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Abstract. This is a ‘mini-review’ of some recent results on electron transport
through two-level systems (e.g., double quantum dots) and simple mesoscopic scat-
terers (delta barrier), interacting with dissipative boson baths and single boson
modes (phonons, photons). The relevant models (Spin-Boson system, Rabi-Hamil-
tonian) and their stationary properties (electron current, boson distribution) are
investigated. For a single boson mode interacting with N two-level systems, the
relation between quantum chaos and a quantum phase transition for N → ∞ is
discussed.

A large part of solid state physics deals with the interactions between fermions
(electrons) and bosons (phonons, photons, magnons etc.). There is a recent
trend towards studying these interactions in their ‘purest form’, i.e. in quan-
tum systems with only very few effective degrees of freedom, to be controlled
from the ‘outside’ by external parameters such as magnetic fields or gate
voltages. Typically, nanoscales and low temperatures are required in order to
master the complexity of condensed matter (many-body effects, decoherence)
if one wishes to realise quantum optical effects in quantum transport, or to
achieve a control over the two key elements of quantum mechanics (quantum
superpositions and entanglement) in an ‘artificial’, man-made system.

On the theoretical side, simple models for fermion-boson interactions con-
tinue to be fascinating, as often very non-trivial results can be obtained from
even the most primitive Hamiltonians.

In this short overview, I discuss models that describe electron transport
and two-level systems interacting with dissipative boson baths and single
boson modes. The main focus will be on electron-phonon interactions, mo-
tivated by recent experiments in coupled quantum dots [1–9], ‘recoil’ effects
in free-standing semiconductor quantum dots [10], or systems where phonons
start to become controllable (phonon confinement, ‘phonon cavity QED’ [11–
18]). More or less closely related (although not reviewed here) are situations
where vibrational degrees of freedom play a big role, such as in experiments
on transport through single molecules [19–24], electron ‘shuttles’, freestand-
ing and movable nanostructures [25–32], or theories dealing with macroscopic
‘quantum mechanics’ of, e.g., cantilevers coupled to Cooper pair boxes [33].



2 Tobias Brandes

1 Phonon Cavities

The simplest model for a phonon cavity is an infinitely extended, homoge-
neous thin plate of thickness 2b, where phonons are described by a displace-
ment field u(r), disregarding the microscopic crystal structure. The interac-
tions of dilatational and flexural phonon modes with quantum dot electrons
have been investigated by S. Debald et al. [18]. The determination of the
phonon-subband dispersion relation ωn,q‖ (q‖ is the in-plane phonon wave
vector) from the Rayleigh-Lamb equations is a well-known problem from elas-
ticity theory [34–36], although non-trivial due to the boundary conditions at
the surfaces that mix longitudinal and transversal propagation.

The numerically determined ωn,q‖ curves have minima at values for q‖
that correspond to van Hove singularities in the phonon density of states at
certain finite energies h̄ω. These singularities (which are a geometrical effect
and not due to, e.g., the crystal structure) are ‘nanomechanical fingerprints’ of
confinement and lead to a strong increase in electron-phonon scattering at the
corresponding energies. This has been predicted to be observable in energy-
dependent non-linear transport spectroscopy in coupled quantum dots.

Another surprising feature of the thin plate model is the vanishing of the
deformation potential (DP) interaction between electrons and phonons for
q‖ = qt,n, where the qt,n denote the solutions for the transversal wavevectors
associated with the transversal speed of sound ct. For dilatational modes, the
displacement field has zero divergence at the phonon energy

h̄ω0 =
π√
2

h̄ct
b
, (1)

and the electron-phonon DP vanishes at this energy. If electrons are con-
fined symmetrically in the midplane between the two plate surfaces, flexural
phonon modes are decoupled due to symmetry. Then, the dominant second
order DP electron-phonon scattering is completely ‘switched off’ for energy
transfers ∆ = h̄ω0 (although contributions from fourth and higher order pro-
cesses still remain possible). Since piezoelectric coupling is weaker than DP
interaction for small b, the ∆ = h̄ω0 defines a ‘dissipation-free manifold’ for
midplane electrons in, e.g., double quantum dots (see below).

