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Steering of a bosonic mode with a double quantum dot
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We investigate the transport and coherence properties of a double quantum dot coupled to a single damped
boson mode. The numerical results reveal how the properties of the boson distribution can be steered by
altering parameters of the electronic system such as the energy difference between the dots. Quadrature
amplitude variances and the Wigner function are employed to illustrate how the state of the boson mode can be
controlled by a stationary electron current through the dots.
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. INTRODUCTION have been mad&®'°to explore “semiconductor phonon
cavity QED” in nanostructures where phonons become ex-
The two-level system coupled to a single bosonic moddderimentally controllable. In contrast to standard semicon-
(Rabi Hamiltoniaf) is probably one of the best-studied mod- ductor cavity QED) boundary conditions forvibration

els for the interaction of matter with lightCavity quantum Modes lead to extremely nonlinear phonon-dispersion rela-
ons. For example, Van Hove singularities in the phonon

electrodynamics is an example where the coupling betweeé nsity of states show up at certain frequeniesignatures
atoms and photons can be studied in detail and used in ord ?which seem to be relevant for transport through quantum

to, Ef['g'l’ tfratnsferl_quat:\turr; ctoherencet'frof.m? dléght JO mattely s embedded into free-standing structi#feSuch a situa-
(control of tunneling by electromagnetic fiefds and vice  jon \would then be describeivithin a strongly idealized

5_

versa. . . mode) by the coupling of a single frequency boson mode to
Quantum optics usually deals wittlosedtwo-level sys- 5 few-level quantum dot.

tems where the total electron number on individual atoms  The influence of nanomechanical vibrational properties on
remains constant and does not fluctuate during the interagjngle-electron tunneling in fact has emerged as a whole new
tion with the photon. Thls_r_efstrlcUon can be lifted in semi- area of mesoscopic transport, triggered by the possibility to
conductor quantum dot@rtificial atoms by tunnel coupling  expiore electron transport through individual molectie®
to electron reservoirs. For example, in semiconductor cavity, i, free-standin®2® and movabl#®~3 nanostructures.
quantum electrodynamicshe interaction of light with exci-  phonons then are no longer a mere source of dissipation but
tons can be steered by “pumping” the cavity by resonantyecome experimentally controllable with the possibility, e.g.,
tunneling of electrons and holes. to create phonon confineméht*=%° or the analogon of

~ Inthis paper, we examine a single bosonic mode interactyantum optical phenomena such as coherent and squeezed
ing with a system of twdbound electronic states which are phonon state& 40

themselves coupled to a continuum of free electrons. As & The paper is organized as follows. In Sec. II, we introduce
concrete realization, we investigate the stationary electrofye model and derive a master equation for the density op-
transport through a double quantum dot coupled to electrogator. We discuss transport properties in Sec. Ill where a
reservoirs and a single photon or phonon mode. The maigomparison to analytical solutions is made. In Sec. IV, the
idea is to control the density matrix of the coupled d_Ot'boso_r}educed boson density operator, its Wigner function, and the
system by external parameters such as the reservoir chemiGgjctyation properties of the boson mode under a stationary

potentials and the tunnel couplings. These parametéi®h  gjectron current are discussed. Finally, we conclude with a
in experiments can be controlled via gate voltagaen de-  jiscussion in Sec. V.

termine the reduced density operators of the dot and the bo-
son and allow one, e.g., to modify the state of the boson by Il. MODEL AND METHOD

driving a stationary electron current through the dots. i . ) o . )
One of the motivations for our work are experiments in ~ We consider an idealized situation of a single-cavity bo-

double quantum dots where the coherent coupling betwee?Pn mode(photon or phononcoupled to a two-level elec-
classical light(microwave$ and electrons can be detected in tronic systemdot) which itself is connected to external elec-
electronic transpoft-*2The open two-level-boson model de- tron reservoirs. Our aim is to determine the stationary
scribes the full quantum version of these systems with théeduced density operatgr(t) of the dot-boson system for
light replaced by a photon field with its own quantum dy- large times, treating the dot and the boson on equal footing.
namics. The single bosonic modghoton or phononinteracts with
On the other hand, quantum effe¢ssich as spontaneous the electrons within the dots. We et 1 in the following.
emission relevant for transport through double dots have
been found to be due fwhonongather than photons. In fact,
the importance of electron-phonon coupling for transport in  An artificial “open” two-level system can be realized by
coupled dots is well-established by n&W!’ Suggestions two quantum dotgwhich for simplicity we call “left” and

A. The Hamiltonian
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“right” ) coupled to each other by a tunnel barrier and to aand the tunnel Hamiltonian
left source and right drain electron reservoir with chemical
potentialsu, and ug. In the following, we are only inter-
ested in the regime of high bias voltaye= u, — ug>0. We
assume that the charging enefldyrequired to add an addi-
tional electron to the double dot is much greater than With tunnel matrix element¥} andVy .

