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Abstract. We propose a simple model describing the collective interaction of an array of N
quantum dots with a single bosonic mode. This model exhibits a quantum phase transition in
the thermodynamic limit N — oo, and we describe how the precursors of this transition give
rise to the appearance of quantum chaos in the system.

1. Introduction

Quantum dots have been shown to exhibit a number of quantum coherent effects when coupled
to each other or to external radiation. Coherent superpositions of states in single and double
quantum dots [1], the spontaneous emission of phonons [2] and non-linear effects like dressed
states (photo-sidebands) in dots [3] are examples of quantum-optical effects in controllable,
artificial atoms [4]. Coherently coupled systems of N > 2 quantum dots with two internal
(spin or orbital) degrees of freedom have been suggested as models for ‘qubit’ arrays in
guantum computation. In such models, collective behaviour, similar to superfluorescence
in atomic systems, has been predicted to show up in transport, optical, and (de-)coherence
properties [5].

In the following, we seek to investigate how collective behaviour is connected to the
appearance of quantum chaos in arrays of quantum dots coupled to a bosonic degree of
freedom such as a photon or phonon mode. To this end, we consider the Dicke Hamiltonian
[6], a simple model consisting of N identical two-level systems interacting with a single
bosonic mode. This model exhibits a quantum phase transition (QPT) as a function of a
coupling constant X in the thermodynamic limit, N — oc.

Recently, we have reported on an exact solution for all eigenstates [7], eigenvalues and
critical exponents in the thermodynamic limit, and shown that above the critical point A = A,
the ground-state wavefunction bifurcates into a Schrodinger cat state for any N < oo. In
this contribution, we concentrate on the statistics of the energy spectrum and demonstrate that
quantum chaos occurs and is correlated with the precursors of the QPT.

2. The Mod€

We model each Qdot as a two-level system, all of which have identical level-splitting %wy.
This collection of NV two-level systems may be described in terms of a single (N + 1)-level
system, provided that we treat all Qdot configurations with the same number of excitations
as identical, i.e. we ignore the spatial distribution of the Qdots. The resulting (N + 1)-level
system may then be pictured as a pseudo-spin vector of length j = % described by the
angular momentum operators, {J;; ¢ = z, £}, which obey the usual commutation relations
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Table 1. The energy, inversion and field occupancy of the the ground state of Hamiltonian (1)
above and below the phase transition for the system in the thermodynamic limit.

[J,,Js] = £J and [J,,J | = 2J,. We then let this Qdot system interact with a single
bosonic mode of frequency w via a dipole-type interaction, resulting in the Hamiltonian

A
H = wyJ fa+ —— (af Jo+J), 1
woz-l-waa—i-\/fj(a +a) (Jp+J) (1)
where a and «' are bosonic annihilation and creation operators, X is the strength of the Qdot-
field coupling and we have set # = 1. This Hamiltonian is well-known in quantum optics
as the Dicke Hamiltonian, where it serves as a model of an atomic collection interacting with
light [6, 8].

2.1. Phasetransition

Associated with Hamiltonian (1) is a conserved parity IT such that [H, IT] = 0, which is given
by
IT = exp {m [aTa +J, —|—j] } : (2

and has eigenvalues of £1. In the thermodynamic limit, IV, j — oc, the system undergoes a
mean—field type superradiance phase transition [9, 10]. This phase transition persists at zero
temperature where it is seen to occur at a critical value of the coupling A, = |/wwy/2, where
the TT symmetry becomes spontaneously broken and the model becomes exactly soluble [7].
Some key properties of the ground state above and below this QPT are listed in Table 1.
Below )., the field and the Qdots are unexcited but above )., they both obtain macroscopic
excitations, with the resultant ground state being a highly collective state, similar to a polariton
mode. Although in what follows we shall mainly be interested in the system at finite /V, we
shall see that the existence of this phase transition in the thermodynamic limit is crucial to the
understanding the appearance of quantum chaos even for relatively small N. This is because
the precursors of the QPT give rise to a qualitative change in the nature of the wavefunctions
of the system.

Unless otherwise stated, we shall always work on scaled resonance (w = wg = 1), which
means that the QPT occurs at A, = 0.5.

3. Theonset of quantum chaos

To investigate the appearance of quantum chaos, we shall consider the distribution P (S)
of the nearest-neighbour level-spacings, S,, = F,,1 — E,. That the analysis of such a
measure should provide an indicator of quantum chaos is due to the following argument
[11]. Classically integrable systems have high degrees of symmetry and hence their quantum
counterparts have many conserved quantum numbers. This permits level-crossings to occur
in the spectrum, leading to a P (S) with a maximum at small level-spacing, S — 0. The
appropriate distribution is Poissonian Pp (S) = exp (—S), and we shall call quantum spectra
with Poissonian statistics “quasi-integrable”. On the other hand, classically chaotic systems
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Figure 1. (a) Nearest-neighbour distribution P (S) for N = 40 at a range of couplings
0.1 < X\ < 0.8. Also plotted are the Poisson (dots) and Wigner (dashes) distributions. (b)
The modulus of 5, Eq. (3), plotted as a function of coupling for systems of N = 10 and
N = 40 Qdots. A value of n = 1 indicates Poissonian statistics and n = 0 corresponds to
Wigner-Dyson. The system is on scaled resonance (w = wg = 1).

have no such integrals of motion and we thus expect their quantum energy spectra to be
absent of crossings, leading to P (S) — 0as.S — 0. Although the precise form of the P (S)
depends on the symmetries of the model, we shall only have cause to consider the Wigner
distribution Py (S) = mS/2 exp (—7S?/4) here [12]. To investigate the level statistics of the
system, we numerically diagonalise the Hamiltonian (1) in the basis {|n) ® |j, m)}, where
afa|n) = n|n) and |7, m) are the Dicke states .J, |j,m) = m |, m), and restrict ourselves to
the positive parity subspace by only considering states with n + m + j even. We unfold the
resulting energy spectrum to rid it of secular variation and construct the distribution function
P (S). We then normalise the results for comparison with the generic Poissonian and Wigner
distributions described above.