It should be emphasised that in contrast to phononic crystals, the van-
ishing of the electron-phonon interaction and the van Hove singularities dis-
cussed here occur in a simple homogeneous, infinitely extended plate that is
confined in just one direction.
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2 Non-linear Transport: Dissipative Spin-Boson

System

Double quantum dots are sensitive phonon emitters and detectors[3,4,37] and
can be described by a (pseudo) spin-boson model [38]

H =
ε

2
σz + Tcσx +

1

2
σzA+

∑

Q

ωQa
†
QaQ, A :=

∑

Q

gQ

(

a−Q + a†Q

)

,(2)

where one additional ‘transport’ electron tunnels between a left (L) and
a right (R) dot with energy difference ε and inter–dot coupling Tc, where
σz = |L〉〈L| − |R〉〈R| and σx = |L〉〈R|+ |R〉〈L|. Here, ωQ are the frequencies
of phonons, and the gQ denote interaction constants. The coupling to ex-
ternal leads offers the possibility to study spin-boson dynamics in transport
properties such as the (non-)stationary electronic current or shot noise.

The simplest description is that for non-linear transport with the lead
chemical potentials µL → ∞ and µR → −∞ [39–41,38], allowing for an
additional ‘empty’ state and tunneling from a left reservoir at rate ΓL into
the left dot, and from the right dot to the right reservoir at rate ΓR. Lowest
order perturbation theory in these rates (neglecting higher order terms in
ΓL/R [42,43]) yields an equation of motion for the reduced statistical operator
ρ(t), [38,39]

∂

∂t
ρLL(t) = −iTc [ρLR(t)− ρRL(t)] + ΓL [1− ρLL(t)− ρRR(t)]

∂

∂t
ρRR(t) = −iTc [ρRL(t)− ρLR(t)]− ΓRρRR(t). (3)

For the remaining equation for the off-diagonal element ρLR = ρ∗RL, one has
to choose between perturbation theory in gQ (weak coupling, PER), or in Tc

in a polaron-transformed frame (strong coupling, POL) [44]. In general, no
exact solution of the model is available even for the simplest case of only one
bosonic mode (see below).

The standard Born and Markov approximation with respect to A yields

d

dt
ρPER

LR (t) = [iε− γp − ΓR/2] ρLR(t) (4)

+ [iTc − δ−] ρRR(t)− [iTc − δ+] ρLL(t).

Here, the rates are

γp ≡ 2π
T 2

c

∆2
ρ(∆) coth (β∆/2) , ρ(ω) ≡

∑

Q

|gQ|2δ(ω − ωQ)

δ± ≡ −εTc

∆2

π

2
ρ(∆) coth (β∆/2)∓ Tc

∆

π

2
ρ(∆), (5)

where ∆ :=
√

ε2 + 4T 2
c is the energy difference of the hybridized levels, and

β = 1/kBT the inverse phonon equilibrium bath temperature. Note that
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beside the off–diagonal decoherence rate γp, there appear terms ∝ δ± in the
diagonals which turn out to be important for the stationary current.

On the other hand, the polaron transformation [38] leads to an integral
equation

ρPOL
LR (t) = −

∫ t

0

dt′eiε(t−t′)

[

ΓR

2
C(t− t′)ρLR(t′)

+ iTc {C(t− t′)ρLL(t′)− C∗(t− t′)ρRR(t′)}
]

, (6)

where C(t) = 〈XtX
†〉,

C(t) := exp

{

−
∫ ∞

0

dω
ρ(ω)

ω2
[(1− cosωt) coth(βω/2) + i sinωt]

}

, (7)

is the phonon equilibrium correlation function of the displacement operators
X (Xt is the time evolution of X with respect to the phonon system),

X = ΠQDQ

(

gQ
ωQ

)

, DQ(z) = eza†
Q
−z∗aQ , (8)

where DQ(z) is the unitary displacement operators for the phonon mode Q.

