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We consider a class of generalized single mode Dicke Hamiltonians with arbitrary boson coupling in the
pseudo-spinx-z plane. We find exact solutions in the thermodynamic, large-spin limit as a function of the
coupling angle, which allows us to continuously move between the simple dephasing and the original Dicke
Hamiltonians. Only in the latter case(orthogonal static and fluctuating couplings) does the parity-symmetry
induced quantum phase transition occur.
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I. INTRODUCTION

Spin-boson models appear in many areas of physics and
are essential ingredients in theoretical quantum optics[1]
(light-matter interaction), nuclear physics[2], quantum chaos
[3], and quantum dissipation[4]. The spin algebra can be
used to describe singles j =N/2=1/2d or manyN.1 two-
level systems where, in the simplest case, the interaction is
with but a single bosonic modesa,a†d. Specific examples
include cavity quantum electrodynamics and, more recently,
“phonon cavity quantum dynamics” of electrons interacting
with single phonon (oscillation) modes in nano-
electromechanical systems[5–8] such as freestanding quan-
tum dots or “molecular transistors.”

A common feature of spin-boson models is that in general
they are nonintegrable, with exact solutions available only
for very specific cases. Examples of the latter are simplified
“dephasing models,” where the spin couples to both the bo-
son and static field via only one of its components(usually
chosen asJz). Another example where exact solutions can be
obtained is in the large spin limitj →` where bosonic rep-
resentations of spin Lie algebras[2] have been known for a
long time; an early example being the Holstein-Primakoff
transformation[9].

In this paper, we further explore the large-spin limit by
starting from the most general, single-mode, spin boson
Hamiltonian with linear coupling of allsx,y,zd spin compo-
nents to a staticand a fluctuating(bosonic) term. For the
specific case of the coupling of orthogonal(x and z) spin
components to the static and the fluctuating term(Dicke
model), we have previously found[10–12] intriguing con-
nections between quantum chaos, entanglement, and the
emergence of an instablity-induced quantum phase transition
in the limit of large spinj →`. Here, our main result will be
that, surprisingly, this instability and the related parity-
symmetry breaking of the ground-state wave functions only
appears for “orthogonal” coupling. The Dicke Hamiltonian
[13] (Rabi-Hamiltonian for spin 1/2) and its canonical

equivalents therefore seem to be in a “distinguished” class of
Hamiltonians with very pronounced properties. It should be
mentioned from the very beginning, however, that this dis-
tinction is most visible in the strong coupling regime.

II. THE MODEL AND ITS SOLUTION

We start from a generic model Hamiltonian

H = va†a + sV + a†L + aL†d ·J, s1d

describing the simplest coupling between Heisenberg-Weyl
s1,a,a†d and the spin algebrasJx= 1

2sJ++J−d, Jy= 1
2i sJ+−J−d,

Jz, with

fJz,J±g = ± J±, fJ+,J−g = 2Jz. s2d

In Eq. s1d, V is a real andL a complex three-dimensional
vector. Special cases of Eq.s1d are the Rabi or the Dicke
Hamiltonianf14g sV=Vez,L=L†=Lexd, the simple dephas-
ing Hamiltonianf15–17g sV=Vei, L=L†=Lei with i =x,y,
or zd, the Jaynes-Cummings Hamiltonianf1g sV=Vez, L
=Lfex− ieygd, and the one-mode version of the dissipative
spin-bosonstunneling electrond Hamiltonianf4,8,18,19g sV
=v0ez+Tex,L=L†=Lezd, where we denote the unit vectors
asei, i =x,y,z. The j =1/2 variant of Eq.s1d with V=v0ez
+Tex and L=aex+ ibey appears in quasi-one-dimensional
quantum wires in thex-y plane in a constant magnetic field
Bez for an electron gas with spin-orbit interactionssRashba
Hamiltoniand f20g.

