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Steering of a bosonic mode with a double quantum dot

T. Brandes and N. Lambert
Department of Physics, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88,

Manchester M60 1QD, United Kingdom
~Received 1 October 2002; published 31 March 2003!

We investigate the transport and coherence properties of a double quantum dot coupled to a single damped
boson mode. The numerical results reveal how the properties of the boson distribution can be steered by
altering parameters of the electronic system such as the energy difference between the dots. Quadrature
amplitude variances and the Wigner function are employed to illustrate how the state of the boson mode can be
controlled by a stationary electron current through the dots.
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I. INTRODUCTION

The two-level system coupled to a single bosonic mo
~Rabi Hamiltonian1! is probably one of the best-studied mo
els for the interaction of matter with light.2 Cavity quantum
electrodynamics is an example where the coupling betw
atoms and photons can be studied in detail and used in o
to, e.g., transfer quantum coherence from light to ma
~control of tunneling by electromagnetic fields3,4! and vice
versa.5–7

Quantum optics usually deals withclosedtwo-level sys-
tems where the total electron number on individual ato
remains constant and does not fluctuate during the inte
tion with the photon. This restriction can be lifted in sem
conductor quantum dots~artificial atoms! by tunnel coupling
to electron reservoirs. For example, in semiconductor ca
quantum electrodynamics,8 the interaction of light with exci-
tons can be steered by ‘‘pumping’’ the cavity by resona
tunneling of electrons and holes.

In this paper, we examine a single bosonic mode inter
ing with a system of two~bound! electronic states which ar
themselves coupled to a continuum of free electrons. A
concrete realization, we investigate the stationary elec
transport through a double quantum dot coupled to elec
reservoirs and a single photon or phonon mode. The m
idea is to control the density matrix of the coupled dot-bos
system by external parameters such as the reservoir chem
potentials and the tunnel couplings. These parameters~which
in experiments can be controlled via gate voltages! then de-
termine the reduced density operators of the dot and the
son and allow one, e.g., to modify the state of the boson
driving a stationary electron current through the dots.

One of the motivations for our work are experiments
double quantum dots where the coherent coupling betw
classical light~microwaves! and electrons can be detected
electronic transport.9–12The open two-level-boson model de
scribes the full quantum version of these systems with
light replaced by a photon field with its own quantum d
namics.

On the other hand, quantum effects~such as spontaneou
emission! relevant for transport through double dots ha
been found to be due tophononsrather than photons. In fac
the importance of electron-phonon coupling for transport
coupled dots is well-established by now.13–17 Suggestions
0163-1829/2003/67~12!/125323~10!/$20.00 67 1253
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have been made14,18,19 to explore ‘‘semiconductor phonon
cavity QED’’ in nanostructures where phonons become
perimentally controllable. In contrast to standard semic
ductor cavity QED,8 boundary conditions forvibration
modes lead to extremely nonlinear phonon-dispersion r
tions. For example, Van Hove singularities in the phon
density of states show up at certain frequencies,18 signatures
of which seem to be relevant for transport through quant
dots embedded into free-standing structures.20 Such a situa-
tion would then be described~within a strongly idealized
model! by the coupling of a single frequency boson mode
a few-level quantum dot.

The influence of nanomechanical vibrational properties
single-electron tunneling in fact has emerged as a whole
area of mesoscopic transport, triggered by the possibility
explore electron transport through individual molecules21–25

or in free-standing26–29 and movable30–33 nanostructures.
Phonons then are no longer a mere source of dissipation
become experimentally controllable with the possibility, e.
to create phonon confinement18,34–36 or the analogon of
quantum optical phenomena such as coherent and sque
phonon states.37–40

The paper is organized as follows. In Sec. II, we introdu
the model and derive a master equation for the density
erator. We discuss transport properties in Sec. III wher
comparison to analytical solutions is made. In Sec. IV,
reduced boson density operator, its Wigner function, and
fluctuation properties of the boson mode under a station
electron current are discussed. Finally, we conclude wit
discussion in Sec. V.

II. MODEL AND METHOD

We consider an idealized situation of a single-cavity b
son mode~photon or phonon! coupled to a two-level elec
tronic system~dot! which itself is connected to external ele
tron reservoirs. Our aim is to determine the stationa
reduced density operatorr(t) of the dot-boson system fo
large timest, treating the dot and the boson on equal footin
The single bosonic mode~photon or phonon! interacts with
the electrons within the dots. We set\51 in the following.