2.1 Dissipative Landau-Zener Problem and Quantum Pump

For ΓL = ΓR = 0, one can study adiabatic transfer [45–48] of electrons from,
e.g., the left to the right dot under the influence of a Hamiltonian with a
slow time-dependence Tc(t) = −∆

2 sinΩt, ε(t) = −∆ cosΩt. This is relevant,
e.g., for adiabatic quantum computation schemes in solids [49–51], where one
must be fast enough in order to avoid dissipation, and slow enough in order
to avoid undesired Landau-Zener transitions to excited states. This trade-off
can be quantified [52,53] by calculating the inversion change δ〈σz〉f from the
ideal value 〈σz〉f = −1, which for a slow half-period sweep (duration π/Ω)
yields

δ〈σz〉f ≈ 1−
[

(

∆

ωR

)2

+

(

Ω

ωR

)2

cos
(πωR

Ω

)

]

+ 2
c

Ω
ρ(∆)nB(∆), (9)

where ωR ≡
√
Ω2 +∆2, nB is the Bose distribution, and c =

π3J3/2(π)

4
√

2
=

2.4674. The ground state of the system ‘rotates’ on a curve in ε-Tc-space
with constant energy difference ∆ to the excited level, such that for ∆ = h̄ω0

dissipation due to phonon absorption can be switched off in a thin plate
cavity as discussed above.

The effect of dissipation on adiabatic rotation of quantum states [54,53]
can in principle be measured as a time-averaged current in a ‘quantum pump’:



Boson Cavities: From Electronic Transport to Quantum Chaos 5

One pump cycle starts with an additional electron in the left dot and an adi-
abatic rotation of the parameters (ε(t), Tc(t)) by changing, e.g., gate voltages
as a function of time. This completely quantum-mechanical part of the cycle
is performed in the ‘save haven’ of the Coulomb- and the Pauli-blockade [55],
i.e., with the left and right energy levels of the two dots well below the chem-
ical potentials of the leads. The cycle continues with closed tunnel barrier
Tc = 0 and increasing εR(t); the two dots then are still in a superposition of
the left and the right state. The subsequent lifting of the right level above
the chemical potential of the right lead constitutes a measurement of that
superposition: the electron is either in the right dot (with a high probability
1− 1

2δ〈σz〉f ) and tunnels out, or the electron is in the left dot (and nothing
happens because the left level is still below µ and the system is Coulomb
blocked). For ΓR, ΓL � t−1

cycle the decharging of the right dot and the re-
charging of the left dot from the left lead is fast enough to bring the system
back into its initial state with one additional electron on the left dot, and the
average electron current is

〈I〉pump = −e
[

1− 1

2
δ〈σz〉f

]

/tcycle (10)

Here, the leads act as classical measurement devices of the quantum-mecha-
nical time-evolution between the two dots. Note that the present scheme com-
bines the ‘classical’ pumping aspect in Coulomb blockaded systems [56–59]
with tunneling/quantum interference in mesoscopic pumping [60–65]. Sim-
ilar schemes for adiabatic transfer have been suggested by Silvestrini and
Stodolsky [66], Barnes and Milburn [67], and realised experimentally in a
superconducting Cooper pair box [68].