Figure 1a demonstrates the behaviour of the P (.S) distribution as a function of coupling
for large and fixed N = 40. At low couplings (A < 0.1) the P (S) closely resembles the
Poisson distribution, Pp (S). As A is increased (0.1 < A < 0.5), this similarity diminishes,
but as P (0) remains non-zero, a moderate amount of level-crossing still occurs. This situation
changes at and above A = 0.5 = )\, where the P (.S) changes to being very well described by
the Wigner surmise Py, (S).

The nature of the change in the P (S) distribution in such a cross-over from quasi-
integrability to chaos may fruitfully be characterised by the quantity
[P (S) = Pw (S)]dS

[ (P (S) — Pw (5)]dS’

where Sy, = 0.472913.. .. is the value of S at which the two generic distributions Pp (S) and
Py (S) first intersect [13]. n measures the degree of similarity of the measured P (.S) with
the Wigner surmise Py, (S), and is normalised such that when P (S) = Py (S) thenn = 0,
and when P (S) = Pp(S) then n = 1. The behaviour of n as a function of coupling for
N = 40 is shown in Figure 1b, highlighting that the spectrum is predominantly Poissonian at
low couplings and that the distribution becomes mixed until at and above A ~ \. where the
spectrum becomes very close to Py, (S). Note that for A < ). the value of ) changes steadily
with coupling, whereas above ). it becomes relatively constant. Also plotted in this figure is
the behaviour of  for a system of NV = 10 Qdots. In this case, a similar transition is observed
but it is not as pronounced as in the N = 40 case.

The P (S) distribution is plotted in Figure 2a for a selection of different values of NV and

(3)
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Figure 2. (a) Nearest-neighbour distribution P (.S) for various values of N and \, compared
with the Poisson (dots) and Wigner (dashes) distributions. (b) The mean-square deviation,
m, of P (S) from Py (S), Eq. (4), as a function of the number of Qdots N with a fixed
value of coupling A = A.. Note the logarithmic scale. The system is on scaled resonance
(w=uwge =1).

A. This figure demonstrates that in both of the phases of the system, increasing N increases
the agreement between the calculated P (S) and the respective universal distribution. It
is important to note that for very low numbers of co-operating Qdots N, P (S) does not
correspond to any of the generic distributions irrespective of coupling, but rather to non-
generic forms, characteristic of one-dimensional or harmonic oscillator systems [14].

Finally, in Figure 2b we show how the statistics converge on to the Wigner distribution as
a function of IV at the fixed value of A = )., which is the smallest value possible of yielding
chaos. Here we do not plot ), as the significance of this measure for a P (S) far removed from
the universals is negligible. Rather, we plot the mean-square deviation of the calculated P (S)
from Py (S),

m = /0 [P () — P (S)dS. (@)

This clearly demonstrates the large deviation of the P (.S) from the generic distributions for
very low NV, and shows a rapid decreases as [V is increased. It is apparent that we need to have
N > 6 co-operating Qdots to be in a regime where the observation of quantum chaos would
be possible.

4. Discussion, possible experimental realisation

We have seen that for a large enough number of Qdots, the level statistics of the system
exhibit a change from Poisson to Wigner statistics at approximately A = ., corresponding
to the rapid onset of quantum chaos as the coupling is increased. The correlation between
the onset of quantum chaos and the precursors of the phase transition may be understood
by considering the wavefunctions of the system [7]. When viewed in an abstract position
representation, one sees that the wavefunctions change at A. from being well localised to
delocalised, and that the degree of delocalisation is proportional to /N, provided that N is
sufficiently large. This delocalisation is manifested in the ground state by the appearance
of a Schrodinger cat, composed of two parts macroscopically separated from one another.
Localisation-delocalisation transitions are consistent with the appearance of chaos [15] as
states that are localised on a certain length scale will generally have no overlap with other
localised states outside this length, and hence have no reason to exhibit level repulsion. For
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delocalised states, this is no longer true and level repulsion becomes a possibility. For the
smallest values of IV, this delocalisation is not possible, and the onset of chaos is not observed.
This points to the possibility of using the level-statistics as a method to distinguish whether
the Qdots in a many Qdot system are acting collectively with the boson field or not.

One of our original motivations was to understand how precursors of a QPT in finite
systems of interacting particles influence the cross-over between quantum chaos and quasi-
integrable dynamics. Quantum optical models are a natural choice to study this problem. It
has turned out recently, however, that such models are also of high interest in semiconductor
physics, one prominent example being the use of the Dicke model in the quest for exciton
polariton condensation [16]. On the semiconductor optics side, semiconductor cavity QED
[17] can be regarded as a well-established field of physics by now.

Another and perhaps less known possible realisation of the Dicke model are arrays of
double quantum dots embedded into a phonon cavity, i.e. a freestanding nanostructure where
phonon modes split into subbands and lead to highly non-linear effects in their coupling
to electrons [18]. The importance of electron-phonon coupling for transport spectroscopy
in double quantum dots is well-known [2, 19, 20], and phonon cavities have already been
successfully realized experimentally [21, 22, 23]. A peculiar consequence of the boundary
conditions for vibration modes in phonon cavities is the existence of van-Hove singularities in
the phonon density of states, i.e., an enormous enhancement of the effective electron-phonon
coupling as compared to the bulk case [18].
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