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Phase transitions in generalized spin-boson (Dicke) models
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We consider a class of generalized single mode Dicke Hamiltonians with arbitrary boson coupling in the
pseudo-spirx-z plane. We find exact solutions in the thermodynamic, large-spin limit as a function of the
coupling angle, which allows us to continuously move between the simple dephasing and the original Dicke
Hamiltonians. Only in the latter cagerthogonal static and fluctuating couplingtoes the parity-symmetry
induced quantum phase transition occur.
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I. INTRODUCTION equivalents therefore seem to be in a “distinguished” class of

amiltonians with very pronounced properties. It should be

Spin-bogoplmod(cej!s app.earhin mgnylareas of physics ar}"_flentioned from the very beginning, however, that this dis-
are essential ingredients in theoretical quantum ofds i tion is most visible in the strong coupling regime.
(light-matter interactio)) nuclear physic§2], quantum chaos

[3], and quantum dissipatiop#]. The spin algebra can be
used to describe singlg=N/2=1/2 or manyN>1 two-
level systems where, in the simplest case, the interaction is
with but a single bosonic modé,a’). Specific examples We start from a generic model Hamiltonian
include cavity quantum electrodynamics and, more recently,
“phonon cavity quantum dynamics” of electrons interacting H=wa'a+(@+a'A+ar’)-J, @)
with  single phonon (oscillatior) modes in nano- describing the simplest coupling between Heisenberg-Weyl
electromechanical systeni5—8| such as freestanding quan- (1 a,a') and the spin algebra];:%(JﬁJ_), \]y:%(JJr—J_),
tum dots or “molecular transistors.” J,, with

A common feature of spin-boson models is that in general
they are nonintegrable, with exact solutions available only [Jpde]= £ds, [34,0-]=20,. 2

for very specific cases. Examples of the latter are simplifieqn Eq. (1), Q is a real andA a complex three-dimensional

“dephasing ’T‘O‘?'e's’" _where the spin couples to both the bo\'/ector. Special cases of E¢l) are the Rabi or the Dicke
son and static field via only one of its componegisually

i i = =Af= i -
chosen ag,). Another example where exact solutions can beHamHtoryan[M] (@ QeZ’A_ A A?‘)’Tthe S|mple q_ephas

! i = . ing Hamiltonian[15-17 (2=Qg, A=AT=Ag with i=x,y,
obtained is in the large spin limjt—c where bosonic rep-

resentations of spin Lie algebrf2] have been known for a SrAE)’ if;e ]‘)]agr:gs'tﬁgn:)r:gj?nsogear\?g:;g'fmgf(fﬁ;%%’si/\aﬂve
long time; an early example being the Holstein-Primakoff " &80, . o P
transformation(9)]. spin-boson(tunneling electronHamiltonian[4,8,18,19 (Q

In this paper, we further explore the large-spin limit by :“’OeZ_“LTeX’A:AT:_Aez)' where we denote the unit vectors
starting from the most general, single-mode, spin boso?S & i=X,Y,z Thej=1/2 variant of Eq.(1) with Q=wge,
Hamiltonian with linear coupling of allx,y,2) spin compo- * 16 and A=ae,+ibe, appears in quasi-one-dimensional
nents to a statiand a fluctuating(bosonig term. For the ~duantum wires in the-y plane in a constant magnetic field
specific case of the coupling of orthogor@ and z) spin Be, for an electron gas with spin-orbit interactiofRashba

components to the static and the fluctuating teiDicke Hamiltonian) [ZO].' . +
mode), we have previously foundll0-13 intriguing con- In the fOHO\_N'ng’ we restrict ourselves A =A" and
nections between quantum chaos, entanglement, and tltligerefore consider the Hamiltonian,

emergence of an instablity-induced quantum phase transition H=wala+ Q- -J+(@ +a)A -J (3)

in the limit of large spinj — «. Here, our main result will be

that, surprisingly, this instability and the related parity- Parametrized bywo real three-dimensional vectors given by
symmetry breaking of the ground-state wave functions only 2

appears for “orthogonal” coupling. The Dicke Hamiltonian Q=(0,0,0), A==\, (4)
[13] (Rabi-Hamiltonian for spin 1/ and its canonical V2j

II. THE MODEL AND ITS SOLUTION

where 142j is inserted to ensure correct scaling in the

thermodynamic limit, and the factor of 2 is for later con-
*Electronic address: emary@lorentz.leidenuniv.nl venience. Note that the more general case, (Eg.leaves
"Electronic address: brandes@dirac.phy.umist.ac.uk three real, linearly independent three-dimensional vectors.
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The analysis would then be very similar to the following, 1
though more cumbersome, which is why we restrict our- X (b"+b)2+ 2\ 4 ﬂ(] -p)a'+a)(b"+b)
selves to the model Ed3). J