2.2 Stationary Current

The stationary electron current Istat = −e2TcImρ̂LR(z = 0) through the
double quantum dot is obtained from Laplace transforming the equations of
motion as an infinite sum of contributions G+ (= Istat/e in lowest order in
Tc) and G−,

Istat(ε) =
−eΓLΓRG+(ε)

ΓLG−(ε) + (ΓL + ΓR)G+(ε)− ΓLΓR
. (11)

Here, the expressions

G
(PER)
± ≡ 2TcIm

iTc − δ±
iε− γp − ΓR/2

G
(POL)
+

G
(POL)
−

≡ 2TcIm
−iTc

1 + 1
2ΓRCε

·
{

Cε

C∗−ε
(12)

are obtained in perturbation theory in gQ (PER) and from the polaron trans-
formation (POL, perturbation theory in Tc) and the subsequent decoupling
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of the correlation function C(t), Eq. (7) with Laplace transform

Cε :=

∫ ∞

0

dteiεtC(t). (13)

Note that PER works in the correct eigenstate base of the hybridized system
(level splitting ∆), whereas the energy scale ε in POL is that of the two
isolated dots (Tc = 0) and therefore does not incorporate the square-root
hybridization form of ∆ =

√

ε2 + 4T 2
c . However, for large |ε| � Tc, ∆ →

|ε|, and POL and PER coincide: in this limit and for small electron-phonon
coupling,

G±(ε) → −2T 2
c

ΓR/2 + γ(±ε)
Γ 2

R/4 + ε2
, γ(ε) :=

πρ(|ε|)
2ε2

[coth(β|ε|/2) + sgn(ε)] .(14)

For ε � Tc, the stationary current Eq.(11) is determined by the function
γ(ε), showing the broad ‘shoulder’ on the spontaneous phonon emission side
of the resonant tunneling peak, as observed by Fujisawa et al. [3].

3 Non-linear Transport: Single Boson Mode

The Rabi Hamiltonian [69,70] is given by the single boson mode version ωQ =
ωδQ,Q0

, gQ = gδQ,Q0
, of Eq. (2) or canonically equivalent forms of it. It is

probably one of the best studied models for the interaction of matter with
light [70] and can be used, e.g., to study the transfer of quantum coherence
from light to matter (control of tunneling by electromagnetic fields [71,54])
and vice versa [72–74].

Non-equilibrium physics of single or few vibration modes in molecular
electronic transport has already been studied experimentally and theoreti-
cally. Phonon cavity experiments with quantum dots in free-standing semi-
conductor structures give indications of ‘recoil’ effects related to confined
phonon modes [10]. One could furthermore envisage transport experiments
through coupled quantum dots interacting with single phonon or photon cav-
ity modes, or single vibrational degrees of freedoms of macroscopic mechanical
devices (such as cantilevers) coupled to microscopic charges. [75,33].

The Rabi Hamiltonian is probably the simplest model for the interaction
of light with matter, and yet it is only exactly solvable at certain values
of the coupling constant g (‘Juddian points’), or in the rotating wave ap-
proximation. We have therefore numerically solved the master equation for
non-linear transport through the coupled single mode (pseudo) spin-boson
system (again corresponding to, e.g., double quantum dots in the Coulomb
blockade regime), without invoking any further approximations such as de-
coupling schemes or perturbation theory in g. However, the bosonic Hilbert
space has to be truncated at a finite number N of boson states. The total
number of equations for the stationary dot-boson density operator

ρij
nm := 〈n, i|ρ|j,m〉, i, j = 0, L,R, (15)



Boson Cavities: From Electronic Transport to Quantum Chaos 7

-6

-5

-4

-3

-2

-2 -1 0 1 2 3 4

lo
g 1

0[
I/

eω
]

ε=εL- εR  (100 µeV)

N=10, γb=0.05
POL γb=0.05
N=5, γb=0.5
POL γb=0.5

-6

-5

-4

-3

-2

-2 -1 0 1 2 3 4

lo
g 1

0[
I/

eω
]

ε=εL- εR  (100 µeV)