A. The Hamiltonian

An artificial ‘‘open’’ two-level system can be realized b
two quantum dots~which for simplicity we call ‘‘left’’ and
©2003 The American Physical Society23-1
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‘‘right’’ ! coupled to each other by a tunnel barrier and to
left source and right drain electron reservoir with chemi
potentialsmL and mR . In the following, we are only inter-
ested in the regime of high bias voltageV5mL2mR.0. We
assume that the charging energyU required to add an addi
tional electron to the double dot is much greater thanV
~strong Coulomb blockade regime!. Therefore, electrons tun
nel through the structure only from the left to the right. On
one additional electron can tunnel into the double dot a
time, and the effective Hilbert space of the electronic syst
can be defined by three states10,16 empty, left, and right,u0&
5uNL ,NR&, uL&5uNL11,NR&, and uR&5uNL ,NR11&. The
energies of the two states with an additional electron in
left ~right! dot are denoted as«L («R). Higher excited states
for both dots are assumed to lie outside the energy wind

mL@«L ,«R@mR , ~1!

which defines the regime where nonlinear transport does
significantly depend onmL andmR at low temperatures. This
corresponds to the standard situation10,14,16 where only the
two lowest hybridized electronic states in the double dot c
tribute to transport.

The HamiltonianHD of the double dot is given in term
of the dot operatorsnLªuL&^Lu, nRªuR&^Ru, and a termHT
describing the tunneling between the left and the right do

HD5HA1HT[«LnL1«RnR1Tc~P1P†!,

P5uL&^Ru, P†5uR&^Lu. ~2!

The tunnel matrix elementTc is used to describe the streng
of the tunneling process.

The Hilbert space of the bosonic system is spanned by
usual number or Fock eigenstatesun&,n50,1,2,3, . . . of the
harmonic oscillator

Hp5va†a ~3!

with frequencyv and creation/annihilation operatorsa and
a† fulfilling @a,a†#51. The coupling between the electron
and the bosonic system is described by four microsco
coupling constants,

Hep5~anL1bnR1g* P1gP†!~a1a†!. ~4!

Here, we assume the coupling constantsa,b, andg as given
parameters. Their precise form can be calculated from mi
scopic details such as the many-body wave functions of
dot electrons. It should be noted that the interaction betw
the bosonic system and the reservoirs is not considered h

The two electron reservoirs are described by

Hres5(
k

«k
Lck

†ck1(
k

«k
Rdk

†dk , ~5!

where the sum is over all wave vectorsk in both the left~L!
and right~R! reservoirs and spin polarization is assumed
simplicity. The coupling between dot and reservoirs is d
scribed with two dot operators

sL5u0&^Lu, sR5u0&^Ru; ~6!
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and the tunnel Hamiltonian

HV5(
k

~Vk
Lck

†sL1Vk
Rdk

†sR1c.c! ~7!

with tunnel matrix elementsVk
L andVk

R .
The total Hamiltonian is written as

H5H01HT1HV1Hep , ~8!

where H05HA1Hp1Hres is the free Hamiltonian in the
interaction picture introduced below.

B. Equations of motion

The density matrix of the total system~dot, boson, and
reservoirs! is given by the Liouville–von Neumann equatio
and formulated in the interaction picture with respect toH0.
For the nonlinear transport window, Eq.~1! considered here
the chemical potentials in the equilibrium reservoirs are s
that the Fermi distributions in the left and the right leads c
well be approximated byf L(«)51 and f R(«)50. We treat
the reservoir coupling termHV in second-order perturbatio
theory, neglecting Kondo physics41 throughout, so that trans
port can be described by a master equation.10,16,42,43Trans-
forming back into the Schro¨dinger picture will produce the
following master equation for the reduced density opera
of the system~dot 1 boson!,

d

dt
r~ t !52 i @HA1Hp1HT1Hep ,r~ t !#

2
GL

2
@sLsL

†r~ t !22sL
†r~ t !sL1r~ t !sLsL

†#

2
GR

2
@sR

†sRr~ t !22sRr~ t !sR
†1r~ t !sR

†sR#

2
gb

2
~2ara†2a†ar2ra†a!. ~9!

The perturbation from the reservoir is given by the tunn
rates

GL/R52p(
k

uVk
L/Ru2d~«L/R2«k

L/R!. ~10!

In the last line in Eq.~9!, we introduced a term that describe
damping of the bosonic system at a rategb ~Ref. 44! corre-
sponding to photon or phonon cavity losses.

