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Entanglement in quantum catastrophes
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We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory.
Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in
cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling
of the entropy with the nonlinearity parameter, and discuss the role of mixing entropies in more complex
systems.
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I. INTRODUCTION II. QUANTUM CATASTROPHE MODELS

manifests itself as a peak, or indeed a divergence, in thg,q first consider those derived from catastrophes occurring
entanglement of the ground state. Systems in which this b, 5 single variable, such as the cusp.

hav@or has been ob_seryed inclu_de Sp"."l_/z _ferroma_gnetic We take as our model a system of two interacting bosonic
chains in a magnetic fieldll], driven, dissipative large- modes. Let(xl,pxl) and (Xz,pxz) be the (abstrack position

pseudo-spin modelg2], the Lipkin-Meshkov-Glick Hamil- . )
tonian from nuclear physid8—6], and the Dicke model from and momentum coordinates representing these modes. We
assume an interaction between these modes such that the

gquantum optic$7-9]. ; . . . AP

The high degree of similarity between the behavior Oflnteractmg_system is separa_ble in a descrlptlon in term_s of
these systems suggests an underlying universality, and in thf&/0 collectivebosonic excitations, the coordinates of Whlch
paper we explore this universality in terms of a quantumWe denote(y;,py) and (y,,py,). We construct the Hamil-
mechanical catastrophe theory. tonian of one of these collective modgs so that it under-

In its elementary, classical form, catastrophe theory is thgoes the catastrophe. The question that we shall address is
study of the critical points of potentials, with emphasis on athen: Given the structure of the system in terms of the col-
qualitative understanding of the properties of the system algctive modes/, what is the entanglement between the origi-
critical points are born, move about, merge, and disappear &%/ bare modeg?
control parameters are vari¢tlO]. The best known catastro- We write the Hamiltonian of the collective mode in which
phe is thecusp which describes the bifurcation of a critical the catastrophe occurs as
point. The relation between entanglement properties and the
cusp has been notgd pre\(ious!y for the Dicke m¢dgland H, = ip§ + MU lyy) (1)
the importance of bifurcations in the appearance of entangle- 2m 71
ment maxima has been conjectured as a genera[tilé 2. . o
In this paper, we shall explore and expand upon these idea¥ith m and » the .characte_nstlc mass and frequency of the

Some properties of the quantum cusp have been discuss8Pde. The potentidl(yy) is taken from elementary catas-
by Gilmoreet al.[13] but our focus here is different, and the trophe theory, and can be written as a power sddggy)
way in which we obtain a quantum model from the classicaF Zn-1Awy1- We rescale the coordinatg —y;\%/me, and
catastrophe differs accordingly. The method employed hergeasure the energy in unitss, such that
admits the concept of a macroscopic or semiclassical limit; "
thus establishing the connexion with models of quantum _ 1 D An o 1d? v 5
phase transitionéQPT). The quantum cusp model we con- 1= 2 dy? * ,un/Z—lyl_ B 2dy?2 *Vealyd.  (2)
struct may be thought of as a minimal model that exhibits the
salient entanglement features observed in these models. Wehich defines the rescaled catastrophe potentialy,).
study not only the cusp, but two further catastrophes—theqere, n=mw/% is our explicit “macroscopy” parameter,
butterfly and a two-dimensional example—the entanglemenjhich is meant in the sense that the limit— can be
properties of which expand upon the types of behavior ongnought of either as the limit in which the system siamd
might expect in more realistic models. hence masm) becomes macroscopic, or as the semiclassical

limit #—0. The limit w— <0 is analogous to the thermody-
namic limit in the QPT models, and therein lies the corre-
*Present address: Department of Physics, University of Californisspondence between these quantum catastrophes and the QPT
San Diego, La Jolla, California 92093-0319. work cited in the Introduction.

n=1
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The behavior of the mode described by theis largely lIl. ENTANGLEMENT ABOUT FIXED POINTS:  p—
governed by the fixed points of the classical catastrophe po- LIMIT
tential Vo(y,), and this is especially true in the limjt
— 2. By construction the fixed points &f.,(y;), which we
denotey, are of the ordefy~u, and are thus “macro-
scopic.” Expanding/.,(y,) in Eq. (2) aboufy and taking the
limit — o we obtain 1d* 1d e

