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We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory.
Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in
cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling
of the entropy with the nonlinearity parameter, and discuss the role of mixing entropies in more complex
systems.
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I. INTRODUCTION

For a large number of quantum critical systems, criticality
manifests itself as a peak, or indeed a divergence, in the
entanglement of the ground state. Systems in which this be-
havior has been observed include spin-1/2 ferromagnetic
chains in a magnetic fieldf1g, driven, dissipative large-j
pseudo-spin modelsf2g, the Lipkin-Meshkov-Glick Hamil-
tonian from nuclear physicsf3–6g, and the Dicke model from
quantum opticsf7–9g.

The high degree of similarity between the behavior of
these systems suggests an underlying universality, and in this
paper we explore this universality in terms of a quantum
mechanical catastrophe theory.

In its elementary, classical form, catastrophe theory is the
study of the critical points of potentials, with emphasis on a
qualitative understanding of the properties of the system as
critical points are born, move about, merge, and disappear as
control parameters are variedf10g. The best known catastro-
phe is thecusp, which describes the bifurcation of a critical
point. The relation between entanglement properties and the
cusp has been noted previously for the Dicke modelf7g, and
the importance of bifurcations in the appearance of entangle-
ment maxima has been conjectured as a general rulef11,12g.
In this paper, we shall explore and expand upon these ideas.

Some properties of the quantum cusp have been discussed
by Gilmoreet al. f13g but our focus here is different, and the
way in which we obtain a quantum model from the classical
catastrophe differs accordingly. The method employed here
admits the concept of a macroscopic or semiclassical limit;
thus establishing the connexion with models of quantum
phase transitionssQPTd. The quantum cusp model we con-
struct may be thought of as a minimal model that exhibits the
salient entanglement features observed in these models. We
study not only the cusp, but two further catastrophes—the
butterfly and a two-dimensional example—the entanglement
properties of which expand upon the types of behavior one
might expect in more realistic models.

II. QUANTUM CATASTROPHE MODELS

We begin by constructing the quantum catastrophe models
and first consider those derived from catastrophes occurring
in a single variable, such as the cusp.

We take as our model a system of two interacting bosonic
modes. Letsx1,px1

d and sx2,px2
d be thesabstractd position

and momentum coordinates representing these modes. We
assume an interaction between these modes such that the
interacting system is separable in a description in terms of
two collectivebosonic excitations, the coordinates of which
we denotesy1,py1

d and sy2,py2
d. We construct the Hamil-

tonian of one of these collective modesy1 so that it under-
goes the catastrophe. The question that we shall address is
then: Given the structure of the system in terms of the col-
lective modesy, what is the entanglement between the origi-
nal bare modesx?

We write the Hamiltonian of the collective mode in which
the catastrophe occurs as

H1 =
1

2m
py1

2 + mv2Ucatsy1d s1d

with m and v the characteristic mass and frequency of the
mode. The potentialUcatsy1d is taken from elementary catas-
trophe theory, and can be written as a power seriesUcatsyd
=on=1

` Any1
n. We rescale the coordinatey1→y1

Î" /mv, and
measure the energy in units"v, such that

H1 = −
1

2

d2

dy1
2 + o

n=1

`
An

mn/2−1y1
n = −

1

2

d2

dy1
2 + Vcatsy1d, s2d

which defines the rescaled catastrophe potentialVcatsy1d.
Here, m;mv /" is our explicit “macroscopy” parameter,
which is meant in the sense that the limitm→` can be
thought of either as the limit in which the system sizesand
hence massmd becomes macroscopic, or as the semiclassical
limit "→0. The limit m→` is analogous to the thermody-
namic limit in the QPT models, and therein lies the corre-
spondence between these quantum catastrophes and the QPT
work cited in the Introduction.
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The behavior of the mode described by theH1 is largely
governed by the fixed points of the classical catastrophe po-
tential Vcatsy1d, and this is especially true in the limitm
→`. By construction the fixed points ofVcatsy1d, which we
denote ỹ, are of the orderỹ,Îm, and are thus “macro-
scopic.” ExpandingVcatsy1d in Eq. s2d aboutỹ and taking the
limit m→` we obtain

H̃ = −
1

2

d2

dy1
2 +

1

2
Ud2V

dy1
2U

y1=ỹ

y1
2 + Vsỹd. s3d

This effective Hamiltonian describes smallOs1d fluctuations
about fixed pointỹ. The second derivative determines the
excitation spectrum around the fixed point, andVsỹd
,Osmd is the energy of the bottom of the harmonic potential
well in which the system is localized. In general, the poten-
tial will have more than one fixed point and an independent
effective Hamiltonian may be derived for each. The way in
which contributions from different fixed points combine to
give the overall ground state of the quantum system will be
treated for individual catastrophes.