N=10, γb=0.05
POL γb=0.05
N=5, γb=0.5
POL γb=0.5

-4
-2

0
2

4

x
-4

-2

0

2

4

p

0
0.02
0.04
0.06

-4
-2

0
2

4

x

0
0.02
0.04
0.06

-4
-2

0
2

4

x
-4

-2

0

2

4

p

0
0.02
0.04

-4
-2

0
2

4

x

0
0.02
0.04

-4
-2

0
2

4

x
-4

-2

0

2

4

p

0
0.02
0.04
0.06

-4
-2

0
2

4

x

0
0.02
0.04
0.06

-4
-2

0
2

4

x
-4

-2

0

2

4

p

0
0.02
0.04
0.06
0.08

-4
-2

0
2

4

x

0
0.02
0.04
0.06
0.08

-4
-2

0
2

4

x
-4

-2

0

2

4

p

0
0.02
0.04
0.06
0.08

-4
-2

0
2

4

x

0
0.02
0.04
0.06
0.08

-4
-2

0
2

4

x
-4

-2

0

2

4

p

0
0.025
0.05
0.075
0.1

-4
-2

0
2

4

x

0
0.025
0.05
0.075
0.1

PSfrag replacements

εεε

εεε

===

===

0.00 0.25 0.50

0.75 1.00 1.25

1.50
1.75
2.00
2.25

Fig. 1. Left: Stationary current through double quantum dot coupled to single
boson mode (coupling constant g = 0.2) with tunnel rates to left/right leads ΓL =
ΓR = 0.1, interdot coupling Tc = 0.01, boson damping γb = 0.05 (in units of
boson frequency ω). Numerical results truncation for N boson states, alongside
corresponding polaron transformation result. Right: Wigner distribution functions
for the bosonic mode (ΓL = ΓR = Tc = 0.1, γb = 0.005, g = 0.8, N = 20.)

then is 5N2 + 10N + 5, remembering that there is always an equation for
n = m = 0.

3.1 Boson Damping and Boson Distribution

Damping of the boson mode a† can be described within the master equation
approach in the standard Lindblad form [76],

ρ̇|damping = − γb

2

(

2aρBa
† − a†aρB − ρBa

†a
)

, (16)

which can easily be incorporated either in the numerical approach, or used
in the analytical expression for the stationary current Istat(ε), Eq. (11), from
the polaron transformation and subsequent decoupling of the boson degree
of freedom with the correlation function

C(t) = exp

{

− g
2

ω2

(

1− e−( γb
2

+iω)t
)

}

, t ≥ 0. (17)

The analytical result Eq. (11), together with Eqs. (12), (13), and (17) agrees
relatively well with the numerical solution; both showing phonon emission
peaks at ε = nω for small Tc and small damping γb, cf. Fig. 1. There is,
however, a more fundamental issue with the description of a damped oscil-
lator mode by the simple Lindblad form Eq.(16), which fails [77], e.g., to
reproduce power-law tails in correlation functions at low temperatures as
obtained from exact solutions of microscopic models [78]. These models can
be incorporated into single electron-boson transport theories [24], although
decoupling approximations have to be invoked there, too.

One of the interesting question about ‘molecular transport’ through this
spin-boson system is how the boson state can be controlled by ε, Tc, and
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ΓL/R, i.e., parameters of the electronic subsystem. The somehow intuitive
picture of ‘controlling’ the boson mode by the stationary electron current
is not appropriate here, because the coupled electron and boson have to be
dealt with on equal footing. In fact, we have not been able to find simple
limiting analytical solutions for the stationary reduced density operator of
the boson,

ρb ≡ lim
t→∞

Trdotρ(t) = lim
t→∞

∑

i=0,L,R

ρii(t). (18)

except for ε � −|Tc|, where 〈σz〉 ≈ 1 (‘electron on left dot’) and the boson
is in the coherent state |z = −g/2ω〉. The boson state can be visualised from
the numerical result, using the Wigner function [79]

W (x, p) =
1

π

∞
∑

n,m=0

(−1)n〈n|ρb|m〉〈m|D(2α)|n〉, (19)

where D(z) = exp[za† − z∗a] and α ≡ (x+ ip)/
√

2. Fig. 1 (right) shows that
the distribution in phase space spreads out close to the resonance energies,
with corresponding peaks in position (x) and momentum (p) variances (not
shown here).

