting vanishedeading to a complete localization h dots | v delocalized in th dri
of the particle in the initial state. tween the two dots Is strongly delocalized In the undriven

In the following, we discuss how stronger tunnel amp”_pase, and this tunneling—induced quantum coheren'ce p“e_rsists
tudesT,, the coupling to the external leads, and dissipationmto,, tr}e r?tronglyl driven rEglme where its signature is a lift-
modify this picture. Ing” of the DL close tos=0. - :
The width of the corresponding current peak is deter-
mined by the tunneling rat&€'. An increase of incoherent
1. Current suppression electron tunneling from the left lead therefore washes out the
In Fig. 3, we show results for the average current and cohe_rent lifting of_the DL. This argument in emphasized i_n
=0 (no dissipation in the DL regime. Here, we define this the right part of Fig. 4 which shows that the central peak in
regime byA =z,Q, wherez,=2.4048 . . . is thefirst zero of the DL regime vanishes for increasing dissipation streagth
the Bessel functiod,. For this specific value of the ac driv-
ing A, to lowest order inT; the average current is strongly
suppressed fofe|<() as compared with the undriven case 1. Dissipative photosidebands
A=0. For smallT., this suppression is well described by
the Tien-Gordon expressiofnot shown herg since atA
=27,{), then=0 term in the sum, Eq(37), is absent, the
current is dominated by the shiftddndriver) current con- o6 complicated spectral functiodéw) for future work.
tributions at biass +nQ with |n|=1, which, however, are For A=0, we reproduce the analytical result, E82),

very small due to the resonance shape of the undriven Cugy, g the corresponding inelastic current partdor0 due to

rent. spontaneous boson emissiif.In Fig. 5, we show the sta-
tionary current as a function of bias for various Ohmic
2. Central current peak and third-order result dissipation strengths at zero temperature and finite ac driv-
Surprisingly, however, the coherent suppression of théng amplitudesA. ForA=(), apart from the central resonant
current islifted again very close te =0, where a small and tunneling peak, sidebands &t n{) appear which reproduce
sharp peak appears. This peak becomes broader with incredge asymmetry of the central peak around0. This asym-
ing tunnel couplingT,, but its height is suppressed for in- metry is a clear signature of the coupling to the dissipative
creasing reservoir coupling, cf. Fig. 3 right. This feature is €nvironment strongly modifying the current even at zero
analyzed in Fig. 4, where we show results for the centrafémperature.
current peak arounézo in the DL regime for Coherent The SpeCifiC form Of the ine|aStiC current dependS on the
(a:O, |eft) and incoherent4>0' r|ght) tunne"ng. As one boson SpeCtral denSitl(w).SO Note that in general, there is
recognizes, the Tien-Gordon descriptiowhich is perturba- No monotonic dependence on the dissipation streagtimce
tive in the tunnel couplingl.) breaks down close te=0  the boson correlation functio®, appears both in the de-
where higher order terms ifi, become important. As a mat- nominator and the numerator of the expression for the cur-
ter of fact, fore=0 the only relevant energy scale of the rent Eq.(32).
isolated two-level systems 1§, itself. In contrast, thehird- o ) o
order approximation Eq. (44), reproduces very well the ad- 2. Dissipation and dynamical localization in the current
ditional peak ate=0, which indicates the importance of If the ac driving amplitudeA is increased towardg()
higher-order terms in that regime. At=0, the charge be- (z, is the first zero of the Bessel functidg), one expects to

D. Dissipation and average current

As mentioned above, for simplicity we restrict ourselves
to an Ohmic dissipative bath at zero temperature-Q) in
this paper, leaving the finite-temperature case or the case of
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0=0.05 —— photoexcitation of the electron into the first upper photoside-
gfgég _— bands and subsequent spontaneous emission of bosons of
0=0.05(DL) k- energyE,;=Q—|e| to the bath. In contrast, fof)>&>0,
0=0.10(DL) ¢ photon emission blocks the current becaus&-ab there is
0=0.20(DL) gy no absorption of bosons from the bath. The remaining photon
absorption channel then leads to boson emission at an energy
E,=QO+e¢, which is larger as compared to the case dor
<0, namelyE,>E,, and therefore has a smaller probability
P(E)xE?*~le~Foc cf. Eq.(B9), leading to a smaller cur-
rent. A similar argument can be used to explain why the
! . - . . current increasesas one reduces, say frome/Q)=0 to
15 1 05 0 05 1 15 e/Q=—0.5. In particular, the strongest effect of the dissipa-
&0 tive bath occur near one-photon resonance conditions, i.e.,
whene/Q~ =1, where the current is regulated by the spec-
FIG. 5. Average current thI’OUgh double dot in Coulomb blOCk-tra| function of the bosonic bath at very low frequenciesl
ade regime with biag+ A sinQt for various Ohmic dissipation gjther by absorptiong<0) or emission £>0) of a photon.
strengthsa at zero temperature. Driving amplitude= () for lines  Thege processes appear in the current as nonanalytic cusps
v.vithoutl symbols A =z,Q) (z, first zero of Bessel functiod,) for reflecting the power-law behavior ¢f(E). This has to be
lines with symbols. Tunnel coupling between dats=0.10, bath - hared with the Lorentzian shape of the photosidebands
cutoff =502, and lead tunnel ratels, =1";=0.010. in the absence of dissipatidiffig. 1). If one tunes to even
larger values ofA >z,(), the centrain=0 photoband reap-