The second collective modey2 is assumed to be simple
harmonic, and thus the full Hamiltonian of the catastrophe
model is

Hcatsyd = −
1

2

d2

dy1
2 −

1

2

d2

dy2
2 + Vcatsy1d +

1

2
y2

2, s4d

We relate the coordinates of the two collective modesy to
those of the bare modesx via the rotation

y1 = cx1 + sx2, y2 = − sx1 + cx2, s5d

wherec=cossu /2d ands=sinsu /2d, andu reflects the degree
of mixing. In terms of thex-representation,Hcatsxd is not
separable, and this rotation generates an interaction between
the two bare modesx. We quantize the collective coordinates
yi and the bare coordinatesxi according to

yi = 2−1/2sbi
† + bid, xi = 2−1/2sai

† + aid, s6d

with momenta defined canonically. In this second quantized
notation, the two representations are related through a two-
mode SUs2d squeezing transformation described by the uni-
tary operatorW=exps−su /2da1

†a2+su /2da1a2
†d.

To make the connexion with a familiar model: the above
scheme is very similar to the Dicke model in the thermody-
namic limit. Here, the two bare modes are the photon field
and the collective atomic coordinate, and these are related to
the collective excitationsspolaritonsd by just such a squeez-
ing f14,15g.

In this paper, we consider two one-dimensional
catastrophes—the cuspoidsA+3 andA+5, commonly referred
to as the cusp and the butterfly. We shall also consider a
catastrophe that occurs in two dimensions,Vcatsy1,y2d and is
nonseparable. In this case, we calculate the entanglement be-
tween the modesy1 andy2 with the catastrophe itself provid-
ing the interaction between the modes. In selecting which
catastrophes to study, we require that the spectra of the ca-
tastrophe be bounded from below for all values of the control
parameters at finitem.

III. ENTANGLEMENT ABOUT FIXED POINTS: m\`

LIMIT

For the one-dimensional catastrophes, the two-mode
Hamiltonian that determines the excitations aboutỹ1 in the
m→` limit is

H = −
1

2

d2

dy1
2 −

1

2

d2

dy2
2 +

1

2
e1

2y1
2 +

1

2
y2

2 + Vsỹ1d s7d

with e1
2= ud2V/dy1

2uy1=ỹ. The ground state wave function of the
system is thus the Gaussian

Csyd = sp2/e1d−1/4 expS−
e1

2
y1

2 −
1

2
y2

2D , s8d

which in thex-representation reads

Csxd = Sp2

e1
D1/4

expH−
e1

2
scx1 + sx2d2 −

1

2
ssx1 − cx2d2J .

s9d

To find the entanglement of this wave function, we require
the reduced density matrixsRDMd of one of the bare modes,
x1, say. This is obtained through rsx1,x18d
=edx2Csx1,x2dC*sx18 ,x2d as

rsx1,x18d =
p

Îe1ss2e1 + c2d
exph− asx1

2 + x18
2d + bx1x2j,

s10d

where a and b are coefficients, only the ratio of which is
important for the entanglement:

2a

b
=

se1 + 1d2 + 2e1fcot2su/2d + tan2su/2dg
se1 − 1d2 . s11d

We shall quantify the entanglement in our two mode system
with the von Neumann entropyS. The entropy of the density
matrix rsx1,x18d is evaluated by comparison with the density
matrix of a harmonic oscillator at finite temperature. Details
of this approach have been given elsewheref8g, and we just
give the result here:

S=
1

log 2
H V

2T
cothS V

2T
D − lnF2 sinhS V

2T
DGJ , s12d

where the ratio of frequency to temperature of the fictitious
oscillator is given byV /T=arccoshs2a /bd. For the one-
dimensional catastrophes, the entanglement is maximized
when the squeezing angle isu=p /2. For this choice, Eq.
s11d simplifies to

2a

b
=

e1
2 + 6e1 + 1

se1 − 1d2 . s13d

This procedure is easily adapted to calculate the entangle-
ment in the two-dimensional catastrophe.