4 Single Particle Scattering in a Cavity

I now turn from single electron tunneling (‘zero-d transport’) to mesoscopic
transport in 1d systems (quantum wires), which leads me to quantum me-
chanical scattering and the transmission properties of particles in the presence
of coupling to a cavity boson mode. Even for non-interacting fermions at fi-
nite density this is a very complex problem due to the possibility of induced
many-body effects (Kondo physics, superconducting correlations,...) in the
presence of a Fermi sea. We have therefore started with re-considering the
simplest model for 1d single electron scattering in a boson cavity;

H =
p2

2m
+ δ(x)

{

g0 + g1[a
† + a]

}

+Ωa†a. (20)

The electron-boson coupling is via a ‘dynamical’ delta-barrier. Although at
first sight this model might seem a bit too simple in order to yield interesting
physics, quite a few authors have actually investigated this Hamiltonian or its
lattice version in order to study tunneling in presence of phonons[80], Fano-
type resonances [81,82] or the behaviour of transmission amplitudes in the
complex energy plane [83,84], and time-dependent Hamiltonians as classical
limits of fully quantised models [85].



Boson Cavities: From Electronic Transport to Quantum Chaos 9

4.1 Recursion Scheme

Scattering states of the Hamiltonian can be written as highly entangled wave
functions of the coupled electron-boson system, 〈x|Ψ〉 =

∑∞
n=0 ψn(x)|n〉,

where {|n〉} is the harmonic oscillator basis. The total transmission coef-
ficient T (E) is obtained from the sum over all propagating modes,

T (E) =

[E/Ω]
∑

n=0

kn(E)

k0(E)
|tn(E)|2, kn ≡

√
E − nΩ (21)

where h̄ = 2m = 1 and the sum runs up to the largest n such that kn remains
real. Continuity of the wave function at x = 0 leads to an infinite recursion
relation for a self energy Σ(N)(E) which can be written in an intuitive form
that, e.g., for the zero-channel transmission amplitude t0(E) reads

t0(E) =
−2iγ0(E)

G−1
0 (E)−Σ(1)(E)

, Σ(N)(E) =
Ng2

1

G−1
0 (E −NΩ)−Σ(N+1)(E)

,(22)

where the ‘Greens function’G0(E) ≡ [−2iγ0(E)+g0]
−1 and γ0(E) =

√
Eθ(E)+

i
√
−Eθ(−E).
The recursion can be truncated by setting Σ(N)(E) = 0 for a fixed N > 0

and recursively solving Eq. (22) down to Σ(1)(E) which, however, fails to
work for too large coupling constants g1. In the strong coupling regime, one
has to start from polarons as new quasi-particles. In a lattice version of the
Hamiltonian Eq. (20), this is easily accomplished by a canonical transforma-
tion and a subsequent perturbation theory in the coupling to the localised
polaron level, similar to the spin-boson problem discussed above. On the
other hand, in the original Hamiltonian Eq. (20) this would correspond to an
inconvenient perturbation theory in the kinetic energy p2/2m of the electron.

4.2 Resonances and Transparency Points

Barriers with an attractive static part, g0 < 0, are most interesting in that
they exhibit Fano type resonances with zero transmission coefficient below
the first threshold E = Ω. If the term (a† + a) in the Hamiltonian Eq.
(20) is replaced by an oscillating term ∝ cos(Ωt), Fano-resonances in this
classical limit are known to appear [82] when the energy of the electron in
the first (non-propagating) channel n = 1 coincides with the bound state of
the attractive delta barrier potential, E − Ω = −g2

0/4. In the single boson
mode case Eq. (20), zero transmission corresponds to a diverging self energy
Σ(1)(E), in Eq. (22). For small g1, this condition can be written as