Hy= >, (Vkcls +VRdisg+c.0) (7)
k

(strong Coulomb blockade regimé herefore, electrons tun- ~ The total Hamiltonian is written as
nel through the structure only from the left to the right. Only B
one additional electron can tunnel into the double dot at a H=Ho+Hr+Hy+Hep, ®

time, and the effective Hilbert space of the electronic systemynere H,=H ,+ Hp+Hyes is the free Hamiltonian in the

can be defined by three statesempty, left, and right|0)  jnteraction picture introduced below.

:|N|_ ,NR>, |L>:|N|_+ 1,NR>, and|R)=|N|_ ,NR+ 1> The

energies of the two states with an additional electron in the

left (right) dot are denoted as_ (eg). Higher excited states

for both dots are assumed to lie outside the energy window The density matrix of the total systefdot, boson, and
reservoirg is given by the Liouville—von Neumann equation

UL >E,ERS UR, (1) and formulated in the interaction picture with respecHtgp

For the nonlinear transport window, E@.) considered here,

ghlr(]:i:‘}cier:tlr ej(:hgnrde%lme;/;/]r;ere 2,[0 |2w?§r;trgpzftz?étsd$ﬁissn%e chemical potentials in the equilibrium reservoirs are such
9 y dep P KR P ) that the Fermi distributions in the left and the right leads can

; ,16
corresponds to the standard situatfoht'® where only the well be approximated by, (¢)=1 andfr(z)=0. We treat

two lowest hybridized electronic states in the double dot con;[he resenoir counling teri. in second-order perturbation
tribute to transport. pling v p

The HamiltonianH of the double dot is given in terms theory, neglecting _Kondo physftsthroughout, 5?252"’“ trans-
of the dot operatora, =|L)(L|, nri=|R)(R], and a ternH- port can be described by a master equatfi*>*3*Trans-

describing the tunneling between the left and the right dot, formln_g back into the Schmnger picture wil pro<_juce the
following master equation for the reduced density operator

Ho=Ha+Hr=¢e,n, +epnp+ To(P+PD), of the system(dot + boson),

B. Equations of motion

_ _ d
P=|L)XR|, PT=|R)(L|. ®) GiP(0=—i[HatHptHrt Hep,p(D)]
The tunnel matrix elemen, is used to describe the strength
of the tunneling process. L + T N
The Hilbert space of the bosonic system is spanned by the — S [susip()=2sip(t)s +p(t)s;s(]
usual number or Fock eigenstate$,n=0,1,2,3. .. of the

harmonic oscillator I'r
=~ [sksrp(t) — 2srp(t)sk+ p(t)Sksg]

H,=wa'a €]
with frequencyw and creation/annihilation operatoasand - E(ZapaT—aTap—paTa). 9
a' fulfilling [a,a’]=1. The coupling between the electronic 2
and the bosonic system is described by four microscopiqhe perturbation from the reservoir is given by the tunnel
coupling constants, rates
Hep=(an_ + Bng+ y*P+yPh)(a+a"). (4)

. . Fur=2m2 [Vi/R?8(er—ek™). (10
Here, we assume the coupling constantg, andy as given K

parameters. Their precise form can be calculated from micro- L . .
scopic details such as the many-body wave functions of thﬁ-‘ the last line in Eq(9), we introduced a term that describes

dot electrons. It should be noted that the interaction betweef{2MP'N9 of the bosonic system at a raig(Ref. 44 corre-
I%oondlng to photon or phonon cavity losses.