We now consider our three example catastrophes in turn.

IV. CUSP

The cusp catastrophe,A+3 is the most familiar and, from
the point of view of applications, the most important catas-
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trophe. With coefficients chosen for convenience, the scaled
cusp potential is

V+3sy1d =
1

4m
y1

4 +
A

2
y1

2. s14d

We shall only consider a harmonic perturbation here, and
reserve until later a discussion of the effects of linear pertur-
bations. We also shall setu=p /2 here to give maximum
mixing between the modes. This leaves us with a single con-
trol parameterA.

The full two-mode Hamiltonian in terms of the creation
and annihilation operators of thex-modes is

H+3sad =
A + 3

4
sa1

†a1 + a2
†a2 + 1d +

A − 1

8
sa1

†2
+ a1

2 + a2
†2

+ a2
2d

+
A − 1

4
sa1

†a2 + a1a2
† + a1

†a2
† + a1a2d

+
1

64m
sa1

† + a1 + a2
† + a2d4. s15d

It may at first appear unusual that the coefficient ofai
†ai

should depend on the parameterA. However, it can be shown
that, by individually squeezing the collective modes before
applying the two-mode SUs2d transformation, this depen-
dence onA can be removed. If both modes are squeezed
identically, the entanglement properties of the system are left
invariant, since this squeezing then represents a global res-
caling of the phase space. For simplicity though, we retain
the form of Eq.s15d.

We now consider the fixed points. ForA.0, only one
stable fixed point exists and this lies at the origin. Taking
m→`, we see that the excitation energy about this fixed
point is e1=ÎA. For A,0, the origin becomes unstable, and
two new stable fixed points appear aty1= ±ÎmuAu. In the m
→` limit, these two fixed points are degenerate and have the
same excitation energye1=2ÎuAu. The shape of the potential
is sketched as insets in Fig. 1 and shows clearly the change
of the potential from double to single well structure. Note
that the formV+3, Eq. s11d, is also used in Landau theory of
phase transition in statistical mechanics, or in quantum field
theorysf4-modeld. Describing the vanishing of the excitation
energy ase1,Azn, and the divergence of the “correlation
length” as j;e−1/2,An, we find exponentsn=1/4 andz
=2.

We now consider the entanglement. ForA.0, the entropy
follows directly from the approach outlined in Sec. III. For
A,0, the situation is complicated slightly by the existence
of two fixed points. With the limitm→` taken in correspon-
dence with the thermodynamic limit, the ground state of the
system would be an equal mixture of density matrices local-
ized at the two fixed points. We prefer here to use the limit
m→` to calculate an approximate wave function for finite
but largem. This is obtained by taking a coherent superpo-
sition of the two localized wave functions and allows direct
comparison with the numerical results for finitem. Since the
two lobes are orthogonal, the reduced density matrix of the
total system is equal to the sum of the reduced density ma-
trices for the two lobes:r1=1/2sr++r−d. This is the same

result as is obtained if one takes the ground-state to be the
incoherent mixture; so the difference between these two ap-
proaches is unimportant. However, this will be seen not to be
the case when we consider the two-dimensional catastrophe.

From the general theory of entropyf16g we know that for
r=oiliri with li probabilities, the total entropySsrd is
bounded by

o
i

liSsrid ø Ssrd ø o
i

liSsrid − li lg li . s16d

In the current situation, sincer+ is orthogonal tor−, the
upper bound becomes an equality. Furthermore, sinceSsr+d
=Ssr−d, we haveSsr1d=Smix+Ssr+d with Smix=1. The mixing
entropy represents the contribution from the “global,” i.e.
macroscopic, structure of the wave function, whereas local
structure enters through the individualSsr+d terms. If the
parity symmetryV+3sy1d=V+3s−y1d is broken by an addi-
tional linear term~y1 in the potential, the degeneracy of the
two fixed points would be lifted and the contribution from
the mixing entropySmix=1 would disappear.

The single-well entropySsr+d is calculated as in Sec. III,
and we plot the total entropySsrd in Fig. 1. The similarity
between the behavior of this simple cusp model and the QPT
models is apparent. At the critical point, the entropy diverges
as

S, n lg A = lg j, s17d

i.e., with the correlation lengthj, and we thus see “critical
entanglement”f17g.