Taking matrix elements of the master equation, Eq.~9!,
one obtains a system of linear equations for the matrix e
ments of the density operator which are given explicitly
Appendix A. In the stationary state of these equations,
time derivatives are zero, and a coupled set of linear eq
tions is found. In order to numerically solve these equatio
the bosonic Hilbert space has to be truncated at a finite n
ber N of boson states. The total number of equations the
5N2110N15, remembering that there is always an equ
tion for n5m50. The numerical solution becomes a sta
dard matrix inversion, though book-keeping of the mat
3-2
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elements has to be done carefully. The trace over elec
and boson degrees of freedom has to obey the normaliza
condition

(
n

@^n,0urstatun,0&1^n,Rurstatun,R&1^n,Lurstatun,L&#51.

~11!

We mention that without this condition, the matrix becom
singular, and cannot be solved.

III. TRANSPORT PROPERTIES

The first quantity of interest that one can obtain from t
matrix elements is the stationary electron current through
double dot.

A. Stationary current: numerical results

In the stationary state, the current operator is defined
the rate of electrons tunneling from the left dot to the rig
dot,

Î 5
]

]t
nL5 iTC~P†2P!1 i ~gP†2g* P!~a1a†!. ~12!

Here and in the following, we set the electron charge2e
51. For a boson mode with wave vectorQ, the electron-
boson coupling constants can be expressed in terms of m
elements of the left and right dot states,a5l^LueiQruL&,
b5l^RueiQruR&, g5l^LueiQruR&, where l is the micro-
scopic constant for the interaction of the boson with the e
tron in two dimensions.

Our formalism works for arbitrary choices of couplin
parametersa, b, g, but for simplicity we restrict ourselve
to simple, nontrivial cases for the numerical calculations.
set g50, which corresponds to neglecting the nondiago
terms which for relatively sharp peaked electron densitie
the dots only weakly contribute.45 For a sharp electron den
sity profile, one further hasb5aeiQd, whered is the vector
connecting the left and right dot centers. Identical ene
shifts in both dots, corresponding tob5a, have no effect on
transport. In the following, we chooseQd5p and therefore
electron-boson coupling constants are

a52b[2g, g50. ~13!

Furthermore, the tunneling rates between the reservoirs
the dots are generally kept smaller than the energies of
dots and boson states. This produces clear and sharply
fined transport characteristics. We use the boson frequenc
an energy scale and setv51 in the following. Using the
typical phonon cavity energy\v'100 meV from a recent
experiment with a free-standing phonon cavity20 will yield a
typical electron current scale ofev524 nA, as shown in
Figs. 1 and 2.

Figure 1 illustrates the stationary current as a function
the energy difference«. For zero boson couplingg50, we
reproduce the Lorentzian resonant tunneling profile

I stat5Tc
2GR /@Tc

2~21GR /GL!1GR
2/41«2# ~14!
12532
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as first derived by Stoof and Nazarov.10

For finite electron-boson coupling and positive«, reso-
nances appear when

«[«L2«R5nv, ~15!

i.e., the energy gap of the dots becomes equal to mult
integers of the boson energy. At these resonances, elec
tunneling from the left to the right dot can excite the bos
system.

The current profiles with differing damping rates, Fig.
illustrate that the system is extremely sensitive even to v
small ‘‘damping.’’ For small but finite boson damping, w
found that two profiles forN55 and N510 match in an
extremely close manner. This illustrates that a finite bos
damping removes numerical problems due to the trunca
of the boson Hilbert space at a finiteN. As expected, there
are no peaks at all on the absorption side of the profile«
,0): the damped boson relaxes to its ground state.

FIG. 1. Stationary current through double quantum dot coup
to single boson mode withGL5GR50.1, Tc50.01, gb50.05, and
varying 2g5a52b. @Electron-boson coupling, cf. Eq.~4!#. N:
number of boson states.

FIG. 2. Current as in Fig. 1 for coupling 2g50.1 and different
boson dampinggb , alongside corresponding polaron transform
tion result, Eq.~19!.
3-3
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B. Perturbation theory in Tc : Polaron transformation
method

An analytical expression for the stationary current can
obtained from a polaron transformation and a polar
transformed master equation that is valid for small coupl
Tc between the two dots.16 After tracing out the bosonic
degrees of freedom, one obtains an equation of motion
the time-dependent expectation values of the operatorsnL/R
andP(†) which can be transformed into the Laplace spac

^nL&~z!52 i
Tc

z
$^P&~z!2^P†&~z!%1

GL

z
$1/z2^nL&~z!