1
|, 2+_2+V 7
1d> 1 dv 2dy? 2dy2 2 WitoY2 V) (7
—_— - — 2
2dy; "2 dy? |, :?y1+ Vo). @ with ef=. d?V/dydl, <. The ground state wave function of the
' system is thus the Gaussian

For the one-dimensional catastrophes, the two-mode
Hamiltonian that determines the excitations abgutn the
pu— oo limit is

Fi--

This effective Hamiltonian describes sm@i(1) fluctuations

about fixed poinfy. The second derivative determines the P(y) :(ﬂ2/61)—1/4exp<_ﬂy§_}y§), (8)
excitation spectrum around the fixed point, andy) 27" 2

~O(u) is the energy of the bottom of the harmonic potential \ hich in thex-representation reads

well in which the system is localized. In general, the poten-

. . . . . /4
tial will have more than one fixed point and an independent _ ﬂ_2>1 _&a 2 1 _ 2
effective Hamiltonian may be derived for each. The way in ¥ (x) _< ex 2 (x+ %) Z(le O -

€1
which contributions from different fixed points combine to 9)
give the overall ground state of the quantum system will be
treated for individual catastrophes. To find the entanglement of this wave function, we require

The second collective modg, is assumed to be simple the reduced density matriRDM) of one of the bare modes,
harmonic, and thus the full Hamiltonian of the catastrophex;, say. This is obtained through p(xy,x7)

model is =[dx W (X1, %) W' (X], %) as
1 1d? 1
H =-——-=—+V + 23, 4 X1,X}) = ———— exp— a(& + X;?) + BX;Xo},
caly) 2dy. 2dy2 calY1) 2Y2 (4) p(Xg, %) Va@ea+ D = alXq + %) + BxaXo}

We relate the coordinates of the two collective mogle® (10

those of the bare modesvia the rotation where a and 8 are coefficients, only the ratio of which is

Y1=CX +S%, Y,=—SX +CX, (5) important for the entanglement:
wherec=cog0/2) ands=sin(#/2), andd reflects the degree 2a_(e+ 1)* + 2¢j[cof(0/2) + tarf(6/2)] . Ay
of mixing. In terms of thex-representationH ,(x) is not B (e1—1)?

separable, and this rotation generates an interaction betwe
the two bare modes. We quantize the collective coordinates
y; and the bare coordinatasaccording to

%k shall guantify the entanglement in our two mode system
with the von Neumann entrof The entropy of the density
matrix p(x,x;) is evaluated by comparison with the density
yi= 2—1/2(biT +by), %= 2—1/2(a1.’f +a), (6) matrix of a harmonic oscillator at finite temperature. Details

. ] . ) ~of this approach have been given elsewH@&ile and we just
with momenta defined canonically. In this second quantize@ive the result here:

notation, the two representations are related through a two-
mode SU2) squeezing transformation described by the uni- - Q cotl’(g) _ "{2 sinl-(g)} (12)
tary operatolW=exp—(6/2)ala,+(6/2)a,a). log 2| 2T 2T 27/ |)’

To make the connexion with a familiar model: the above : S
scheme is very similar to the Dicke model in the thermody-Whe.re the_ratlc_) of frequensy fo temperature of the fictitious
namic limit. Here, the two bare modes are the photon fielqo.sc'"at(.)r Is given by()/T=arccosk2a/p). For _the one-.
and the collective atomic coordinate, and these are related %mensmnal cata;trophes, t_he entanglem_ent IS maximized
the collective excitationgpolaritons by just such a squeez- when the squeezing angle &-=#/2. For this choice, Ea.

ing [14,15. (11) simplifies to
In this paper, we consider two one-dimensional 2a eﬁ +6e+1
catastrophes—the cuspoiéls; and A5, commonly referred 5 = (a-12 (13

to as the cusp and the butterfly. We shall also consider a

catastrophe that occurs in two dimensiovig,(y;,y») and is  This procedure is easily adapted to calculate the entangle-
nonseparable. In this case, we calculate the entanglement b@ent in the two-dimensional catastrophe.

tween the modeg, andy, with the catastrophe itself provid- ~ We now consider our three example catastrophes in turn.
ing the interaction between the modes. In selecting which
catastrophes to study, we require that the spectra of the ca-
tastrophe be bounded from below for all values of the control The cusp catastrophd,,; is the most familiar and, from
parameters at finitg. the point of view of applications, the most important catas-

IV. CUSP
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trophe. With coefficients chosen for convenience, the scalec 2
cusp potential is

1 A
m&wwzzﬁ+§ﬁ- (14) 15

We shall only consider a harmonic perturbation here, and
reserve until later a discussion of the effects of linear pertur-,,
bations. We also shall se&t==/2 here to give maximum
mixing between the modes. This leaves us with a single con-
trol parameteA.