Numerically obtained results for finitem are shown along-
side them→` result. The value ofA for which the peak in
the entanglement occurs at finitem, A* , scales withm to a
very good approximation asA* =cm0.75 with a numerically

FIG. 1. Entanglement properties of the cusp catastrophe. The
von Neumann entropyS in the macroscopic limitm→` sthick lined
shows a divergence at the critical valueA=0 where the potential
changes from a double- to a single-well structuresinset sketchesd.
Numerical results for finitem show a peak near this point. Insetsad
shows the scaling withm of the parameter valueA* at which the
entanglement maximum occurs, andsbd shows the value of the
entropyS* at this point.
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determined constant ofc=4.1. This relation is plotted in Fig.
1sad. We mention that the exponent of 0.75<3/4 has been
observed numerically for the entropy in the Dicke modelf7g.
We also investigated the value of the entropyS* at its peak
fFig. 1sbdg but found no convincing scaling relation for finite
m.

V. BUTTERFLY

The second one-dimensional catastrophe that we study is
the butterfly,A+5, which gives rise to the potential

V+5sy1d =
A2

2
y1

2 +
A4

4m
y1

4 +
1

6m2y1
6. s18d

The parameter space is two-dimensionalsA2,A4d, and rather
than give a full account of this space, we simply look at two
representative values ofA4

Case (i): A4=0. For A2.0, y1=0 is the only fixed point
and this has excitation energye1=ÎA2. For A2,0, ỹ
= ±ÎmuA2u1/4 are the two stable fixed points, both withe1
=Î2uA2u. Apart from numerical coefficients, the behavior
here is the same as that of the cusp. This result generalizes to
all A+k catastrophes: forV+k with Ai =0, ∀i .2 the excitation
energy isÎA2 for A2.0, and Îsk−3duA2u for A,0, with
behavior like that of the cusp.

Case (ii): A4=−4/Î3. Here we see new behavior absent in
the cusp. TheA2 parameter range is divided up into three
regions by the fixed points,

A2 , 0; ỹ = ± F m

Î3
s2 +Î4 − 3A2dG1/2

; ỹ±

0 , A2 , 4/3; ỹ = 0

ỹ = ỹ±

A2 . 4/3; ỹ = 0. s19d

Thus, increasingA2 from below zero upwards, the potential
moves through a sequence of first a double, then triple, then
single well structures, as shown by the insets in Fig. 2.

The stability or otherwise of the fixed points is only part
of the story in determining them→` ground state of the
system. ForA2.4/3 andA2,0, the situation is straightfor-
ward and the ground state is obtained exactly as for the two
phases in the cusp. In the central region 0,A2,4/3, how-
ever, we have three fixed points, and their weight in deter-
mining the ground state depends on the energyVsỹd of the
bottom of the well atỹ. In them→` limit, the system will be
completely localized in whichever of the fixed points has the
lowest base energy, or, if the energies are degenerate, we take
an equal superposition to describe the large-m wave function.
For A2.1, y=0 is the fixed point with lowest energy, and for
A2,1 the two fixed points at finite displacementsy= ỹ± have
the lowest energy and are degenerate. Only atA=1 are all
three points degenerate and we have a three-lobed wave
function.

This structure is induced by a level crossing in the
m→` spectrum, with the energy of the double well crossing

the energy of the single well atA=1. For finitem, the level-
crossing is actually avoided, due to the overlap of all three
wells. This situation therefore bears some similarity to that
described in Ref.f18g, where a discontinuous entanglement
was observed at a level crossing associated with a first-order
QPT.

Away from the level crossing, the entanglement is calcu-
lated just as for the cusp. In the region ofA2=1, we need to
exercise a little care, because the entanglement is discontinu-
ous atA2=1. Exactly at this point, the excitation energies of
the three wells do not disappear, but rather take the finite
values e1=s1,2,2d. The entanglement in the central well
swith e1=1d is zero,S0=0, since the wave function is circu-
larly symmetric about the originse2=1 as welld and can thus
be written as a product state with respect to all coordinate
systems. The entanglement for each of the displaced wells is
S± <0.197. Thus, by combining the appropriate density ma-
trices, we find that forA2 slightly less than unity, the double-
well state hasS=1.197. ForA2 just slightly bigger than unity
we haveS=0, due to the product state in the single well.
Directly atA2=1 we have the three-lobed wave function, and
S=2/3S++1/2S−+ lg 3<1.716. These results plus the corre-
sponding finitem data are shown in Fig. 2. The approach of
the finitem results to them→` limit is nicely seen, and in
particular to the limiting value ofS<1.716 atA2=1.