" Taking matrix elements of the master equation, B,

one obtains a system of linear equations for the matrix ele-

ments of the density operator which are given explicitly in
Hres=2 s{;cﬁckﬁLZ sEdldk, (5 Appendix A. In the stationary state of these equations, the
K K time derivatives are zero, and a coupled set of linear equa-

where the sum is over all wave vectdeén both the left(L)  tions is found. In order to numerically solve these equations,
and r|ght(R) reservoirs and Spin po|arizati0n is assumed forthe bosonic Hilbert space has to be truncated at a finite num-
simplicity. The coupling between dot and reservoirs is deberN of boson states. The total number of equations then is

the bosonic system and the reservoirs is not considered he
The two electron reservoirs are described by

scribed with two dot operators 5N?+10N+5, remembering that there is always an equa-
tion for n=m=0. The numerical solution becomes a stan-
s .=|0){L|, sg=|0){R|; (6)  dard matrix inversion, though book-keeping of the matrix
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elements has to be done carefully. The trace over electron ! 2¢=0
and boson degrees of freedom has to obey the normalization ) gfg §g=8-é T
condition iﬂ\ N3, 252073~
3 N N=5, 2g=0.5 ——
5 i\ N=10, 2g=0.5 ——
2 [(n,00pstadn.0) +(n.Rlpsiadn,R) +(n, Llpsadn, L)1 = 1. g Ll /
(12) &
We mention that without this condition, the matrix becomes St
singular, and cannot be solved.
6t
Ill. TRANSPORT PROPERTIES 2 P 0 , N 3 4
The first quantity of interest that one can obtain from the e=gr- g (100 ueV)
matrix elements is the stationary electron current through the )
double dot. FIG. 1. Stationary current through double quantum dot coupled

to single boson mode with|, =I',=0.1, T,=0.01, v,=0.05, and
varying 2g=a=— B. [Electron-boson coupling, cf. Eq4)]. N:
number of boson states.

In the stationary state, the current operator is defined via
the rate of electrons tunneling from the left dot to the rightgs first derived by Stoof and Nazart\.
dot,

A. Stationary current: numerical results

For finite electron-boson coupling and positige reso-
P nances appear when

1= STNL=iTe(PT=P)+i(yP'—y*P)(a+a’). (12
Here and in the following, we set the electron charge e=g —er=No, (15
=1. For a boson mode with wave vectQ;, the electron-
boson coupling constants can be expressed in terms of matrix ,
elements of the left and right dot states=A(L|e'¥[L), € the energy gap of the dots becomes equal to multiple
B=MR|EY|R), y=\(L|€Y|R), where is the micro- integers of the boson energy. _At these resonances, electrons
scopic constant for the interaction of the boson with the electunneling from the left to the right dot can excite the boson
tron in two dimensions. system.

Our formalism works for arbitrary choices of coupling  The current profiles with differing damping rates, Fig. 2,
parametersy, 3, y, but for simplicity we restrict ourselves illustrate that the system is extremely sensitive even to very
to simple, nontrivial cases for the numerical calculations. Wesmall “damping.” For small but finite boson damping, we
set y=0, which corresponds to neglecting the nondiagonafound that two profiles foN=5 andN=10 match in an
terms which for relatively sharp peaked electron densities irextremely close manner. This illustrates that a finite boson
the dots only weakly contribut€.For a sharp electron den- damping removes numerical problems due to the truncation
sity profile, one further hag= ae'?Y, whered is the vector  of the boson Hilbert space at a finile As expected, there
connecting the left and right dot centers. Identical energyare no peaks at all on the absorption side of the profile (

shifts in both dots, corresponding = a, have no effecton <0): the damped boson relaxes to its ground state.
transport. In the following, we choosgd= = and therefore
electron-boson coupling constants are

N=10, 1,=0.05 -
a=—p=2g, y=0. (13 sy
. . 3F POL %,=0.5 ——
Furthermore, the tunneling rates between the reservoirs and
the dots are generally kept smaller than the energies of the
dots and boson states. This produces clear and sharply de-
fined transport characteristics. We use the boson frequency as
an energy scale and set=1 in the following. Using the
typical phonon cavity energf w~100 ueV from a recent
experiment with a free-standing phonon cafftyill yield a
typical electron current scale @w=24 nA, as shown in
Figs. 1 and 2.

Figure 1 illustrates the stationary current as a function of
the energy difference. For zero boson coupling=0, we

reproduce the Lorentzian resonant tunneling profile FIG. 2. Current as in Fig. 1 for couplingg2=0.1 and different

boson dampingy,, alongside corresponding polaron transforma-
lsta= T R/[TA(2+ TR/T ) + TR/4+ 2] (14 tion result, Eq(19).

log gll/e®]