In the following, we restrict ourselves toL=L† and
therefore consider the Hamiltonian,

H = va†a + V ·J + sa† + adL ·J s3d

parametrized bytwo real three-dimensional vectors given by

V = sVx,Vy,Vzd, L =
2

Î2j
slx,ly,lzd, s4d

where 1/Î2j is inserted to ensure correct scaling in the
thermodynamic limit, and the factor of 2 is for later con-
venience. Note that the more general case, Eq.s1d, leaves
three real, linearly independent three-dimensional vectors.
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The analysis would then be very similar to the following,
though more cumbersome, which is why we restrict our-
selves to the model Eq.s3d.

We begin by rotating our coordinate axes so that we work
in the x-z plane, with the coupling-vectorL aligned along
thex axis. This gives us the form with which we shall work:

H = va†a + VsJx cosu + Jz sin ud +
2l

Î2j
sa† + adJx. s5d

This Hamiltonian is invariant under a rotation about thez
axis, under whichJz→Jz andJx→−Jx, and consequently, we
shall only discuss the parameter range 0øuøp. In deriving
exact solutions for this model in the thermodynamic limit,
we shall follow the general procedure introduced for the
Dicke model in Ref.f11g.

First we employ the Holstein–Primakoff representation of
the angular momentum operators[9], J+=b†Î2j −b†b,

J−=Î2j −b†bb, and Jz=sb†b− jd. With Jx= 1
2sJ++J−d, substi-

tution gives us

H = va†a +
V

2
cosusb†Î2j − b†b + Î2j − b†bbd

+ V sin usb†b − jd

+
l

Î2j
sa† + adsb†Î2j − b†b + Î2j − b†bbd. s6d

We next displace the oscillator modesa→a+Îa and b
→b−Îb, wherea andb are assumed to be of the order of
j . This leads to

H = vfa†a + Îasa† + ad + ag +
1

2
VscosudÎksb†Îh + Îhb

− 2ÎbÎhd + V sin ufb†b − Îbsb† + bd + b − jg

+ lÎ k

2j
sa† + a + 2Îadsb†Îh + Îhb − 2ÎbÎhd, s7d

where

k = 2j − b; h = 1 −
b†b − Îbsb† + bd

k
. s8d

We now proceed to the thermodynamic limit, by takingj
→` and neglecting terms with powers ofj in the denomi-
nator. This yields

Hj→` = va†a + SV sin u + 2lÎab

2jk
+

V cosu

2
Îb

k
Db†b

+ SvÎa − 2lÎbk

2j
Dsa† + ad + F4lÎ a

2jk
s j − bd

− V sin uÎb + V cosuS j − b

Îk
DGsb† + bd

+ F l

2k
Îab

2jk
s2k + bd +

1

4
V cosuÎb

k
S1 +

b

2k
DG

3sb† + bd2 + 2lÎ 1

2jk
s j − bdsa† + adsb† + bd

+ V sin usb − jd + va − V cosuÎkb − lÎab

2jk
s1

+ 4kd −
1

4
V cosuÎb

k
. s9d

The two terms linear in bosonic operators can be eliminated
by choosing the parametersa andb such that

Îa =
2l

v
Îkb

2j
, s10d

andb is given by

4l

k
Îak

2j
s j − bd − V sin uÎb +

1

2
V cosuÎkS1 −

b

k
D = 0.

s11d

Substituting the value ofa into this equation and simplify-
ing, we obtain the following equation forÎb,

4l2

v

j − b

j
Îb − V sin uÎb + V cosu

j − b

Î2j − b
= 0. s12d

This equation is exactly soluble forÎb, but the resulting
form is extremely unwieldy, and will not be reproduced
here. In a few specific cases, to be elucidated later, com-
pact expressions can be found. With the elimination of the
linear terms, our Hamiltonian assumes the form