We stress that the entanglement maximum occurs not at
the value ofA2 at which the fixed point becomes unstable,
but rather at the level crossing. Moving through the points
A2=0 andA2=4/3, where fixed point stability does change,
nothing special happens to the entropysor any other ground-
state propertyd, since these fixed points do not contribute to
the determination of the ground state at these values ofA2.

By examining the finitem datafFig. 2sbdg, we determine
that the value ofA2 at which the entanglement peak occurs
scales asA* −1,c0m−c1 with numerical parameterssc0,c1d
determined to bes−3.55,1.90d to within a few percent.

FIG. 2. The von Neumann entropy of the Butterfly catastrophe
with A4=−4/Î3 as the potential undergoes a double-triple-single
well transition, both form→` and finite m. The profile of the
entanglement is very different to that of the cusp as the transition
here is induced by a level crossing in the spectrum. Inset shows
scaling ofA2

* as a function ofm.
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VI. TWO-DIMENSIONAL CATASTROPHE

The most familiar two-dimensional catastrophes are the
umbillics with the germsy1

2y2±y2
3. However, these are un-

suitable for our purpose as their spectra are not bounded
from below and this, in fact, is true of all the two-
dimensional, elementary catastrophes of Thomf19g. There-
fore, we consider the nonsimple catastrophe

Vm =
1

2
Asy1

2 + y2
2d +

1

4m
sy1

4 + 2gy1
2y2

2 + y2
4d, s20d

where we have only included harmonic perturbations as be-
fore. This catastrophe is described as nonsimple because the
germ sthat part proportional tom−1 in the aboved depends
irreducibly on a modulus,g, whereas simple germs have no
free parameters.

The fixed point structure ofVm divides the behavior into
three regimes in them→` limit. For A.0, we obtain a
single fixed point at the origin, and since the ground-state of
the system is a product state of two Gaussians with the same
width, there is no entanglement. ForA,0, the origin is un-
stable; forgÞ1, the system possesses four fixed points, as is
readily observed from the molar-shaped potentials plotted as
insets of Fig. 3. For allg.1, the four stable fixed points lie
on the linesy1=0 andy2=0, whereas forg,1 they lie on the
diagonalsy1= ±y2. In the following, we setA2=−1 through-
out, as the entanglement properties are the same for allA2
,0. We calculate the entanglement between modesy1 andy2
induced by the interaction in the catastrophe itself, and do
not apply the two-mode squeezing.

We first studyg.1 as this is the simpler of the two cases.
The stable fixed points are given by

sy1,y2d = s±Îm,0d; sy1,y2d = s0, ±Îmd. s21d

At each fixed point,y1 andy2 are the excitation coordinates
with excitation energies

e+
2 = 2; e−

2 = g − 1. s22d

Excitations in the direction of the displacement ±Îm are de-
scribede+.

The individual wave functions localized around any of
these fixed points are unentangled, since they are just prod-
ucts of Gaussians is they1 andy2 directions. However, com-
bining these four functions into the four-lobed wave function
that describes the largem limit, the total system is entangled.
This is solely due to the mixing entropy of its four lobed
structure.

We can not calculate the entanglement of this structure in
the way we did for the one-dimensional catastrophes, be-
cause the four reduced density matrices of each lobe are not
orthogonal. This means that the upper bound in Eq.s16d
remains as an upper bound, and is not equality. Nevertheless,
we can proceed as follows. Writinguỹ1, ỹ2l for the wave
function of the system localized atsỹ1, ỹ2d, the four-lobed
large-m wave function can be written as

uCl = 1
2huỹ,0l + u− ỹ,0l + u0,ỹl + u0,− ỹlj s23d

with ỹ=Îm. Given that the individual lobes contribute noth-
ing to the entanglement by themselves, we ignore their indi-
vidual structure in this description. In the limitm→`, the
three single-mode statesu0l, u± ỹl are all orthogonal, and thus
the RDM of one of the modesr1=Tr2uClkCu is

r1 = 1
4hsuỹl + u− ỹldskỹu + k− ỹud + 2u0lk0uj. s24d

Furthermore, the orthogonality of these states means that this
density matrix can be simply treated as a three-by-three
matrix and the entropy is simplyS=1, independent of
g for g.1.