0 = [Σ(1)(E)]−1 ≈ (2
√
Ω −E + g0)/g

2
1, (23)

which coincides with the resonance condition for the classical case.
A new feature of Eq. (20) (which does not appear for its classical, time-

dependent counterpart) is the existence of perfect transmission T (E) = 1 at
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an energy below the opening of the first channel (n = 1) threshold. There,
t0(E) = −2ik0/(−2ik0 + g0 − Σ(1)(E)) which means that t0(E) = 1 for
g0 = Σ(1)(E). Since Σ(1)(E) is real for 0 < E < Ω, the self energy exactly
renormalizes the static part g0 of the scattering potential to zero at this
point. Using the perturbative expression in Eq.(23) for Σ(1)(E), one finds
two perfect transparency points

g0 = −
√
Ω −E ±

√

Ω −E + g2
1 , (24)

i.e, both for attractive and repulsive static barrier strengths g0.

5 Quantum Chaos and Quantum Phase Transition:

Single Mode Dicke Model

In this final section, I return back to the single-mode (pseudo) spin boson
problem but now consider not only a single two-level system (as represented
by the Pauli matrices σi), but an array of N = 2j identical (but distinguish-
able) two-level systems represented by angular momentum operators Jz, J±
for a pseudo-spin of length j. The corresponding Dicke Hamiltonian [86]

H = ω0Jz + ωa†a+
λ√
2j

(a† + a)(J+ + J−), (25)

generalises the Rabi Hamiltonian to j > 1/2, is well-known from quantum
optics (single mode superradiance) and can be regarded as a simple model
for solid state qubit arrays interacting via a common cavity boson (pho-
ton/phonon).

Our original motivation to study this model was to find a relation be-
tween quantum chaos (showing up for finite N) and quantum phase transi-
tions (N → ∞) in systems of N interacting particles as a function of some
coupling constant λ. For non-interacting systems, the Anderson (localisation-
delocalisation) transition is an example for such a relation, other examples
include chaos in interacting spin systems [87], the Lipkin model [88], and the
interacting boson model [89].

A common feature of the models in the previous sections is the difficulty
to continuously move from their weak-coupling to their strong-coupling lim-
its. In fact, a typical feature of models like the (isolated) Rabi-Hamiltonian
(j = 1/2) is the breakdown of numerical approaches for too large coupling
constants (coming from the weak coupling side). The idea therefore is that
such instabilities have a ‘deeper’ reason, i.e., an underlying quantum phase
transition that only becomes apparent if the system is regarded as a finite-size
version of some ‘larger’ system in the thermodynamic limit. In the example
here, the Rabi Hamiltonian is the finite size version of the Dicke Hamiltonian.

We have proven and studied this connection [90,91] in great detail for
Eq.(25). One might speculate that similar strong connections between quan-
tum chaos and quantum phase transitions are a general feature of many more
classes of physically interesting systems.
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5.1 Spectrum and Wave Functions

We have derived [90] exact analytical solutions for the spectrum and wave
functions of this Hamiltonian for N → ∞ and found a localisation-delocali-
sation transition in a cross-over between Poissonian and Wigner level-spacing
distribution, using numerical diagonalisation for finite N . The ground state
bifurcates into a Schrödinger cat above the critical point λ = λc =

√
ωω0/2,

which can be related to a transition between non-chaos and chaos in the classi-
cal, canonical limit of the Hamiltonian Eq.(25) and its non-linear, momentum-
dependent potential energy.

A Holstein-Primakoff transformation [92] of the Hamiltonian leads to a
representation in terms of two oscillator modes a† and b† (the latter represents
the pseudo spin). For N →∞, the ground state energy

EG/j =

{

−ω0, λ < λc

−
[

λ2

ω +
ω2

0
ω

8λ2

]

, λ > λc
(26)

and the two collective excitation energies ε± are obtained exactly. From the
vanishing of ε− at the critical point one obtains the critical exponents ν =
1/4, z = 2 on resonance ω = ω0.