H = va†a + ṽb†b + ssb† + bd2 + rsa† + adsb† + bd + jEG + k8,

s13d

where the constants may be inferred by comparison with Eq.
s9d, with appropriate values ofa andb. Hamiltonians of this
form are analytically soluble via a unitary transformation,
and since an example of this process was given in Ref.f11g,
we shall not go into the details here. Suffice to say that after
a Bogoliubov transformation of the bosonic operators, the
Hamiltonian becomes diagonalized,

H = «+c+
†c+ + «−c−

†c− + jEG + k, s14d

where we have introduced the excitation energies of the sys-
tem, «±, and whereEG is the scaled ground-state energy
sscaled withjd andk is an unimportant constant of the order
unity. In terms of the parameters introduced in Eq.s13d, the
excitation energies are given by

«±
2 = 1

2sv2 + ṽ2 + 4ṽs± Îsṽ2 + 4ṽs− v2d2 + 16r2vṽd,

s15d

and, in terms ofb, the ground-state energy is given by
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jEG = V sin usb − jd +
2l2

jv
bs2j − bd − V cosuÎbs2j − bd.

s16d

The general scheme in which we proceed from here is to
solve Eq.s12d for b, and then use this value to compute the
excitation and ground-state energies. Before considering the
problem with arbitrary parameters, however, we will focus
on two special cases, which will explain many of the features
of the general solution. It should be pointed out that not all
solutions of Eq.s12d are physically valid, and by considering
the following cases we shall determine the criteria for select-
ing valid solutions.

III. SPECIFIC LIMITS

A. The Dicke model: u=p /2

In the case where the interaction and spin vectors are
perpendicular we obtain the Dicke model:

Hp/2 = va†a + VJz +
2l

Î2j
sa† + adJx. s17d

In this limit there exists a conserved parityP such that
fH ,Pg=0, given by

FIG. 1. The two displacement parametersÎa andÎb as a function of the couplingl for various different anglesu. The Hamiltonian is
on scaled resonance,v=V=1, lc=0.5.

FIG. 2. The two displacement
parametersÎa and Îb as a func-
tion of the u for representative
couplings. The Hamiltonian is on
scaled resonance,v=V=1, lc

=0.5.

PHASE TRANSITIONS IN GENERALIZED SPIN-BOSON… PHYSICAL REVIEW A 69, 053804(2004)

053804-3



P = exphipN̂j, N̂ = a†a + Jz + j , s18d

whereN̂ is the “excitation number” and counts the total num-
ber of excitation quanta in the system.P possesses two ei-
genvalues, ±1, depending on whether the number of quanta
is even or odd.

For the Dicke Hamiltonian, the equation for determining
Îb becomes

Îbf4l2s j − bd − jVvg = 0. s19d

The simplest solution setsÎb=Îa=0, which gives rise to
the effective Hamiltonian

Hp/2
s1d = v0b

†b + va†a + lsa† + adsb† + bd − jv0, s20d

which has the excitation energies

«±
s1d2 = 1

2hv2 + v0
2 ± Îsv0

2 − v2d2 + 16l2vv0j, s21d

and ground-state energyEG
s1d=−jv0. The excitation energy

«−
s1d remains real provided thatlølc=Îvv0/2, and this de-

marcates the range of validity of this solution. The appear-
ance of an imaginary part of an eigenenergy is one of our
criteria for distinguishing between valid and invalid solu-
tions of Eq.s12d.

The remaining two solutions of Eq.(19) are given by the
displacements

Îa = ±
2l

v
Î j

2
s1 − m2d, Îb = ± Îjs1 − md, s22d

where we have definedm;vv0/4l2=lc
2/l2. The Hamilto-

nians obtained with these solutionssone for each signd are

FIG. 3. The excitation energies
of the system as a function of the
coupling l for various different
anglesu. The Hamiltonian is on
scaled resonance,v=V=1, lc

=0.5.