We begin by rotating our coordinate axes so that we work ) . — af
in the x-z plane, with the coupling-vectoA aligned along + € sin 6(8 - ) + wa = cosOVKkB -\ ﬂ(l
the x axis. This gives us the form with which we shall work:

1
. o\ +4k) — —() cos 0\/: (9
H=wa'a+Q(J, cosg+J,sin 6) + —=(a'+a)J.. (5) 4 k
V2]

. o . ) The two terms linear in bosonic operators can be eliminated
This Hamiltonian is invariant under a rotation about the by choosing the parametessand 3 such that

axis, under whichl,— J, andJ,— -J,, and consequently, we
shall only discuss the parameter range @< 7. In deriving — o [kg
exact solutions for this model in the thermodynamic limit, Va=—1/—~,
we shall follow the general procedure introduced for the w V2
Dicke model in Ref[11]. o

First we employ the Holstein—Primakoff representation ofand 3 is given by
the angular momentum operatorg®], J,=b"\2j-b'b,
J.=\2j-bTbb, and J,=(b'b-). With J,=5(3,+2), substi- \/zk(j _ 8- sin 95+ 10 cos 9\,;(1 _ E) “o.
tution gives us k V2j 2 k

(10

H = wa'a+ —cos 6(b"\2j - b'b + v2j - b'bb) o . , _ o
2 Substituting the value o into this equation and simplify-
+Q sin (bbb - j) ing, we obtain the following equation forg,
A - = 2i_pg — i—
+—=(a'+a)(b'"\2j - bb+\2j ~b'bb).  (6) WIZB 5 0 sinovg+ 0 cose =L 0. (12)
V2] o V2j - B8

We next displace the oscillator modes—a+\a and b
—b-B, wherea and 8 are assumed to be of the order of
j. This leads to

This equation is exactly soluble for’ﬁ, but the resulting
form is extremely unwieldy, and will not be reproduced
here. In a few specific cases, to be elucidated later, com-
_ 1 - pact expressions can be found. With the elimination of the
H=ow[ala+ V(@' +a) + a] + EQ(cos OVk(b™ 7+ 7b linear terms, our Hamiltonian assumes the form

- 2BV +Q sin db'b - VB +b) + B -] H=wa'a+@b'b+s(b"+b)*+r(@" +a)(b" +b) + jEg + K,

K o (13)
+\ \/:.(&1T +a+2Va)(b'Nn+\nb=-2V8Vn), (7)

2] where the constants may be inferred by comparison with Eq.
(9), with appropriate values af and 8. Hamiltonians of this
form are analytically soluble via a unitary transformation,
bth - \B(b' + b) and since an example of this process was given in [Réf,
k- (8) we shall not go into the details here. Suffice to say that after

a Bogoliubov transformation of the bosonic operators, the

We now proceed to the thermodynamic limit, by takipg Hamiltonian becomes diagonalized,
—oo and neglecting terms with powers pfin the denomi- . . ]
nator. This yields H=¢e,c,c, +e.clc_+]jEg+Kk, (14

o : ) af Qcosf [B) . where we have introduced the excitation energies of the sys-
H™=wa'a+ | Q sing+2\ 2ik FT5 Vb tem, &,, and whereEg is the scaled ground-state energy
(scaled withj) andk is an unimportant constant of the order
I BKY 4 a unity. In terms of the parameters introduced in ELp), the
+ (“’\0‘_ 2\ 2—j>(a +a)+ {4)‘ \ ﬂ(l -B excitation energies are given by

- Q sin 6B+ Q cos 9(j 28) ] (b +b) 2= 2o + 02 + dos+ (@2 + das - ) + 16r200),
(15

N JaB 1 \/E( ,3> . i
/- 2k+B)+-Q =1+ m -
[Zk 2jk( B) 2 cosé " ok and, in terms ofB, the ground-state energy is given by
053804-2

where

k=2j-p; 7m=1-
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FIG. 1. The two displacement paramet@“?as and \,E as a function of the coupling for various different angles. The Hamiltonian is
on scaled resonance=0=1, \,=0.5.

Ill. SPECIFIC LIMITS

2\? |
JEg=Qsing(B-]j)+ j—wB(Zj - B) —Q cosVB(2] - B).

(16) In the case where the interaction and spin vectors are
The general scheme in which we proceed from here is t@erpendicular we obtain the Dicke model:
solve Eq.(12) for B, and then use this value to compute the
excitation and ground-state energies. Before considering the
problem with arbitrary parameters, however, we will focus
on two special cases, which will explain many of the features
of the general solution. It should be pointed out that not all
solutions of Eq(12) are physically valid, and by considering
the following cases we shall determine the criteria for selectin this limit there exists a conserved parity such that
ing valid solutions. [H,I1]=0, given by

A. The Dicke model: 0=w/2

2\
H_,=wa'a+QJ,+ 7(& +a)Jds. (7
V2

2 T T ’ 2 T T T

FIG. 2. The two displacement
172 [ I -
(B/J) parameter&a andVgB as a fun_c
tion of the 6 for representative
couplings. The Hamiltonian is on
scaled resonancew=0=1, \.
=0.5.
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FIG. 3. The excitation energies
of the system as a function of the
coupling A for various different
angles 6. The Hamiltonian is on
scaled resonancew=0=1, \.