-2 -1 0 1 2 3 4
g=¢; - g (100 peV)
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B. Perturbation theory in T,: Polaron transformation should at least determinsg; self-consistently. For small cou-
method plings g, however, the assumption of a decoupled time evo-
An analytical expression for the stationary current can bdution of the boson should work well, and we proceed with a
obtained from a polaron transformation and a polaronmaster equation fopg,
transformed master equation that is valid for small coupling
T. between the two dot¥. Afte_r tracing out the boso_nic — pp(t)=—i[wa'a,pg]— E(ZapBaT—aTapB—pBaTa)
degrees of freedom, one obtains an equation of motion for dt 2
the time-dependent expectation values of the operatgfs (20
and P(") which can be transformed into the Laplace space, that describes the free time evolution of the boson in pres-
T r ence of boson dar.npi.ng with.(_jamping (_:onstaz91>0. As-
(N)(2)=—1 ={(P)(2)—(PT)(2)} +—{1lz—(n }(2) suming the boson initial condition to be its ground state, one
z z obtains (>0)
_<nR>(Z)}1 49
C(t)=exp{—|&*(1—e AT} e= — (21

(O]

T . Tg
(nR)(2)=i ?{<P>(Z) (P2} 7<nR>(Z)’ Figure 2 shows that the analytical expression for the current,

Eq. (19), compares quite well with the numerical results. In

(PY(2)=—iTA(n)(2)C.(2) —(nr)(2)C* (2)} particular, this demonstrates that the formulation in terms of
r a general boson correlation functi@{t) works reasonably

__R<p>(z)cg(z)_ (16) well not bpﬂr’ly for boson systems with contin0u§ mode

2 spectrum-®#® but also for the single mode case discussed

Here, the coupling to the boson system enters through thRere. at least for small-coupling constagtsWe point out

correlation function that the existence of a finite bc_)son damping is crucial here
and that for largeg, the comparison becomes worse, as ex-

o : pected.

Cs(z)=f dte~2tietC(t),
0
IV. BOSON DISTRIBUTION

Ct)=(X()X'(t=0)), X= D(4_g) 17) Tur_ning now to properties of the bosonic system, our pri_—
w mary interest is in how the boson mode can be controlled via

parameters of the electron subsystem such as thesbéasl
the tunnel couplingdg, . In the stationary state, the re-
D(é)=expéa’—¢*a). (18) duced density operator of the boson is

of the displacement operator of the bosonic mode,

Equationg(16) can be solved algebraically. One then obtains ] ] i
the expectation valuél), .. of the stationary current from pp=lim Trgep(t) = |lmi702L P, (22
the 1£ coefficient of thel(z) expansion into a Laurent o e
serie§® for z—0,

A. Boson state detection
2REC,) +I'g|C,[?

) —T2 Before discussing the boson stakg, we describe a pos-
tme e NE o sible experimental scheme to directly detect its properties.
1+ 7Cs +2T¢B, The basic idea is to use another nearby double quantum dot
as detector of the boson, similar to the scheme for detecting
I's c., c* I quantum noise in mesoscopic conductors as proposed by
BS:=Re|(1+ 708) T + T (1+F_R } (19  Aguado and Kouwenhovefi.

The detector consists of a double quantum dot very simi-

whereC,=C_(z—0). lar to the one discussed above. The boson state gives a con-
The correlation functiorC(t) enters via a factorization tribution to the inelastic, stationary current

assumption in the polaron-transformed master equation and

has to be _Calculated frorr_1 an ef_fective densit_y operatoof Id(E)wa,P(E) _ 2T§ Refwdte‘E‘Cd(t);

the bosonic mode. For dissipative pseudospin-boson systems 0

with a continuous spectrum of modes and a thermal equilib-

rium for pg, reasonable results can be obtained within this N 494

method for small coupling, in particular, in comparison with Ca(t) =T ppXa(1)Xgl, Xg= D(T) (23

perturbation theor§>*’ However, in the present case with

just one single mode it is not clear whether or not a factorthrough the detector in the lowest order in the detector tunnel

ization into an effective dot and an effective boson densitycouplingT4. Here,E denotes the detector dot energy differ-

operator yields reasonable results, and in principle, onence,D again denotes the unitary displacement operator, EqQ.
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(18), g4 the coupling constant in the detector double dot, and

pp the boson state. Equati@@3) describes the detector cur- 0 Vo
rent | (E) resulting from a given boson statg, as calcu- -1y
lated in the following section. 2t
Before discussing our numerical results fgy, it is illus- = 3l
trative to look at a few special cases. For example, if the &9 n
boson state,, describes a thermal equilibrium at temperature & ~
T, one obtains the inelastic current spectrum with absorption S
E<0 and emissiorE>0 branche¥, as has been observed -6 ¢ =6 -
by Fujisawaet all for the case of equilibriunimultimode Sl P —
phonons. N . Nomm -
If pp,=|n)(n| describes a pure-boson number state, the i 1 0 1 5 3 4
function Cy4(t) in the detector current, Eq23), becomes e=¢;- g (100 peV)
(£=4g4/0) ,
_ FIG. 3. Boson profilesn=0,2,4 ...,10 for y,=0.0001, N
Cy(t)={(n|D(&€'“YD(—&)|n) =10, 29=a=-3=0.3, 107c=I" =T'3=0.1.
— a—ilg%sinwt o — (1/2) E(1—€“Y[2) 0 _ ioty]2
e e Lo éa—e“n)?), atah  i(—atah o
(29 X 2 p 2