The full two-mode Hamiltonian in terms of the creation
and annihilation operators of themodes is

A-1

A+3 2 2
His@) = = ~(ajay+agap + 1) + ——(a] +aj+a} +a)

1
(aja, +aya;

+ a{ag +a,8,)

1
+——(al+a; +a) +ay”. (15)
64u
It may at first appear unusual that the coefficienadd;
should depend on the paramefeiHowever, it can be shown
that, by individually squeezing the collective modes befor

e

FIG. 1. Entanglement properties of the cusp catastrophe. The
von Neumann entrop8in the macroscopic limig— o (thick line)
shows a divergence at the critical valde=0 where the potential
changes from a double- to a single-well struct(irset sketches
Numerical results for finiter show a peak near this point. Indej
shows the scaling withw of the parameter valud® at which the
entanglement maximum occurs, afg) shows the value of the
entropyS' at this point.

applying the two-mode S@2) transformation, this depen- ) ) )
dence onA can be removed. If both modes are Squeeze(.ﬂesult as Is O-btaJned if one Fakes the ground'state to be the
identically, the entanglement properties of the system are lefficoherent mixture; so the difference between these two ap-
invariant, since this squeezing then represents a global reBroaches is unimportant. However, this will be seen not to be
caling of the phase space. For simplicity though, we retairfhe case when we consider the two-dimensional catastrophe.
the form of Eq.(15). From the general theory of entrop¥6] we know that for

We now consider the fixed points. Fér>0, only one  P=2i\ip; With \; probabilities, the total entropys(p) is
stable fixed point exists and this lies at the origin. Takingbounded by
u—o, we see that the excitation energy about this fixed
point is ;= VA. For A<0, the origin becomes unstable, and E NiS(p) < Slp) < 2 NiS(pi) = Ni lg \;.
two new stable fixed points appearyat +vulA|. In the u : :
— o limit, these two fixed points are degenerate and have they the current situation, since, is orthogonal top_, the
same excitation energs =2y|A|. The shape of the potential upper bound becomes an equality. Furthermore, sBipg)
is sketched as insets in Fig. 1 and shows clearly the changes ) we haveS(p;) =S+ S(p.) With Sy, =1. The mixing
of the potential from double to single well structure. Note gntropy represents the contribution from the “global,” i.e.
that the formV., Eq. (11), is also used in Landau theory of macroscopic, structure of the wave function, whereas local
phase transition in statistical mechanics, or in quantum fieldr,cture enters through the individusilp,) terms. If the
theory(¢*-mode). Describing t_he vanishing of th? excitat@on parity symmetryV,s(y;)=V.s(-y,) is broken by an addi-
energy aselw'oizlv,'z a”“,', the divergence of the “correlation qnq jinear termsey, in the potential, the degeneracy of the
length” as¢=e"“~A" we find exponenty'=1/4 andz 4 fixed points would be lifted and the contribution from

=2. .. _ .
. the mixing entropyS,,x=1 would disappear.
We now consider the entanglement. Por 0, the entropy The single-well entropy(p,) is calculated as in Sec. Ill,

follows directly from the approach outlined in Sec. Ill. For and we plot the total entrop§i(p) in Fig. 1. The similarity

A<O0, the situation is complicated slightly by the eXiStencebetween the behavior of this simple cusp model and the QPT

of two fixed points. With the limifw — o taken in correspon- . o . .
dence with the thermodynamic limit, the ground state of themOdeIS Is apparent. At the critical point, the entropy diverges

system would be an equal mixture of density matrices local-
ized at the two fixed points. We prefer here to use the limit
u— o to calculate an approximate wave function for finite

but largew. This is obtained by taking a coherent superpo-i.e., with the correlation lengtf, and we thus see “critical
sition of the two localized wave functions and allows directentanglement[17].