2^nR&~z!%,

^nR&~z!5 i
Tc

z
$^P&~z!2^P†&~z!%2

GR

z
^nR&~z!,

^P&~z!52 iTc$^nL&~z!C«~z!2^nR&~z!C2«* ~z!%

2
GR

2
^P&~z!C«~z!. ~16!

Here, the coupling to the boson system enters through
correlation function

C«~z!5E
0

`

dte2zt1 i«tC~ t !,

C~ t !5^X~ t !X†~ t50!&, X5DS 4g

v D ~17!

of the displacement operator of the bosonic mode,

D~j!5exp~ja†2j* a!. ~18!

Equations~16! can be solved algebraically. One then obta
the expectation valuêI & t→` of the stationary current from
the 1/z coefficient of the I (z) expansion into a Lauren
series46 for z→0,

^I & t→`5Tc
2 2Re~C«!1GRuC«u2

U11
GR

2
C«U2

12Tc
2B«

,

B« :5ReH S 11
GR

2
C«D FC2«

GR
1

C«*

GL
S 11

GL

GR
D G J , ~19!

whereC«[C«(z→0).
The correlation functionC(t) enters via a factorization

assumption in the polaron-transformed master equation
has to be calculated from an effective density operatorrB of
the bosonic mode. For dissipative pseudospin-boson sys
with a continuous spectrum of modes and a thermal equ
rium for rB , reasonable results can be obtained within t
method for small coupling, in particular, in comparison w
perturbation theory.45,47 However, in the present case wit
just one single mode it is not clear whether or not a fact
ization into an effective dot and an effective boson dens
operator yields reasonable results, and in principle,
12532
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should at least determinerB self-consistently. For small cou
plings g, however, the assumption of a decoupled time e
lution of the boson should work well, and we proceed with
master equation forrB ,

d

dt
rB~ t !52 i @va†a,rB#2

gb

2
~2arBa†2a†arB2rBa†a!

~20!

that describes the free time evolution of the boson in pr
ence of boson damping with damping constantgb.0. As-
suming the boson initial condition to be its ground state, o
obtains (t.0)

C~ t !5exp$2uju2~12e2[(gb/2)1 iv] t!%, j5
4g

v
. ~21!

Figure 2 shows that the analytical expression for the curr
Eq. ~19!, compares quite well with the numerical results.
particular, this demonstrates that the formulation in terms
a general boson correlation functionC(t) works reasonably
well not only for boson systems with continous mo
spectrum,16,45 but also for the single mode case discuss
here, at least for small-coupling constantsg. We point out
that the existence of a finite boson damping is crucial h
and that for largerg, the comparison becomes worse, as e
pected.

IV. BOSON DISTRIBUTION

Turning now to properties of the bosonic system, our p
mary interest is in how the boson mode can be controlled
parameters of the electron subsystem such as the bias« and
the tunnel couplingsGR/L . In the stationary state, the re
duced density operator of the boson is

rb[ lim
t→`

Trdotr~ t !5 lim
t→`

(
i 50,L,R

r i i ~ t !. ~22!

A. Boson state detection

Before discussing the boson staterb , we describe a pos
sible experimental scheme to directly detect its propert
The basic idea is to use another nearby double quantum
as detector of the boson, similar to the scheme for detec
quantum noise in mesoscopic conductors as proposed
Aguado and Kouwenhoven.48

The detector consists of a double quantum dot very si
lar to the one discussed above. The boson state gives a
tribution to the inelastic, stationary current

I d~E!'Td
2P~E!52Td

2 ReE
0

`

dteiEtCd~ t !;

Cd~ t !5Tr@rbXd~ t !Xd
†#, Xd5DS 4gd

v D ~23!

through the detector in the lowest order in the detector tun
couplingTd . Here,E denotes the detector dot energy diffe
ence,D again denotes the unitary displacement operator,
3-4
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~18!, gd the coupling constant in the detector double dot, a
rb the boson state. Equation~23! describes the detector cu
rent I (E) resulting from a given boson staterb , as calcu-
lated in the following section.

Before discussing our numerical results forrb , it is illus-
trative to look at a few special cases. For example, if
boson staterb describes a thermal equilibrium at temperatu
T, one obtains the inelastic current spectrum with absorp
E,0 and emissionE.0 branches16, as has been observe
by Fujisawaet al.14 for the case of equilibrium~multimode!
phonons.