whereLﬂ is a Laguerre polynomial, cf. Appendix B. Here we

assume that the boson time evolution is undamped in thean be obtained from,, cf. Eq.(A7) in Appendix A. They
detector, i.e., governed by the boson Hamiltonibk provide an indication of the quantum fluctuations in the bo-
= wa'a. Expanding up to the lowest order §==4g4/w and ~ son states, and prove useful in comparison with the Fano
using L2(x)=1—nx+0O(x?), one obtains from Eqs(23)  factor profile. It should also be apparent that’Ap?=1.

and (24), We have checked that the probabiljpy fulfills the nor-
malization 2,p,=1. For accurate results, the occupation
l((E)=~T327[{1—|£]2(2n+ 1)} 8(E) +| £ 4N S(E+ w) probability should tend to 0 as— N, whereN is the dimen-
sion of the truncated boson Hilbert space. This condition is
+(n+1)5(E-w)}]. (25 easily achieved in presence of a finite boson damping rate,

Clearly, the height of the inelastic current peaks is deteryp=0- In t.his case, it is possible to obtain a boson distribu-
mined by the quantum number i.e., the absorption peak at tion which is centered around the lower boson number states,

E=—-w<0 scales withn, and the (stimulated emission and is excited when a resonant interaction with the electron

peak atE=w>0 scales witm+1. oceurs. . . ) .
The above example can be even generalized. In Appendix It is more |IIu_stra_t|ve to first discuss a weakly damped
C we show how to reconstruct an arbitrary boson state case, as shown in Fig. 3. We can see quite clearly hOY.V at the
s In)(m| from the functionP(E) [or equivalently positive resonance energies, the occupation probabilities of
nmPnm the states spread into the higher number states.
the stationary detector current spectrugfE), Eg. (23)]. Q: ; .
This demonstrates that the properties of the boson state diBb The Fana facioF - illustrates fluctuation properties of the

it Q= i issoni -
cussed in the following can be directly related to an experi- son made W'.m:. 1 correspgndmg tg a Poissonian bo
mentally accessible quantity. son number distribution and-~<1 (F~>1) to a sub

(supej-Poissonian distribution. Figure 4 illustrates the Fano
factor vse for the strongly damped case.

This profile suggests the reduced boson states are coher-

We first analyze the boson mode via moments of its disent (Poissoniahfor e <0, and super-Poissonian at the reso-
tribution function such as occupation number and Fano facnance energies,= 0,2, ... .
tor before discussing the full distribution function in the
Wigner function representation.

The boson occupation probabilipy= (pp)nn IS the prob-
ability for the boson to be in one particular number state For £<0, nearly no current is flowing, the electron is
Furthermore, the boson Fano facE? is calculated from the  predominatly localized in the left dot, and one can approxi-
boson occupancy as the variance of boson number over thate the operator,=|L)(L|—|R)(R| by its expectation
mean number of bosons, value (o,)=1. Then, the boson system is effectively de-

scribed by

B. Numerical results

C. Coherent state andx-p variances

S (20 Her=20(a+a!) +wa'a, @9

Similarly, the varianceAx?=(x?)—(x)? and Ap?=(p?)  which is a shifted oscillator, the ground st&@S) of which
—(p)? of the position and a momentum coordinate is the coherent states S)=|—2g/w) with a|z)=2|z). This