Finite-j precursors of the phase transitions can be identified in the crossover
of the level spacing distribution P (S) from Poissonian (λ < λc) to Wigner-
Dyson, which we have calculated numerically [90]. The ground state wave
function Ψ0 can be represented in a 2d position space with coordinates x ≡
(1/
√

2ω)(a† + a) and y ≡ (1/
√

2ω0)(b
† + b). The splitting of Ψ0 into a super-

position of two peaks (separated by a distance of the order
√
j) is related to

the existence of a conserved parity Π = exp{iπ[a†a+ Jz + j]} of the Hamil-
tonian. In fact, Eq. (25) is equivalent to a single particle on a lattice with
points (n,m), |m| ≤ j, n = 0, 1, 2, ..., and the eigenvalues ±1 of Π correspond
to the two independent sublattices. For j → ∞, the effective tunnel barrier
between the two lobes of Ψ0 becomes infinitely strong, Π is spontaneously
broken (the cat is ‘broken into two pieces’), and each of the two lobes aquires
its own effective Hamiltonian [90] above λc.

5.2 Classical Limit, Chaos

The above discussion shows that the simple one-boson mode Hamiltonian
Eq.(25) is an attractive model to study an exact solution for a quantum
phase transition. Moreover, for finite j it exhibits a well-defined transition
from integrable to chaotic behavior. One can derive a canonical, classical
Hamilton function corresponding to Eq.(25) by using the Holstein-Primakoff
expressions for the spin, which leads to the problem of a single particle in a
momentum dependent potential

U(x, y, py) =
1

2

(

ω2x2 + ω2
0y

2
)

+ 2λ
√
ωω0xy

√

1−
ω2

0y
2 + p2

y − ω0

4jω0
(27)
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Poincaré sections for the classical model [91] show the transition between reg-
ular (λ < λc) and chaotic (λ > λc) behavior which agrees with the transition
in P (S) of the quantum model.

6 Conclusions

In the above overview, I have presented spin-boson models from a ‘meso-
scopic’ point of view. The coupling to external electron reservoirs allows to
study these models under transport (non-equilibrium) conditions. In spite of
their simplicity, the Hamiltonians discussed here have some very non-trivial
properties that became apparent in particular in the last two sections (meso-
scopic ‘quantum’ scatterer, Dicke model). In the future, photon and phonon
cavities can be expected to yield further insight into the dynamics of coupled
quantum systems, in particular if they are combined with electron transport.

Collaborations and discussions with R. H. Blick, Y.-N. Chen, S. Debald,
C. Emary, E. M. Höhberger, J. Kotthaus, B. Kramer, N. Lambert, F. Renzoni,
J. Robinson, and T. Vorrath are acknowledged. This work was supported by
EPSRC grant GR44690/01, DFG project Br1528/4, the WE Heraeus foun-
dation and the UK Quantum Circuits Network.

References

1. N. C. van der Vaart, S. F. Godjin, Y. V. Nazarov, C. J. P. M. Harmans,
J. E. Mooij, L. W. Molenkamp, and C. T. Foxon, Phys. Rev. Lett. 74, 4702
(1995).

2. R. H. Blick, R. J. Haug, J. Weis, D. Pfannkuche, K. v. Klitzing, and K. Eberl,
Phys. Rev. B 53, 7899 (1996).

3. T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado,
S. Tarucha, and L. P. Kouwenhoven, Science 282, 932 (1998).

4. S. Tarucha, T. Fujisawa, K. Ono, D. G. Austin, T. H. Oosterkamp, W. G. van
der Wiel, Microelectr. Engineer. 47, 101 (1999).

5. H. Qin, F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheider, M. Bichler,
Phys. Rev. B 63, 035320 (2001).

6. T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature
419, 278 (2002).

7. T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman,
S. Tarucha, and L. P. Kouwenhoven, Nature 395, 873 (1998).

8. R. H. Blick, D. Pfannkuche, R. J. Haug, K. v. Klitzing, and K. Eberl, Phys.
Rev. Lett. 80, 4032 (1998).

9. R. H. Blick, D. W. van der Weide, R. J. Haug, and K. Eberl, Phys. Rev. Lett.
81, 689 (1998).
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