comparison with the numerical results for finjge Since the Numerically obtained results for finife are shown along-
two lobes are orthogonal, the reduced density matrix of theide theu— o result. The value oA for which the peak in
total system is equal to the sum of the reduced density mahe entanglement occurs at finite A", scales withu to a

trices for the two lobesp;=1/2(p,+p_). This is the same very good approximation a8 =cu’’® with a numerically

(16)

S~vlgA=Igé, (17)
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determined constant @f=4.1. This relation is plotted in Fig. 2 - T - T
1(a). We mention that the exponent of 0#3/4 has been |
observed numerically for the entropy in the Dicke mddal Az=0
We also investigated the value of the entrdpyat its peak 15+ H 5
[Fig. 1(b)] but found no convincing scaling relation for finite )

M e ——

V. BUTTERFLY SR M .
The second one-dimensional catastrophe that we study i i,“:i, e
the butterfly,A,s, which gives rise to the potential _"_Lﬁjjfﬂ, T

0.5

Ao o Aaa 1 s \ \/
V =—yit Vit Vi 18 : \ ]
TN N e \\‘\
| [ .

The parameter space is two-dimensiotfgl,A,), and rather 0 0.8 1
than give a full account of this space, we simply look at two A
representative values @,

Case (i): A=0. ForA,>0, y;=0 is the only fixed point FIG. 2. The von Neumann entropy of the Butterfly catastrophe
and this has excitation energy1=\e‘°x2. For A,<0, y  With A,;=-4/y3 as the potential undergoes a double-triple-single
:J_r_\;mﬁﬂlm are the two stable fixed points, both with well transmon,. both fow—mo and finite . The profile of the“

- \2|A2| Apart from numerical coefficients, the behavior entanglgment is very different to .that. of the cusp as the transition
here is the same as that of the cusp. This result generalizes {§€ 'S induced by a level crossing in the spectrum. Inset shows
all A,y catastrophes: fov,, with A;=0, i > 2 the excitation scaling off, as a function ofu.

energy isVA, for A,>0, and \(k-3)|A,| for A<O0, with

4 the energy of the single well #&=1. For finiteu, the level-
behavior like that of the cusp. . ~ crossing is actually avoided, due to the overlap of all three
Case (ii): Ay=—4/3. Here we see new behavior absentinye||s. This situation therefore bears some similarity to that
the cusp. TheA, parameter range is divided up into three gescribed in Ref[18], where a discontinuous entanglement
regions by the fixed points, was observed at a level crossing associated with a first-order
{M ’ }1/2 QPT.
A <0; Yy==z| =2+V4-3A)| =V. Away from the level crossing, the entanglement is calcu-
V3 lated just as for the cusp. In the regionAf=1, we need to
exercise a little care, because the entanglement is discontinu-
0<A,<4/3; y=0 ous atA,=1. Exactly at this point, the excitation energies of
the three wells do not disappear, but rather take the finite
V=Y. values €,=(1,2,2. The entanglement in the central well
h (with €,=1) is zero,$=0, since the wave function is circu-
A,>4/3; §=0. (19) larly s_ymmetric about the origibs2.=1 as wel) and can thqs
be written as a product state with respect to all coordinate
Thus, increasing\, from below zero upwards, the potential systems. The entanglement for each of the displaced wells is
moves through a sequence of first a double, then triple, the§, =0.197. Thus, by combining the appropriate density ma-
single well structures, as shown by the insets in Fig. 2. trices, we find that foA, slightly less than unity, the double-
The stability or otherwise of the fixed points is only part well state ha$§=1.197. ForA, just slightly bigger than unity
of the story in determining the.— o ground state of the we haveS=0, due to the product state in the single well.
system. ForA,>4/3 andA,<0, the situation is straightfor- Directly atA,=1 we have the three-lobed wave function, and
ward and the ground state is obtained exactly as for the tw&=2/3S,+1/2S +Ig 3=~ 1.716. These results plus the corre-
phases in the cusp. In the central region 8, <4/3, how-  sponding finiteuw data are shown in Fig. 2. The approach of
ever, we have three fixed points, and their weight in deterthe finite u results to theu— <o limit is nicely seen, and in
mining the ground state depends on the enarf@y of the  particular to the limiting value 08~1.716 atA,=1.
bottom of the well a§. In the w— oo limit, the system will be We stress that the entanglement maximum occurs not at
completely localized in whichever of the fixed points has thethe value ofA, at which the fixed point becomes unstable,
lowest base energy, or, if the energies are degenerate, we taket rather at the level crossing. Moving through the points
an equal superposition to describe the largerave function. A,=0 andA,=4/3, where fixed point stability does change,
For A,>1,y=0 is the fixed point with lowest energy, and for nothing special happens to the entrdpy any other ground-
A, <1 the two fixed points at finite displacementsy, have state property since these fixed points do not contribute to
the lowest energy and are degenerate. OnlpA=al are all  the determination of the ground state at these valugs,of
three points degenerate and we have a three-lobed wave By examining the finitew data[Fig. 2(b)], we determine
function. that the value ofA, at which the entanglement peak occurs
This structure is induced by a level crossing in thescales ash\’—1~cou™ with numerical parameter&,,c,)
u— o0 spectrum, with the energy of the double well crossingdetermined to bé—3.55,1.90 to within a few percent.
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2 J— T T T T '/::\‘ Ef_ = 2, GE =y- 1. (22)