=0.5.
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M=exginN}, N=a'a+J,+]j, (18) 22 = Ho? + it (0§~ 0)?+ 160 wwg},  (21)

whereN is the “excitation number” and counts the total num- aqd ground-state energgi’=—j w;. The excitation energy
ber of excitation quanta in the systeifl. possesses two ei- &’ remains real provided that<\.=Vww,/2, and this de-
genvalues, *1, depending on whether the number of quantaarcates the range of validity of this solution. The appear-

is even or odd. ance of an imaginary part of an eigenenergy is one of our
For the Dicke Hamiltonian, the equation for determining criteria for distinguishing between valid and invalid solu-
\73 becomes tions of Eq.(12).
~ . . The remaining two solutions of Eq19) are given by the
VBIAN(j - B) — [Qw] = 0. (19)  displacements
The simplest solution seté?%: Ja=0, which gives rise to _ 2 j _
the effective Hamiltonian Va= =+ N / 5(1 -u?), B==xNjl-w, (22

H'%, = web'b + wa'a+\(a' +a)(b' +b) — jwy, (20)

where we have definegh= wwy/4\2=\2/\% The Hamilto-
which has the excitation energies nians obtained with these solutiofsne for each signare

4 T T T T T | T

FIG. 4. The excitation energies

€ 2b———___ . ] of the system as a function of
T~ P angle 6 for representative values
T~a /,/” of coupling\. The Hamiltonian is
T on scaled resonance=0=1, \.
=0.5.
1 v
~ -~
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identical and have the same excitation energies

1] o2 2 2
e?="= ﬂz)+wzi \/{ﬂ;_wzJ + 4005 (, (23
T 2(p M

and ground-state energy,

2
E@ = _ 2_"2+M
G 0 8\ |’

(24)

and we thus see that these two solutions are completely de-

generate. By considering the reality &f’, we conclude that
these second two solutions are only valid providig A..

As described in Ref[10] and to be discussed later, the
existence of these different solutions, one with zero displace-

PHYSICAL REVIEW A 69, 053804(2004)

- BliQw+2VB(2j - p)1=0. (30)

Setting the second factor in this expression to zero leads to
values of\,B and« which give rise to complex excitation
energies for all parameter values. These solutions are un-
physical and we discard them as we did for the Dicke
model. Considering the other solutlon we hagej,
which gives VB=+4j and Va= +()\/w)\21 With these
choices, the Hamiltonian of Eq13) becomes
2
HL " = wa'a+ <2i + 9)(bﬂm g’(bT +b)?2- 1)
2 4 2
(31)

w

(+0)
_J _+Q

ment, and two with finite and opposite displacements, de-
scribes a quantum phase transition in the Dicke modelNote that the two modes are now decoupled. Bheode

which occurs at the critical coupling.. The nature of this

guantum phase transition is such that the parity symmetry
becomes broken abowe, which explains the appearance of

the two degenerate, broken symmetry solutions.

B. One dimension: #=0

With interaction and spin aligned, the full Hamiltonian of

Eq. (5) becomes

2\
Ho(j) = wa'a+ QJ + — (a +a)J,. (25)
V2

This Hamiltonian is integrable for arbltrauysmce its eigen-
states are clearly also eigenstateslgfwhich allows us to

replace the operator with its eigenvalog=—j,—j+1,...
—-1,j, such that

Ho(j) = wa*a+9mx+ (a*+a)mx (26)

This leaves us with a single-mode bosonic Hamiltonian

which may be diagonalized via a simple displacemant
—a-(2xmy)/(v2jw). This results in the diagonal form

)\2 2
Ho(j) = wa'a+ Om, — 2—j mX, (27)
w
which has the energy
A2
Enm = on+Om, - 2.—mx. (28
jo