If rb5un&^nu describes a pure,n-boson number state, th
function Cd(t) in the detector current, Eq.~23!, becomes
(j54gd /v)

Cd~ t !5^nuD~jeivt!D~2j!un&

5e2 i uju2sin vte2(1/2)uj(12eivt)u2Ln
0~ uj~12eivt!u2!,

~24!

whereLn
0 is a Laguerre polynomial, cf. Appendix B. Here w

assume that the boson time evolution is undamped in
detector, i.e., governed by the boson HamiltonianHb
5va†a. Expanding up to the lowest order inj54gd /v and
using Ln

0(x)512nx1O(x2), one obtains from Eqs.~23!
and ~24!,

I d~E!'Td
22p@$12uju2~2n11!%d~E!1uju2$nd~E1v!

1~n11!d~E2v!%#. ~25!

Clearly, the height of the inelastic current peaks is de
mined by the quantum numbern, i.e., the absorption peak a
E52v,0 scales withn, and the ~stimulated! emission
peak atE5v.0 scales withn11.

The above example can be even generalized. In Appe
C we show how to reconstruct an arbitrary boson staterb
5(nmrnmun&^mu from the functionP(E) @or equivalently
the stationary detector current spectrumI d(E), Eq. ~23!#.
This demonstrates that the properties of the boson state
cussed in the following can be directly related to an exp
mentally accessible quantity.

B. Numerical results

We first analyze the boson mode via moments of its d
tribution function such as occupation number and Fano
tor before discussing the full distribution function in th
Wigner function representation.

The boson occupation probabilitypn5(rb)nn is the prob-
ability for the boson to be in one particular number staten.
Furthermore, the boson Fano factorFQ is calculated from the
boson occupancy as the variance of boson number ove
mean number of bosons,

FQ5
^n̂2&2^n̂&2

^n̂&
. ~26!

Similarly, the varianceDx25^x2&2^x&2 and Dp25^p2&
2^p&2 of the position and a momentum coordinate
12532
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~a1a†!

A2
, p5

i ~2a1a†!

A2
~27!

can be obtained fromrb , cf. Eq. ~A7! in Appendix A. They
provide an indication of the quantum fluctuations in the b
son states, and prove useful in comparison with the F
factor profile. It should also be apparent thatDx2Dp2> 1

4 .
We have checked that the probabilitypn fulfills the nor-

malization (npn51. For accurate results, the occupati
probability should tend to 0 asn→N, whereN is the dimen-
sion of the truncated boson Hilbert space. This condition
easily achieved in presence of a finite boson damping r
gb.0. In this case, it is possible to obtain a boson distrib
tion which is centered around the lower boson number sta
and is excited when a resonant interaction with the elect
occurs.

It is more illustrative to first discuss a weakly damp
case, as shown in Fig. 3. We can see quite clearly how at
positive resonance energies, the occupation probabilitie
the states spread into the higher number states.

The Fano factorFQ illustrates fluctuation properties of th
boson mode withFQ51 corresponding to a Poissonian b
son number distribution andFQ,1 (FQ.1) to a sub
~super!-Poissonian distribution. Figure 4 illustrates the Fa
factor vs« for the strongly damped case.

This profile suggests the reduced boson states are co
ent ~Poissonian! for «,0, and super-Poissonian at the res
nance energies,«5v,2v, . . . .

C. Coherent state andx-p variances

For «!0, nearly no current is flowing, the electron
predominatly localized in the left dot, and one can appro
mate the operatorsz5uL&^Lu2uR&^Ru by its expectation
value ^sz&51. Then, the boson system is effectively d
scribed by

Heff52g~a1a†!1va†a, ~28!

which is a shifted oscillator, the ground stateuGS& of which
is the coherent stateuGS&5u22g/v& with auz&5zuz&. This

FIG. 3. Boson profilesn50,2,4, . . . ,10 for gb50.0001, N
510, 2g5a52b50.3, 10TC5GL5GR50.1.
3-5



ly
o
4

d
op
iti
T

x

th
fo
o
n

e
lied

se

nt
ers

al

om
-
en

the
is

bers
hese

n

m

T. BRANDES AND N. LAMBERT PHYSICAL REVIEW B67, 125323 ~2003!
can be seen by introducing new operatorsbªa12g/v
whenceHeff5vb†b24g2/v andbuGS&50. In this regime,
we have

rb'uz&^zu, z522g/v, ~29!

and pn5u^nuGS&u2 is given by a Poisson distribution,pn

5uzu2ne2uzu2/n!. One can plot this against the numerical
obtainedpn and check that the distribution is indeed Poiss
nian for small«!0. This is represented in the inset of Fig.
in detail for the first four-boson Fock~number! states.