Excitations in the direction of the displacementutare de-
scribede,.

The individual wave functions localized around any of
these fixed points are unentangled, since they are just prod-
ucts of Gaussians is thg andy, directions. However, com-
bining these four functions into the four-lobed wave function
that describes the large limit, the total system is entangled.
This is solely due to the mixing entropy of its four lobed
structure.

We can not calculate the entanglement of this structure in
the way we did for the one-dimensional catastrophes, be-
cause the four reduced density matrices of each lobe are not
orthogonal. This means that the upper bound in Ed)
remains as an upper bound, and is not equality. Nevertheless,
we can proceed as follows. Writiny;,y,) for the wave

FIG. 3. The von Neumann entropy of the two-dimensionalfunction of the system localized &,.y,), the four-lobed
molar catastrophe with=-1 as a function ofy. Plots of the po- large-w wave function can be written as
tential for y<1 andy>1 are shown at the top of the figure. The geu

origin of the potential is unstable and there are four stable potential W) = %{W' 0) +|-V,0) +]0.y) +|0,-V)} (23
wells satellite to this. Lower right inset shows scalingyfas a o= o _
function of u. with y=+u. Given that the individual lobes contribute noth-
ing to the entanglement by themselves, we ignore their indi-
VI. TWO-DIMENSIONAL CATASTROPHE vidual structure in this description. In the limit— oo, the

B ) ) three single-mode staté®, | +V) are all orthogonal, and thus
The most familiar two-dimensional catastrophes are thgne RDM of one of the modes, = Tr,| )| is

umbillics with the germsy?y,+y3. However, these are un-
suitable for our purpose as their spectra are not bounded p1= (9 +[=9)(F] + (=) + 2/0)0l}. (24)
from below and this, in fact, is true of all the two-

dimensional, elementary catastrophes of THd®J. There- Furthermore, the orthogonality of these states means that this

fore, we consider the nonsimple catastrophe dens_ity matrix can be sir_nply_ treated as a three-by-three
matrix and the entropy is simph5=1, independent of
_} 2,2 i4 22 4 v for y>1.
Vim= 2A(Y1 ty)+ 4lu(ler 2712+ Y2), (20 It is interesting to note that had we taken as the ground-

] . ] state density matrix the incoherent mixture of the four con-
where we have only included harmonic perturbations as beyipytions,

fore. This catastrophe is described as nonsimple because the L 5 5 o 5

germ (that part proportional tqu™! in the abové depends p=3{[y,00(¥,0[ +[-¥,00(-¥,0 +0,y)0,y| + |0,-¥)0,

irreducibly on a modulusy, whereas simple germs have no ~

free - y|}v (25)
parameters.