enter_the regime of dynamical localization and a strong SUPpears and the original strong asymmetry of the current curve
pression of the central current peak. In the coherent ease g restored.

=0 (see abovg resonant tunneling is usually strongly inhib-
ited due to coherent suppression of tunneling. _ V. CONCLUSION AND OUTLOOK

For >0, however, we find that the current suppression
strongly depends on the static biaswe find suppression for Our results suggest that the combination of ac fields and
£>0 and, in generalarger values of the current fas<0 as  dissipation in double quantum dots leads to a rich variety of
compared to the case of smaller ac amplitule$Ve explain  nontrivial effects. In particular, we have shown that a time
this feature in the following: the dependence of the averageéependent monochromatic field drastically modifies the dis-
current on the driving amplitudd for fixed « is clearly  sipative inelastic stationary current, in particular, for stronger
visible in Fig. 6. A small driving amplitud&A=<0.2 nearly ac driving in the dynamical localization regime. Corrections
does not change the current at all. However, the originallyto the Tien-Gordon formula appear at larger tunnel coupling
strongly asymmetric current curve becomes flattened oubetween the dots and become extremely important near zero
whenA is tuned to larger values up to the dynamical local-bias in the DL regime, also in the nondissipative case.
ization valueA =z,Q). There, the ac field nearly completely =~ The method presented in this work has the benefit of ac-
destroys the strong asymmetry between the spontaneogsunting for an arbitrary dissipative environment via the cor-
emission £>0) and the absorption side £0) of the cur-  relation functionC, . In the generic case, explicit analytical
rent. The centrah=0 photoband is completely suppressedforms for this function are difficult to obtain and it might be
and the dominant contribution to the current comes from theasier to integrate the original equations of motion directly.

n==*1 bands. Fore <0, the current fo)>|z[ is due to  aernatively, one can numerically evaluafe and use it as
an input into our Floquet-like formalism. We also mention
that the entire approach is based on the decoupling of the
A=00Q — 0005, T=0010 bosonic degrees of freedom in the polaron transformed mas-
ter equation. One is therefore always restricted to the range
of validity of the NIBA of the original spin-boson
problem’#82 Discussing larger temperaturdsshould thus
lead to more reliable results as compared to the “test mod-
els” C, which were discussed here for=0.

A future extension of our approach should therefore be
the derivation of a systematic perturbation theory in the
electron-boson coupling, starting from the bonding-
antibonding basis of the double dots. In a calculation for an
undriven double quantum dot, such an approach has been
successfully used recently to extract dephasing and relax-
ation times from the frequency-dependent noise spectrum.

FIG. 6. Average current through driven double dot for various ~ Even for the coherent cage=0, our results have shown
ac driving amplitudes\ and fixed dissipatiom = 0.05, tunnel cou- that there are nontrivial effects due to the combined quantum
pling T.=0.1Q. coherence inherent in the double dot, and the coherence in-
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duced by the external driving field. In particular, we found nitions for the propagatof® andE, Eq.(12), we obtain upon
systematic corrections to standard approximation such as thgving for q(*)(z) and Laplace back transforming,
Tien-Gordon formula or the rotating wave approximation.
The constituing quantitiek,,, andG,,, of our theory, cf. Egs. )
(27) and(31), describe dissipative tunnelin:ng of one ad- A(D= _'f
ditional quasiparticle between the two dots under the influ-

ence of the ac field, which again indicates that our approach ¢
is essentially perturbative i, although to infinite order qT(t)=iJ' dt' Te(t)[{n)e D (t—t") —(nr)v EZ (t—t')],
and exact fora=0. We showed that partial resummations 0

t
Odt/T:(t/)[<nL>t’Ds(t_t/)_<nR>t’Eg(t_t,)]a

beyond the Tien-Gordon result are justified in a nonadiabatic, (A3)
high-frequency approximation, but for the general case ong,\ving the propagators in the time domain. Insertion into
has to rely on a systematic evaluation of E2j7). Eq. (A2) yields
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APPENDIX A: DOT OCCUPANCIES IN LAPLACE SPACE +T 2 =h(2)-ha(2) |. (Ad)
z