The quantum fluctuations of the boson system are
scribed by the variance of the position and momentum
erators. Figure 5 presents a direct comparison of the pos
and momentum variance of a strongly damped system.
uncertainty principle holds,DxDp> 1

2 , and thusDx2Dp2

> 1
4 . The state with minimum uncertainty occurs as e

pected, for«L,«R , with Dx2Dp25 1
4 . This is a reassuring

result, since it suggests both that the boson is coherent in
area, and that the Fano factor’s Poissonian distribution
this coherent state is correct. We mention that since b
Dx.0.5 andDp.0.5, we find no squeezing of the boso
mode for the parameters checked here.

FIG. 4. Fano vs« profile for 2g5a52b50.1, N510, gb

50.05, 10TC5GL5GR50.1. Inset: Comparison between cohere
state, Eq.~29!, and numerical result for boson distributionpn at «
524.

FIG. 5. Position variance, momentum variance, and an esti
tion of the combined uncertainty. 2g5a52b50.1, N510, gb

50.05, 10TC5GL5GR50.1.
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D. Wigner function

The Wigner function of the density operatorrb for a
bosonic modea† is a representation ofrb in x-p space, cf.
Eq. ~27!. It is defined as49

W~x,p!ª
1

p
Tr~rbD~2a!U0!, a5

x1 ip

A2
, ~30!

where D(a)ªexp@aa†2a*a#, Eq. ~18!, is a unitary dis-
placement operator andU0ªexp@ipa†a# is a parity operator
for the boson.50 W(x,p) is a symmetric Gaussian for a pur
coherent boson state and a symmetric Gaussian multip
with a polynomial for a pure number state.44 In our model,
the shape ofW(x,p) therefore indicates how close to the
limiting cases the actual stationary staterb of the boson, Eq.
~22!, is. In particular, this is a convenient way to represe
the ‘‘steering’’ of the boson mode when external paramet
~such as« or GR/L) are changed.51

Using the Fock state basis$un&,n50,1,2, . . . % and U0

5(n50
` (21)nun&^nu, we find

W~x,p!5
1

p (
n,m50

`

~21!n^nurbum&^muD~2a!un&.

~31!

It is useful to split the sum into diagonal and nondiagon
parts, to usêmurbun&5^nurbum&* ; and (m>n)

^muD~a!un&5An!

m!
am2ne2(1/2)uau2Ln

m2n~ uau2!

5^muD†~a!un&* 5~21!m2n^muD~a!un&* ,

~32!

where againa5(x1 ip)/A2 andLn
m2n is a Laguerre poly-

nomial, cf. Appendix B. This leads to

W~x,p!5
1

p (
n50

`

~21!n^nurbun&^nuD~2a!un&

1
1

p (
n50

`

(
m5n11

`

~21!n2 Re@^nurbum&

3^muD~2a!un&#. ~33!

Using our numerical results for the stationary stater of
the coupled system, we easily obtain Wigner functions fr
Eqs. ~22! and ~33! for different values of the energy differ
ence« between the two dots as shown in Fig. 6. Betwe
two resonance energies«5nv, W(x,p) closely resembles
a Gaussian. At and close to the resonance energies,
distribution spreads out in rings around the origin, which
consistent with the increased Fock state occupation num
and the increased position and momentum variances at t
energies.

t

a-
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FIG. 6. Wigner distribution functions for the
bosonic mode. Parameters areGL5GR5Tc

50.1, gb50.005, g50.2, N520. Stationary
current resonances occur at«50.0,1.0,2.0, . . . .
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V. DISCUSSION

Our investigation is based on a numerical method wh
allows the density matrix of the boson-dot system to
solved for arbitrary dot parameters («, Tc , GL/R) and boson
damping rategb . Since we have to truncate the boson H
bert space, the electron-boson coupling constantg has to be
restricted to small valuesg&1. In contrast with the determi
nation of the~pure! eigenstates of an isolated dot-boson s
tem ~Rabi Hamiltonian!, the numerical effort for our mixed
state~density operator! is much bigger here. Although no
discussed in this paper, we suggest that the strong-coup
regime could be reached numerically by a polaron trans
mation of the master equation16 without the factorization as
sumption employed in Sec. III B. Fortunately, at present
small-coupling regime seems to be valid for experimen
situations with quantum dots.13–16