The fixed point structure o¥,, divides the behavior into leading to the RDM
three regimes in thet—oo limit. For A>0, we obtain a e —
single fixed point at the origin, and since the ground-state of p1={WYI+ |=YX=Y] + 2100} (26)

the system is a product state of two Gaussians with the samg,q a value of the von Neumann entropySsf3/2, which is
width, there is no entanglement. FAK 0, the origin is un- clearly at variance with the numerical results.

stablle; fory+ 1, the system possesses four fixeq points, as is \\ie now consider the regiop< 1, and for simplicity we
_readlly obs_erved from the molar-shaped potgntlals plottgd a8lso assume>0. The four fixed points are
insets of Fig. 3. For ally> 1, the four stable fixed points lie
on the linesy; =0 andy,=0, whereas fory<<1 they lie on the ( )= <+ HE L) 27)
diagonalsy; =+ys,. In the following, we se®,=-1 through- Yuya) = (=% V1+ vy~ V1+ y
out, as the entanglement properties are the same fdk,all ) ) _ _
<0. We calculate the entanglement between mggemdy,  Where t_he two* signs are independent. Each fixed point has
induced by the interaction in the catastrophe itself, and déhe excitation energies
not apply the two-mode squeezing. 1-y

We first studyy>1 as this is the simpler of the two cases. e€=2: &€=2 . (28)
The stable fixed points are given by 1+y

— A _ - The eigenmodes of the system are wptandys,, but rather
=(+ =(0, £\Vpu). . : :
¥2,¥2) = (EV 05 (yy2) = (0, 23 (22) lie along, and perpendicular to, the diagonals of yhey,
At each fixed pointy; andy, are the excitation coordinates plane. Each individual fixed-point wave function is thus en-
with excitation energies tangled with respect to modes andys.
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This entanglement can be calculated as in Sec. lll, butinderlining the importance of bifurcations of classical fixed
here with two excitation energies and the rotation betweemoints in this context. It should be noted that while this bi-
the eigenmodes and tlyecoordinates. The entanglement de- furcation occurs for all values gk, a peak in the entangle-

termining parameter &/ B is evaluated to be ment is only observed when is sufficiently large(x>10
—s here. This illustrates that the bifurcation is not, in itself, a
2_0‘ - 4-3/+4V1-» (29) sufficient condition for the occurrence of the entanglement
B Y ' maximum, but that the system must also be capable of suf-

ficient delocalization. The butterfly catastrophe displays very

from which t_he _single-lobe entanglement follows directly. different behavior to the cusp, namely, a discontinuous en-
The contribution of the four-lobed structure of the layge- tropy induced by a level crossing in the macroscopic limit.

superposition can be assessed as follows. From a macro- 4o cusp and the two-dimensional catastrophe demon-

Z?QS'C Iplo'gt of V'%W’ V.‘f[e ;?n |gnor? thet.structure of the '""strate that a mixing term in the entropy can contribute to the
viduat lobes, and write the wave function as total entanglement in cases where a wave function is split up

WY =YF+[T- )+ -39+ |-7.- 7} into localization areas that are separated withiostrack po-
i ~ - B ~ sition space. In particular the two-dimensional catastrophe
=W+ e (+1-M). (30)  suggests a distinction between “global” and “loc&kithin

the lobeg entanglement, and one could speculate that in

The second forms clearly shows _th|§ wave function to be. Fnore complex situations, with wave functions split up fur-
product state from the macroscopic viewpoint. Thus the mix-

ing entropy of forming the four-lobed structure is zero, andteh;;%ned further, a hierarchy of entanglement entropies might

thbe entropy of the system is just the single lobe entropy Our results also have a bearing on the issue of quantum
: (I)r\:eléig 3 we plot these results alongside the numericafshaos _and entanglemen_t in such systems, as the one-
data for finite,u The scaling ofy” with u« is observed to be d|men3|ong| models stud|e_d here are C{apable of gmu!atmg
¥ —1=cou™® with coefficients fitted as(Cy.Cy)=(4.93 the behavior of more sophisticated nonlinear Hamiltonians,
X100 4009 01 ' desplt_e being separable, anq thus integrable. It is cl'ear that
B there is no unequivocal relation between delocalization and
the onset of quantum chaos on one hand and the peaking of
VII. CONCLUSIONS entanglement on the other.

We have constructed and studied a family of quantum
catastrophe models, and investigated their ground-state en-
tanglement properties. The cusp catastrophe, with its bifur- This work was supported by the Dutch Science Founda-
cating fixed point, demonstrates behavior that is remarkablyion NWO/FOM and the UK EPSRC Network “Transport,
similar to the QPT models, such as the Dicke model—Dissipation, and Control in Quantum Devices.”
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