FIG. 4. The excitation energies
of the system as a function of
angle u for representative values
of couplingl. The Hamiltonian is
on scaled resonance,v=V=1, lc

=0.5.
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identical and have the same excitation energies

«±
s2d2 =

1

2
Hv0

2

m2 + v2 ±ÎFv0
2

m2 − v2G2

+ 4v2v0
2J , s23d

and ground-state energy,

EG
s2d = −H2l2

v
+

v0
2v

8l2 J , s24d

and we thus see that these two solutions are completely de-
generate. By considering the reality of«−

s2d, we conclude that
these second two solutions are only valid providinglùlc.

As described in Ref.[10] and to be discussed later, the
existence of these different solutions, one with zero displace-
ment, and two with finite and opposite displacements, de-
scribes a quantum phase transition in the Dicke model,
which occurs at the critical couplinglc. The nature of this
quantum phase transition is such that the parity symmetry
becomes broken abovelc, which explains the appearance of
the two degenerate, broken symmetry solutions.

B. One dimension:u=0

With interaction and spin aligned, the full Hamiltonian of
Eq. (5) becomes

H0s jd = va†a + VJx +
2l

Î2j
sa† + adJx. s25d

This Hamiltonian is integrable for arbitraryj since its eigen-
states are clearly also eigenstates ofJx, which allows us to
replace the operator with its eigenvaluemx=−j ,−j +1, . . . ,j
−1,j , such that

H0s jd = va†a + Vmx +
2l

Î2j
sa† + admx. s26d

This leaves us with a single-mode bosonic Hamiltonian
which may be diagonalized via a simple displacementa
→a−s2lmxd / sÎ2jvd. This results in the diagonal form

H0s jd = va†a + Vmx − 2
l2mx

2

jv
, s27d

which has the energy

En,mx
= vn + Vmx − 2

l2mx
2

jv
. s28d

We proceed to the thermodynamic limit by writingmx=kx
− j , and neglecting terms withj in the denominator. Whence,

En,kx

j→` = vn + SV + 4
l2

v
Dkx − jSV + 2

l2

v
D , s29d

from which we immediately see that the excitation energies
are «−=v and «+=V+4l2/v, and the scaled ground-state
energy isEG=−sV+2l2/vd.

We now seek to obtain these results using the general
procedure outlined in Sec. II. The equation for the determi-
nation ofb becomes

s j − bdf jVv + 4l2Îbs2j − bdg = 0. s30d

Setting the second factor in this expression to zero leads to
values ofÎb andÎa which give rise to complex excitation
energies for all parameter values. These solutions are un-
physical and we discard them as we did for the Dicke
model. Considering the other solution, we haveb= j ,
which gives Îb= ±Îj and Îa= ± sl /vdÎ2j . With these
choices, the Hamiltonian of Eq.s13d becomes

H0
j→` = va†a + S2l2

v
±

V

2
DSb†b +

3

4
sb† + bd2 −

1

2
D

− jS2l2

v
± VD . s31d

Note that the two modes are now decoupled. Theb mode
may be diagonalized via the squeezing transformation,

b → 1
Î1 − s2

sb† + sbd, b† → 1
Î1 − s2

sb + sb†d, s32d

with the squeezing parameters=−1/3. In this way we arrive
at the final form of the Hamiltonian

H0
j→` = va†a + S4l2

v
± VDb†b − jS2l2

v
± VD . s33d

The excitation energies of this Hamiltonian are clearly al-
ways real. However, only the Hamiltonian with the upper
sign scorresponding toÎb= +Îjd has the same excitation
and ground-state energies as our previous calculation. The
solution with Îb=−Îj leads to a Hamiltonian with the
incorrect energies, and is thus seen to be spurious. This
solution is obviously unphysical forl,ÎvV /2, as here
the coefficient of the second oscillator becomes negative.
The origin of this spurious solution can be easily under-
stood by considering theu=p limit of the Hamiltonian. In
this case, the Hamiltonian is the same as that of Eq.s25d,
except thatV is replaced by −V. ExchangingJx for its
eigenvalue as above and diagonalizing the atomic mode,
we obtain the energies