Our results suggest that there is no resonant interactio
the«,0 side of the current peak as long as the boson sys
is damped and any many-body excited electron states ca
ignored. For«.0, we have found strong excitations of th
boson mode occurring at resonances given by multiplesnv
of the boson frequencyv. These correspond to the phot
satellite peaks in resonant tunneling in electromagnetic
fields9,10 which in the classical case, however, appear on b
sides of the main resonancen50 in contrast with the quan
tum case considered here. The resonances at«5nv can thus
be interpreted as the emission of phonons~photons! by the
electron as it tunnels through the dot. It should be possibl
detect them in the stationary current through double quan
dots in phonon resonators. With increasing electron-bo
coupling, the visibility of these side peaks increases wher
the main resonance at«50 is reduced.

We have discussed that an additional double dot can s
as a detector of the stationary boson staterb , if its energy
differenceE is tuned independently. In the single mode ca
considered here, the stationary detector current spec
I d(E) is uniquely related to the components ofrb in the
number state basis. In order to characterize the statio
boson state itself, we have investigated the Fano factor
the quantum fluctuations in the quadrature amplitudes of
boson. For«!0, the boson state is perfectly described a
12532
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coherent state whereas for«*0, the interaction with the
quantum dot produces occupied excited states in the bo
mode that could best be visualized by a broadening of
phase-space~Wigner! distribution function of the boson.

Although in this paper we have only calculated stationa
properties, our method can be extended to calculate the n
spectrum via the quantum regression theorem within
master-equation framework as well.44 It remains a task for
the future to analyze the relation between the boson quan
fluctuations and the current noise in detail.
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APPENDIX A: MATRIX ELEMENTS OF THE DENSITY
OPERATOR

The matrix elements of the dot-boson density operator
are defined as

rnm
i
ª^n,i uru i ,m&, i 50,L,R;

rnm
i j
ª^n,i uru j ,m&, i , j 50,L,R, ~A1!

wheren andm refer to boson Fock states.
The matrix elements for the empty dot state obey

d

dt
rnm

0 5@ iv~m2n!rnm
0 #2GL@rnm

0 #1GR@rnm
R #

1
gb

2
@2rn11,m11

0 An11Am112rnm
0 ~n1m!#,

~A2!

those for the right dot state
3-7
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d

dt
rnm

R 5 i @v~m2n!rnm
R 1Tc~rnm

RL2rnm
LR!1b~Amrnm21

R

1Am11rnm11
R 2Anrn21m

R 2An11rn11m
R !

1g* ~Amrnm21
RL 1Am11rnm11

RL !2g~Anrn21m
LR

1An11rn11m
LR !#2GR@rnm

R #

1
gb

2
@2rn11,m11

R An11Am112rnm
R ~n1m!#,

~A3!

and for the left dot state

d

dt
rnm

L 5 i @v~m2n!rnm
L 1Tc~2rnm

RL1rnm
LR!

1a~2An11rn11m
L 2Anrn21m

L 1Amrnm21
L

1Am11rnm11
L !1g* ~2An11rn11m

R 2Anrn21m
RL !

1g~Amrnm21
LR 1Am11rnm11

LR !#1GL@rnm
0 #

1
gb

2
@2rn11,m11

L An11Am112rnm
L ~n1m!#.

~A4!

The equation of motion for the off-diagonal elementsrnm
RL is

d

dt
rnm

RL5 i @rnm
RL@v~m2n!1~«L2«R!#1b~2An11rn11m

RL

2Anrn21m
RL !1a~Am11rnm11

RL 1Amrnm21
RL !

1g~2An11rn11m
LL 2Anrn21m

LL 1Am11rnm11
RR

1Amrnm21
RR !1Tc~rnm

RR2rnm
LL !#2

GR

2
@rnm

RL#

1
gb

2
@2rn11,m11

RL An11Am112rnm
RL~n1m!#.

~A5!

Taking the trace over all the boson and electron states,
~12! for the electron current operator reads

^ Î &5(
n

iTC@rn,n
LR2rn,n

RL #1(
n

i @g~rn,n21
LR An

1rn,n11
LR An11!2g* ~rn,n21

RL An1rn,n11
RL An11!#.

