next up previous contents index
Next: Equation of Motion for Up: Perturbation Theory in the Previous: Perturbation Theory in the   Contents   Index

Effective Density Matrix of the System

We wish to obtain an equation of motion for the effective density matrix of the system at time $ t>0$,
$\displaystyle {\rho}(t)\equiv {\rm Tr}_B [\chi(t)].$     (11)

This object is sufficient to calculate expectation values of system operators $ A_S$:
$\displaystyle \langle A_S \rangle_t$ $\displaystyle \equiv$ $\displaystyle {\rm Tr_{total}} [{\chi}(t) A_S]$  
  $\displaystyle =$ $\displaystyle {\rm Tr}_S \left[{\rm Tr}_B {\chi}(t) \right]{A}_S={\rm Tr}_S\left[ {\rho}(t){A}_S\right].$ (12)

Now use
$\displaystyle {\rm Tr}_B [\tilde{\chi}(t)]$ $\displaystyle =$ $\displaystyle {\rm Tr}_B e^{iH_0t} {\chi}(t)e^{-iH_0t}$  
  $\displaystyle =$ $\displaystyle e^{iH_S t}\left({\rm Tr}_B e^{iH_Bt} {\chi}(t)e^{-iH_Bt}\right)e^{-iH_St}=
e^{iH_S t} {\rho}(t)e^{-iH_St}$  
  $\displaystyle \equiv$ $\displaystyle \tilde{\rho}(t).$ (13)

Note that the interaction picture $ \rho(t)\leftrightarrow \tilde{\rho}{(t})$ involves only the free System Hamiltonian $ H_S$ and not $ H_0$,
$\displaystyle \tilde{\rho}(t)\equiv e^{iH_S t} \rho(t) e^{-iH_St}.$     (14)

Using
$\displaystyle \tilde{A}_S(t)\equiv e^{iH_0t} A_S e^{-iH_0t} = e^{iH_St} A_S e^{-iH_St}$     (15)

for system operators, one has
$\displaystyle \langle A_S \rangle_t = {\rm Tr}_S\left[ \tilde{\rho}(t)\tilde{A}_S(t)\right]
= {\rm Tr}_S\left[ {\rho}(t){A}_S(t)\right].$     (16)


next up previous contents index
Next: Equation of Motion for Up: Perturbation Theory in the Previous: Perturbation Theory in the   Contents   Index
Tobias Brandes 2004-02-18