125323-5



T. BRANDES AND N. LAMBERT PHYSICAL REVIEW B67, 125323(2003

1.007 - D. Wigner function
Numerical —— Fano Factor
1.006 [~ ( pnalytical > The Wigner function of the density operatpy, for a
&j ﬁ I bosonic mode' is a representation qf,, in x-p space, cf.
1.005 E3 o Eq. (27). It is defined a¥
2. 1.004 | 0 1 .
1.003 | n 1 X+ip
W(X,p)==;Tr(pr(2a)U0), a’:T, (30)
1.002 | 2
1.001 | where D(a):=exgdaa’—a*a), Eq. (18), is a unitary dis-
1 L . . . . . . placement operator arld,:=exdiwa'a] is a parity operator
4 3 2 a1 0 1 2 3 4 for the bosor® W(x,p) is a symmetric Gaussian for a pure
e=e- gg (100 peV) coherent boson state and a symmetric Gaussian multiplied

with a polynomial for a pure number stdfeln our model,

FIG. 4. Fano vse profile for 29=a=-p=0.1, N=10, v»  the shape ofN(x,p) therefore indicates how close to these
=0.05, 10 =TI =I'r=0.1. Inset: Comparison between coherent i iting cases the actual stationary statgof the boson, Eq.
state, Eq(29), and numerical result for boson distributipp at ¢ (22), is. In particular, this is a convenient way to represent
=4 the “steering” of the boson mode when external parameters
(such ase or 'y, ) are changed:

Using the Fock state basi$n),n=0,1,2...} and Ug
=37_o(=1)"n¥n|, we find

can be seen by introducing new operatdrs-a+2g/w
whenceH o= wb'b—4g?%/ w andb|GS)=0. In this regime,

we have
po~|2)(2|, 2= - 29/ w, (29) 1
_ __a\n
and p,=|(n|GS)|? is given by a Poisson distributiorp,, Wix.p)= n,;:o( 1)™n[py|m){m|D(2a)]n).
—|z|2"e~17*/n1. One can plot this against the numerically (31)

obtainedp, and check that the distribution is indeed Poisso-
nian for smalle <0. This is represented in the inset of Fig. 4 It is useful to split the sum into diagonal and nondiagonal

in detail for the first four-boson Foclumbej states. parts, to usé€m|pp|n)=(n|pp|m)*; and M=n)
The quantum fluctuations of the boson system are de-

scribed by the variance of the position and momentum op- ni )

erators. Figure 5 presents a direct comparison of the position (m|D(«a)|n)= \/m—am‘“e‘(1’2)|“| LM "(|a|?)

and momentum variance of a strongly damped system. The
uncertainty principle holdsAxAp=3, and thusAx?Ap? —(m|DT(a)|n)* =(—1)™ (m|D(a)|n)*,
=%. The state with minimum uncertainty occurs as ex-

pected, fors, <eg, with Ax?Ap?=3. This is a reassuring (32
result, since it suggests both that the boson is coherent in this _ ) e

area, and that the Fano factor’s Poissonian distribution fotvhere agama:(xﬂp)/\/z andL, " is a Laguerre poly-
this coherent state is correct. We mention that since botRomial, cf. Appendix B. This leads to

Ax>0.5 andAp>0.5, we find no squeezing of the boson
mode for the parameters checked here.

l oo
W(x,p)=— 2 (=1)%nlpp[n)n|D(2a)[n)

0.505 — -
Position Variance -~
0.5045 + Momentum Variance 1 * *
0.504 | (axAp) —— +=> > (—1)"2Rd(n|ppm)
0.5035 e=e; - £p T n=0 m=n+1
: 0.503 | X(m|D(2a)|n)]. (33
205025
> o502 |
05'015 I Using our numerical results for the stationary statef
‘ the coupled system, we easily obtain Wigner functions from
0.301 1 Egs.(22) and(33) for different values of the energy differ-
05005 - N\ encee between the two dots as shown in Fig. 6. Between
0.5

two resonance energies=nw, W(X,p) closely resembles

a Gaussian. At and close to the resonance energies, the

distribution spreads out in rings around the origin, which is
FIG. 5. Position variance, momentum variance, and an estimaconsistent with the increased Fock state occupation numbers

tion of the combined uncertainty.gz=a=—8=0.1, N=10, y,  and the increased position and momentum variances at these

=0.05, 10-.=I' =TI'gr=0.1. energies.

-1 05 0 0.5 1 L5 2 2.5
€=¢; - eg (100 peV)
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eps = 0.00 eps = 0.28 eps = 0.50

FIG. 6. Wigner distribution functions for the
bosonic mode. Parameters aE =I'g=T,
eps = 0.75 eps = 1.00 eps = 1.25 =0.1, y,=0.005, g=0.2, N=20. Stationary
current resonances occur&t0.0,1.0,2.0. .. .
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V. DISCUSSION coherent state whereas fer=0, the interaction with the

. S . . quantum dot produces occupied excited states in the boson
I C\)Alljr Itrr\]veztlgnatil:)nrlﬁ tt)r?xseci ?rr: at?umgr:jca}tl metthcr)rc]i \{Vh'gr}node that could best be visualized by a broadening of the

a? (S” N tfts yd ? 0 te (%Soll 0 sys(,jeb 0 ephase-spacé/Vigneo distribution function of the boson.