~A6!

The variances of the boson position and momentum coo
nate, Eq.~27!, are obtained by performing the trace over t
dot variables 0,L,R,
12532
q.

i-

Dx25
1

2
Trdot(

n
@AnAn21rn,n221~2n11!rn,n

1An11An12rn,n12#2
1

2 FTrdot(
n

~Anrn,n21

1An11rn,n11!G2

, ~A7!

Dp25
1

2
Trdot(

n
@2AnAn21rn,n221~2n11!rn,n

2An11An12rn,n12#2
1

2 FTrdot(
n

~2 iAnrn,n21

1 iAn11rn,n11!G2

. ~A8!

APPENDIX B: DISPLACEMENT OPERATOR,
COHERENT STATES

Here, we summarize some useful properties of the unit
displacement operator

D~z![eza†2z* a5„D†~z!…215D†~2z!

5e2(1/2)uzu2eza†
e2z* a5e(1/2)uzu2e2z* aeza†

, ~B1!

wherez is a complex number and we used the operator
ponential eA1B5eAeBe2(1/2)[A,B] for †@A,B#,A‡
5†@A,B#,B‡50, cf. also Ref. 44. A coherent boson stateuz&
is defined as an eigenstate of the annihilation operator,auz&
5zuz&, wherez is a complex number. It can be generat
from the boson vacuumu0& as

uz&5D~z!u0&. ~B2!

Extremely useful is the relation

D~a1b!5D~a!D~b!e2 i Im(ab* ) ~B3!

for arbitrary complex numbersa, b. Coherent-state matrix
elements ofD(a) follow as

^buD~a!ub&5e2(1/2)uau2e2i Im(ab* ). ~B4!

Number state matrix elements can be obtained usingun&
[(1/An!)(a†)nu0&,

^muD~a!un&5e(1/2)uau2 1

An!m!

]n1m

]z1
m]z2

n

3^0ue(z12a* )ae(z21a)a†
u0&uz15z250 .

~B5!

With ^0ue(z12a* )ae(z21a)a†
u0& 5e(z12a* )(z21a) for m>n

the differentiation yields
3-8
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^muD~a!un&5e(1/2)uau2 1

An!m!

]n

]z2
n
~z2

1a!me2(z21a)a* uz250 . ~B6!

Comparison with the generating function of the Lague
polynomials51 yields Eq. ~32!. A corresponding expressio
can be derived forn>m.

APPENDIX C: RELATION BETWEEN P„E… AND
STATIONARY BOSON STATE rb

Again we assume that the boson time evolution is
damped in the detector, i.e., governed by the boson Ha
tonianHb5va†a. Expressing an arbitrary boson staterb in
the number state basis,rb5(nmrnmun&^mu, and Fourier
transforming the functionP(E), Eq. ~23!, yields (j
54gd /v)

P̃~ t ![
1

2pE2`

`

dEe2 iEtP~E!5Cd~ t !1Cd* ~2t !

5(
nm

rnmcnm~ t !,

cnm~ t ![^muD~jeivt!D~2j!un&

1^muD~j!D~2je2 ivt!un&. ~C1!
t-

e

s

hi

.

ys

p

R

er

12532
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The functionscnm(t) can be calculated analytically using E
~B4! and the matrix elementŝmuD(z)un& of the unitary dis-
placement operator, Eq.~32!. They are periodic in 2p/v,
and from integrating Eq.~C1! over one period, one obtains
linear relation between the Fourier coefficientsP̃k andcnm

k ,

P̃k5(
nm

cnm
k rnm ,

P̃k[
v

2pE0

2p/v

P̃~ t !eikvtdt,

cnm
k [

v

2pE0

2p/v

cnm~ t !eikvtdt. ~C2!

The P̃k have to be determined by numerical integration fro
the ~experimentally given! P(E). Regarding (nm) as a
single index, Eq.~C2! is a linear equation that can then b
solved for the coefficientsrnm of the boson state by inverting
the matrixcnm

k , the coefficients of which are given as Fo
rier coefficients of known expressions. In practical terms,
number of boson states as well as the number of Fou
coefficients have to be restricted in order to make this inv
sion feasible.

Equation~C2! establishes the relation betweenP(E) @or,
via Eq.~23!, the detector currentI d5Td

2P(E) in lowest order
Td] and an arbitrary single mode boson staterb .
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