We proceed to the thermodynamic limit by writimg, =k,

—J, and neglecting terms within the denominator. Whence,

o )\2 ) )\2
Elx =on+|Q+4— Jk—jlQ+2—], (29
X w )

may be diagonalized via the squeezing transformation,

1 1
b ——(b'+0ob), b’ ; b+ob"), (32
~ g0 oD, bl (b o), (32
with the squeezing parameter—1/3. In this way we arrive

at the final form of the Hamiltonian

2 2
HL = wala+ (ﬂ + Q)bTb—j(Zl + Q) (33
w w
The excitation energies of this Hamiltonian are clearly al-
ways real. However, only the Hamiltonian with the upper
sign (corresponding to/8= +\j) has the same excitation
and ground-state energles as our previous calculation. The
solution with \,8 —Vj leads to a Hamiltonian with the
incorrect energies, and is thus seen to be spurious. This
solution is obviously unphysical fox <\w(/2, as here
the coefficient of the second oscillator becomes negative.
The origin of this spurious solution can be easily under-
stood by considering thé= limit of the Hamiltonian. In
this case, the Hamiltonian is the same as that of (28§),
except thatQ) is replaced by €. ExchangingJ, for its
eigenvalue as above and diagonalizing the atomic mode,
we obtain the energies

AZm?
Enm =on+-0Om,—2 .
nm, — @ my jw
The problem with this Hamiltonian arises when we take the

thermodynamic limit under the assumption thgt=—j is the
spin-quantum number of the ground state. This leads to the
energy

Ehi’ = on+ (- Q+ Do)k~ j(- O+ 2% w),

(34)

(35

which is the same as the spurious solutions obtained above.
Clearly, the correct ground state of ti#e=0 Hamiltonian
actually has the quantum numheg=+j. So we see that the

from which we immediately see that the excitation energierigin of this type of spurious solution is due to the incorrect
are e_.=w and £,=Q+4\?/w, and the scaled ground-state counting of the states labeled with, as we go to the ther-

energy iSEg=—(Q+2\?/ ).

modynamic limit. The solutions with the incorrect sign al-

We now seek to obtain these results using the generabays have a ground-state energy that is higher than the cor-
procedure outlined in Sec. Il. The equation for the determitect solution, and thus we are easily able to discard the

nation of 8 becomes

solutions which arise from misidentifying the ground state.
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FIG. 5. The ground-state en-
ergy, atomic inversion and mean
photon number of the ground state
as a function of the coupliny for
various different anglesd. The
Hamiltonian is on scaled reso-
nance,w=0=1, \.=0.5.
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IV. RESULTS AND DISCUSSION A further check is made in Fig. 5, where we plot the

To determine the behavior of the system away from thesé‘f’ilues of important observables of the syste_m. The expres-
two specific limits, we first solve fof'a and V3. Figures 1~ Sion for the ground-state energy has been given in(£4).
and 2 show the values of these two displacement parametef€ atomic inversion and mean-field occupation are given by
as functions of botfa and 6. Our first observation is that for
all 6+ /2, there is only one solution for a given Further- @i=pli-1, (@'ay=alj. (36)
more, the sign of{« and \73 is given by that of co®. The
divide between the regions of positive and negative displaceAgain, singular behavior in the form of nonanalyticities of
ments is spanned by the special cas@ofr/2, which is the  the curves ak=\.=1/2 isobserved only af=m/2 in agree-
previously discussed Dicke model. In this case we have ~ment with the above result.
=\B=0 below\,, andtwo solutions of opposite sign above  To summarize, the existence of the quantum phase transi-
.. The displacement parametersand 8 determine the cen- tion for spin-boson modelsi, is dependent on the two vec-
ter(s) of the collective ground-state wave function of the tors A andQ) being exactly perpendicular, which one might
coupled systems in a position-momentum representation dfot have expected at the outset. In conclusion, we briefly
the two bosonic modes andb [10]. The appearance of two discuss the implications these findings have for spin-boson
solutions forg= /2 then corresponds to a breaking up of thesystems. One obvious consequence is that “non orthogonal”
wave function into two macroscopically separated parts focoupling terms always would smear out phase transitions or
j— . This parity breaking phase transition therefore occurgheir precursors when tuning from a weak to a strong cou-
only at 9=m/2 which demonstrates that the Dicke modelPling regime in, e.g., photon or phonon cavities. At first
H_, with its “orthogonal” coupling is unique within the sight, this looks like bad news for the possible realization of
whole class of Hamiltoniand,. It is only in this special case ~critical behavior in realistic systems where one would always
that the super-radiant phase will exhibit macroscopically co€xpect perturbative terms leading to a general, not necessar-
herent(Schrédinger’s catbehavior wherj remains finite. ily orthogonal coupling, unless some symmetry prevents this
This conclusion is corroborated by considering the exfrom occurring. On the other hand, it would be desirable to
cited states of our models. The nature of the system is chafXplore tunable systems where one can vary the pararfieter
acterized by the behavior of its two excitation energies(for example by using external electric or magnetic figlds
which are plotted in Figs. 3 and 4. In Fig. 3 the limiting casesorder to test some of our predictions.
of /=0 andd=/2 are clearly identifiable, and serve to pro-
vide bounds for the other solutions away from these values. ACKNOWLEDGMENTS
The most crucial consequence of this is that again, only for
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