next up previous contents index
Next: Final Form of Master Up: Master Equation II: the Previous: Thermal Bath Correlation Functions   Contents   Index

Rates and Energy Shift (RWA)

Let us have a closer look at the expressions
$\displaystyle \hat{C}_{12}(z)=\int_0^{\infty}
d\omega {\rho(\omega) [1+n_B(\omega)}]
\int_{0}^{\infty}dt e^{-(z+i\omega)t}.$     (41)

The Laplace transform exists for Im$ (z)>0$ to ensure convergence of the integral, but in the expressions above we need $ \hat{C}_{12}(z=-i\Omega)$ etc., i.e. purely imaginary arguments! The limit $ t\to \infty$, if explicitely written, reads
$\displaystyle \hat{C}_{12}(z=-i\Omega)=\lim_{t\to \infty}\int_0^{\infty}
d\omega {\rho(\omega) [1+n_B(\omega)}]
\int_{0}^{t}dt' e^{i(\Omega-\omega)t'}.$     (42)

Now,
$\displaystyle \lim_{t\to \infty} \int_{0}^{t}dt' e^{i x t'}=\lim_{t\to\infty}
\...
...t}{x} + i \frac{1-\cos xt}{x}\right]=\pi \delta(x) +iP\left(\frac{1}{x}\right),$     (43)

where $ P$ denotes the principal value.

For the first term, we used a very useful

Theorem:

For any integrable, normalised function $ f(x)$ with $ \int_{-\infty}^{\infty}dx f(x)=1$,

$\displaystyle \lim_{\varepsilon\to 0 } \frac{1}{\varepsilon}f\left(
\frac{x}{\varepsilon}\right)=\delta(x).$     (44)

Since $ \int_{-\infty}^{\infty}dx \sin(x)/x=\pi$, this yields the Delta function above.

We split the two bath correlation functions into real and imaginary parts,

$\displaystyle \hat{C}_{12}(-i\Omega)$ $\displaystyle \equiv$ $\displaystyle \frac{1}{2}\gamma_+ + i \Delta_+,\quad
\hat{C}_{21}( i\Omega)\equiv\frac{1}{2}\gamma + i \Delta$  
$\displaystyle \gamma_+$ $\displaystyle \equiv$ $\displaystyle \gamma_+(\Omega)\equiv 2\pi \rho(\Omega)[1+n_B(\Omega)],\quad
\gamma\equiv \gamma(\Omega) \equiv 2\pi \rho(\Omega) n_B(\Omega)$  
$\displaystyle \Delta_+$ $\displaystyle \equiv$ $\displaystyle P\int_{0}^{\infty}\frac{d\omega}{2\pi}\frac{\gamma_+(\omega)}{\Om...
... - P\int_{0}^{\infty}\frac{d\omega}{2\pi}\frac{\gamma (\omega)}{\Omega-\omega}.$ (45)

Remarks:


next up previous contents index
Next: Final Form of Master Up: Master Equation II: the Previous: Thermal Bath Correlation Functions   Contents   Index
Tobias Brandes 2004-02-18