Here, we derive Eq(13) for the occupancieén ). We
define At this point, it is useful to use a relation for a generalized
- - convolution of a functiorK (t,t") andf(t"),

q(t)E<p>teflfodSs(s), q‘r(t)E<pT>te+|f0dSS(s)_ (Al)

% t

This is inserted into the equations of motion in the time j dte‘Z‘j dt'K(t,t")f(t")
domain, Eq.(8), which upon Laplace transformation be- 0
comes w %
= fo dte‘“f(t)fo dt’e 2'K(t+t',t), (A5)
ZnL(Z)—<nL>o=—if dte”?{T () q(t) — T (t)q™(t)} _ _ o

0 which can be easily proven by substitutions. Note that the
usual Laplace convolution theorem is recovered from Eq.
(A5) if K(t,t")=K(t—t") is only a function of the differ-
ence of its two arguments. E¢A4) and a similar equation
for nr(z) then lead to Eq(13).

1 . “
+I' E_nL(Z)_nR(Z)

ZhR(Z)_<nR>O:iJ dte”*{Te(ha(t) — Tz (Ha' (1)}
0 APPENDIX B: CALCULATION OF THE BOSON

~ CORRELATION FUNCTION
—I'rNR(2),

Explicit expressions for the bosonic correlation functions
fxdt’e‘“'T;‘(t’)[(nL>t,és(z) C., Egs.(11) and(29), which can be obtained in the zero
0

. oo o .
a(2)=-—54(2)C.(2)—i e e .
2 temperature T=0) case for Ohmic dissipation. In this case,

J(w)=2awexp— wl/wg),

—(nR)C* (2)]

C(t)=(1+iwct) 2%, g=2a. (B1)
- Iy . o '
q'(z2)=— ?OqT(z)C:(z)Jri f dt’e 2" T (t") We have
0
-~ -~ ~ — ” —zt i —2a
X)€@ —(n)C (21|, (A2) c@= Jo dte (1 +ioct)

where we used the convolution theorem in the equations for =(iwg) 2022 e ol (1-2a, — izl w,),
q(z) andqf(z) and the definitions Ec(11). Using the defi- (B2)
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where we used Gradstein-Ryshik 3.3824 dhdenotes the
incomplete Gamma function. We set=1 for a moment to
simplify notations and obtain

C(—ie)=—i(—¢e)?* e *T(1-2a,—¢). (B3)

Note thate must have a small positive imaginary part here

(Rez>0 in the definition of the Laplace transformatjothe
incomplete Gamma functiohi(1—2«,z) has a branch point
atz=0. However, we can use the series expansion

©

_ nyl—2a+n
[(1-2a,x)=I(1-2a)- > D

i=o n'(1—2a+n)’
1-2a#0,-1,-2,..., (B4)
to obtain
C(—ie)=—i(—g)?>* e *T(1-2a)
oo sn
+ie ngo—m(l_zﬁn), 20#1,23 ... .
(BS)
The second term is an analytic function &f
Now we write
—i|8|2“_1, e<0
—i(=e)®* = 0 i(12+2a—1)
et e ™ a2 £>0.
—i|8|20‘_1, <0
B szafl(sin 2ra+icos2ra), &>0.
(B6)

Recall the reflection formula for the Gamma function,

PHYSICAL REVIEW B 69, 205326 (2004

F(l—z)=m- B7)
This yields
. A _ 2a—1,4—¢
e>0: C(—ieg) F(Za)s
. w 2a—1n—¢
,SOO 8n
T NI 2a+n)|
i iecied] T e
£<0: C(—ig)=ie r(2a)sin27ra|8|
oo Sn
. (B8)

pi=o nl(1-2a+n)’

From this, we can read off the real and the imaginary part of
C(—ig). The real part is

Reé(—is)zwp(g)zWwa)shfle*e(a). (B9)
The imaginary part is
R - g
IMC(—is)=e"* ngom
mle|?et [—1, <0
I'2a)sin27a | cos 2ra, £>0|
(B10)
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