It is interesting to note that had we taken as the ground-
state density matrix the incoherent mixture of the four con-
tributions,

r = 1
4huỹ,0lkỹ,0u + u− ỹ,0lk− ỹ,0u + u0,ỹlk0,ỹu + u0,− ỹlk0,

− ỹuj, s25d

leading to the RDM

r1 = 1
4huỹlkỹu + u− ỹlk− ỹu + 2u0lk0uj s26d

and a value of the von Neumann entropy ofS=3/2,which is
clearly at variance with the numerical results.

We now consider the regiong,1, and for simplicity we
also assumeg.0. The four fixed points are

sy1,y2d = S±Î m

1 + g
, ±Î m

1 + g
D s27d

where the two6 signs are independent. Each fixed point has
the excitation energies

e+
2 = 2; e−

2 = 2
1 − g

1 + g
. s28d

The eigenmodes of the system are noty1 and y2, but rather
lie along, and perpendicular to, the diagonals of they1-y2
plane. Each individual fixed-point wave function is thus en-
tangled with respect to modesy1 andy2.

FIG. 3. The von Neumann entropy of the two-dimensional
molar catastrophe withA=−1 as a function ofg. Plots of the po-
tential for g,1 andg.1 are shown at the top of the figure. The
origin of the potential is unstable and there are four stable potential
wells satellite to this. Lower right inset shows scaling ofg* as a
function of m.
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This entanglement can be calculated as in Sec. III, but
here with two excitation energies and the rotation between
the eigenmodes and they coordinates. The entanglement de-
termining parameter 2a /b is evaluated to be

2a

b
=

4 − 3g2 + 4Î1 − g2

g2 , s29d

from which the single-lobe entanglement follows directly.
The contribution of the four-lobed structure of the large-m

superposition can be assessed as follows. From a macro-
scopic point of view, we can ignore the structure of the in-
dividual lobes, and write the wave function as

uCl = 1
2huỹ,ỹl + uỹ − ,ỹl + u− ỹ,ỹl + u− ỹ,− ỹlj

= 1
2suỹl + u− ỹld ^ suỹl + u− ỹld. s30d

The second forms clearly shows this wave function to be a
product state from the macroscopic viewpoint. Thus the mix-
ing entropy of forming the four-lobed structure is zero, and
the entropy of the system is just the single lobe entropy
above.

In Fig. 3 we plot these results alongside the numerical
data for finitem. The scaling ofg* with m is observed to be
g* −1=c0m−c1 with coefficients fitted assc0,c1d=s4.93
3104,4.09d.

VII. CONCLUSIONS

We have constructed and studied a family of quantum
catastrophe models, and investigated their ground-state en-
tanglement properties. The cusp catastrophe, with its bifur-
cating fixed point, demonstrates behavior that is remarkably
similar to the QPT models, such as the Dicke model—

underlining the importance of bifurcations of classical fixed
points in this context. It should be noted that while this bi-
furcation occurs for all values ofm, a peak in the entangle-
ment is only observed whenm is sufficiently largesm.10
hered. This illustrates that the bifurcation is not, in itself, a
sufficient condition for the occurrence of the entanglement
maximum, but that the system must also be capable of suf-
ficient delocalization. The butterfly catastrophe displays very
different behavior to the cusp, namely, a discontinuous en-
tropy induced by a level crossing in the macroscopic limit.

The cusp and the two-dimensional catastrophe demon-
strate that a mixing term in the entropy can contribute to the
total entanglement in cases where a wave function is split up
into localization areas that are separated withinsabstractd po-
sition space. In particular the two-dimensional catastrophe
suggests a distinction between “global” and “local”swithin
the lobesd entanglement, and one could speculate that in
more complex situations, with wave functions split up fur-
ther and further, a hierarchy of entanglement entropies might
emerge.

Our results also have a bearing on the issue of quantum
chaos and entanglement in such systems, as the one-
dimensional models studied here are capable of emulating
the behavior of more sophisticated nonlinear Hamiltonians,
despite being separable, and thus integrable. It is clear that
there is no unequivocal relation between delocalization and
the onset of quantum chaos on one hand and the peaking of
entanglement on the other.
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