En,mx
= vn + − Vmx − 2

l2mx
2

jv
. s34d

The problem with this Hamiltonian arises when we take the
thermodynamic limit under the assumption thatmx=−j is the
spin-quantum number of the ground state. This leads to the
energy

En,kx

j→` = vn + s− V + 4l2/vdkx − js− V + 2l2/vd, s35d

which is the same as the spurious solutions obtained above.
Clearly, the correct ground state of theu=0 Hamiltonian
actually has the quantum numbermx= + j . So we see that the
origin of this type of spurious solution is due to the incorrect
counting of the states labeled withmx as we go to the ther-
modynamic limit. The solutions with the incorrect sign al-
ways have a ground-state energy that is higher than the cor-
rect solution, and thus we are easily able to discard the
solutions which arise from misidentifying the ground state.
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IV. RESULTS AND DISCUSSION

To determine the behavior of the system away from these
two specific limits, we first solve forÎa andÎb. Figures 1
and 2 show the values of these two displacement parameters
as functions of bothl andu. Our first observation is that for
all uÞp /2, there is only one solution for a givenl. Further-
more, the sign ofÎa andÎb is given by that of cosu. The
divide between the regions of positive and negative displace-
ments is spanned by the special case ofu=p /2, which is the
previously discussed Dicke model. In this case we haveÎa
=Îb=0 belowlc, and two solutions of opposite sign above
lc. The displacement parametersa andb determine the cen-
ter(s) of the collective ground-state wave function of the
coupled systems in a position-momentum representation of
the two bosonic modesa andb [10]. The appearance of two
solutions foru=p /2 then corresponds to a breaking up of the
wave function into two macroscopically separated parts for
j →`. This parity breaking phase transition therefore occurs
only at u=p /2 which demonstrates that the Dicke model
Hp/2 with its “orthogonal” coupling is unique within the
whole class of HamiltoniansHu. It is only in this special case
that the super-radiant phase will exhibit macroscopically co-
herent(Schrödinger’s cat) behavior whenj remains finite.

This conclusion is corroborated by considering the ex-
cited states of our models. The nature of the system is char-
acterized by the behavior of its two excitation energies,
which are plotted in Figs. 3 and 4. In Fig. 3 the limiting cases
of u=0 andu=p /2 are clearly identifiable, and serve to pro-
vide bounds for the other solutions away from these values.
The most crucial consequence of this is that again, only for
u=p /2 andl=lc does«− identically vanish, and so it is only
for these parameter values that a quantum phase transition
occurs.

A further check is made in Fig. 5, where we plot the
values of important observables of the system. The expres-
sion for the ground-state energy has been given in Eq.(24).
The atomic inversion and mean-field occupation are given by

kJzl/ j = b/ j − 1, ka†al = a/ j . s36d

Again, singular behavior in the form of nonanalyticities of
the curves atl=lc=1/2 isobserved only atu=p /2 in agree-
ment with the above result.

To summarize, the existence of the quantum phase transi-
tion for spin-boson modelsHu is dependent on the two vec-
tors L andV being exactly perpendicular, which one might
not have expected at the outset. In conclusion, we briefly
discuss the implications these findings have for spin-boson
systems. One obvious consequence is that “non orthogonal”
coupling terms always would smear out phase transitions or
their precursors when tuning from a weak to a strong cou-
pling regime in, e.g., photon or phonon cavities. At first
sight, this looks like bad news for the possible realization of
critical behavior in realistic systems where one would always
expect perturbative terms leading to a general, not necessar-
ily orthogonal coupling, unless some symmetry prevents this
from occurring. On the other hand, it would be desirable to
explore tunable systems where one can vary the parameteru
(for example by using external electric or magnetic fields), in
order to test some of our predictions.
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FIG. 5. The ground-state en-
ergy, atomic inversion and mean
photon number of the ground state
as a function of the couplingl for
various different anglesu. The
Hamiltonian is on scaled reso-
nance,v=V=1, lc=0.5.
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