solved for arbitrary dot parameters, (T, I'u) and boson Although in this paper we have only calculated stationary

gar?pmg ratter~1yb. lSlntce Wt? have to tmuncate the bO?OanH- properties, our method can be extended to calculate the noise
ert space, the electron-boson coupling consgamas to be spectrum via the quantum regression theorem within the

restricted to small valueg=<1. In contrast with the determi- master-equation framework as wéllt remains a task for

nation of 'the(pu'ra e_lgenstates of an isolated dot—boso_n SYSthe future to analyze the relation between the boson quantum
tem (Rabi Hamiltonian, the numerical effort for our mixed fluctuations and the current noise in detail

state (density operatgris much bigger here. Although not

discussed in this paper, we suggest that the strong-coupling
regime could be reached numerically by a polaron transfor- ACKNOWLEDGMENTS
mation of the master equatibhwithout the factorization as-

sumbption emploved in Sec. Il B. Fortunatelv. at present th We acknowledge inspiring discussions with A. Vourdas
P Mpioyec ' : e, at pres who suggested the analysis of thandp variancegand C.
small-coupling regime seems to be valid for experimenta

situations with quantum dofs-16 mary. This work was supported by Projects Nos. EPSRC
q o . . GR44690/01 and DFG Br1528/4-1, the WE Heraeus Foun-
Our results suggest that there is no resonant interaction op_.. L
: dation, and the UK Quantum Circuits Network.
thee <0 side of the current peak as long as the boson system
is damped and any many-body excited electron states can be
ignored. Fore >0, we have found strong excitations of the APPENDIX A: MATRIX ELEMENTS OF THE DENSITY
boson mode occurring at resonances given by multiptes OPERATOR
of the boson frequencw. These correspond to the photo-
satellite peaks in resonant tunneling in electromagnetic ac
fieldS°which in the classical case, however, appear on botf'

sides of the main resonanoe=0 in contrast with the quan-

The matrix elements of the dot-boson density operator
re defined as

tum case considered here. The resonances-atw can thus pom=(N,ilpli,m), i=0L.R;
be interpreted as the emission of phondpkotong by the
electron as it tunnels through the dot. It should be possible to Pinjm‘=<”J lplj,m), i,j=0L,R, (A1)

detect them in the stationary current through double quantum
dots in phonon resonators. With increasing electron-bosoheren andm refer to boson Fock states.
coupling, the visibility of these side peaks increases whereas The matrix elements for the empty dot state obey
the main resonance at=0 is reduced.
We have discussed that an additional double dot can serve
as a detector of the stationary boson siaie if its energy _Pgm:[i w(m_n)pgm]_FL[pgm]_l—rR[pﬁm]
differenceE is tuned independently. In the single mode case t
considered here, the stationary detector current spectrum

I4(E) is uniquely related to the components @f in the +%[2p2+1’m+1\/n+1\/m+ 1—p2m(n+m)],
number state basis. In order to characterize the stationary
boson state itself, we have investigated the Fano factor and (A2)

the quantum fluctuations in the quadrature amplitudes of the
boson. Fore <0, the boson state is perfectly described as ahose for the right dot state
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d .
JePhm=il@(Mm=n)pin+ Te( o= prm) + B(VMpRy -1
+ \/m+1p5m+l_ \/ﬁps—lm_ vn+ 1p5+lm)
+y* (Vmpp VM Lo, ) — ¥(Vnppty,
+ 3N+ 1pp% 1) 1= TRl pd
Yb
+ 5 (201N +1VM+ 1= p(n+m)],
(A3)

and for the left dot state

d
L H L RL LR
apnm:|[w(m_n)pnm+Tc(_pnm+ Pnm
+a(—+n+ 1ph+lm_ \/ﬁprl;—lm'i' \/Ephmfl

+Vm+ 1phm+1) +y*(—Vn+ 1PE+1m_ \/ﬁpsl—_lm)
+y(Nmppi_y+Vm+ LpeR . )1+ pom]

Yo
+ 5 [2pn 1 1Vn+ 1M+ 1= pr(n+m)].

(Ad)

The equation of motion for the off-diagonal eIemepﬁeLﬂ is

d
GPRe=ilpR o(m=n)+ (s~ ep) 1+ B~ N+ 1pity,

—\npRt )+ a(Nm+1pRs.  + VmpRL 1)
LL LL RR
+7(_ n+1pn+1m_ \/ﬁpn—lm+ m+1pnm+1

R
+\/—pnm 1)+Tc(pnm pnm)] _[pﬁrlﬁ

+—[an+1m+1¢n+1¢m+1—p§#ﬂ(n+m>].

(A5)

PHYSICAL REVIEW B67, 125323 (2003
1
AXzZETrdot; [\/ﬁ\/n_lpn,n72+(2n+1)l)n,n
+Vn+1yn+2 Pn, ni2]— [Trdotz (\/—pnn 1
2
+ Vn+lpn,n+1)

(A7)

Ap __Trdot; [_\/ﬁvn_lpn,n72+(2n+l)9n,n
—\Vn+1yn+ Pnn+2] [Trdotz( |\/—Pnn 1

2
+iyn+1pnni1)

(A8)

APPENDIX B: DISPLACEMENT OPERATOR,
COHERENT STATES

Here, we summarize some useful properties of the unitary
displacement operator

D(z)=€""~%'2=(D(2)) *=D(~2)

:e—(1/2)|z\2ezafe—z*a:e(1/2)|z\2e—z*aezafy (B1)
wherezis a complex number and we used the operator ex-
ponential  e*"B=gfeBe (VAINBl  for  [[A,B],A]
=[[A,B],B]=0, cf. also Ref. 44. A coherent boson stite

is defined as an eigenstate of the annihilation operata,
=2|z), wherez is a complex number. It can be generated
from the boson vacuurf0) as

|z)=D(2)0). (B2)
Extremely useful is the relation
D(a+B)=D(a)D(B)e”" M) (B3)

for arbitrary complex numbera, B. Coherent-state matrix
elements oD («) follow as

(B|D(a)| B) =&~ (W2el*g2i Im(ap™) (B4)

Taking the trace over all the boson and electron states, Eq.

(12) for the electron current operator reads

<|A>=; iTclprn—pn n]+2 i[y(prr_1Vn

+ s VN 1) = ¥* (pRE_ N+ pRhn+ 1)1,
(AB)

Number state matrix elements can be obtained u$img

=(1n)(a")"0),

0—,n+m

Iny=eW2lel® _—_

ynim! 9z7'9z)

X (0|e@«agzztmallgy .
1~ 2~

(m|D(a)

(B5)

The variances of the boson position and momentum coordi-

nate, Eq(27), are obtained by performing the trace over theWith (0|e(z~*")ag(z2*@)a’|q)

dot variables Q,,R,

=em ")zt for m=n
the differentiation yields
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, 1 " The functionsc,,(t) can be calculated analytically using Eq.
(m[D(a)|n)=et2el —— —(z, (B4) and the matrix elementsn|D(z)|n) of the unitary dis-
nim! 9z, placement operator, Eq32). They are periodic in 2/,
+a)m 7(22+“)“*| B6) and from integrating EqC1) over one period, one obtains a
@)e %=0" linear relation between the Fourier coefficieRts and c

nm?
Comparison with the generating function of the Laguerre

polynom|aI§ yields Eq.(32). A corresponding expression szz Clémpnmv

can be derived fon=m. nm

APPENDIX C: RELATION BETWEEN P(E) AND

~ w (27lo_ .
Pk= —J P(t)e'dt,
STATIONARY BOSON STATE p, 27

Again we assume that the boson time evolution is un- w (27l
damped in the detector, i.e., governed by the boson Hamil- Cﬁmz_f Cam(t)eketdt. (C2)
tonianH,= wa'a. Expressing an arbitrary boson staigin 27
the number state basigi,==,monm/NY(M|, and Fourier
transforming the functionP(E), Eq. (23), yields (¢
=494/ w)

The P have to be determined by numerical integration from
the (experimentally given P(E). Regarding fm) as a
single index, Eq(C2) is a linear equation that can then be
_ 1 (= ' solved for the coefficients,,, of the boson state by inverting
P(t)= EJ dEe "®'P(E)=Cq4(t)+Cj(—1) the matrixck,,, the coefficients of which are given as Fou-
o rier coefficients of known expressions. In practical terms, the
number of boson states as well as the number of Fourier

ZE PamCnm(t), coefficients have to be restricted in order to make this inver-
nm sion feasible.
_ ot~y Equation(C2) establishes the relation betweBqE) [or,
Cm(1)=(mD(£€"*HD(=&)]n) via Eq.(23), the detector current;=T4P(E) in lowest order
+(m|D(&)D(— £e 'Y |n). (C)  T4] and an arbitrary single mode boson state
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