next up previous contents index
Next: Master Equation (Non-RWA Model) Up: Master Equation II: the Previous: Final Form of Master   Contents   Index

Expectation Values (RWA Model)

We would like to use our Master equation Eq.(7.48)
$\displaystyle \frac{d}{dt}\rho(t)$ $\displaystyle =$ $\displaystyle -i\bar{\Omega}[a^{\dagger}a,{\rho}]
- \kappa \Big\{ a^{\dagger} a {\rho} + \rho a^{\dagger} a - 2 a \rho a^{\dagger}
\Big\}$  
  $\displaystyle -$ $\displaystyle 2\kappa n_B(\Omega) \Big\{ a^{\dagger} a {\rho}
+\rho a a^{\dagger} - a \rho a^{\dagger} -a^{\dagger} \rho a \Big\}$  

and calculate some `useful' quantities as, for examples, expectation values of System ($ =$ oscillator) observables $ \hat{\theta}$. Let us do this for the number operator, $ \hat{\theta}=\hat{n}=a^{\dagger}a$. Multiplying with $ n$ and taking the trace, we obtain
$\displaystyle \frac{d}{dt}\langle n \rangle (t)$ $\displaystyle =$ $\displaystyle -i\bar{\Omega}$Tr$\displaystyle \left( n[a^{\dagger}a,{\rho}]\right)
- \kappa$   Tr$\displaystyle \Big\{ a^{\dagger}a a^{\dagger} a {\rho} + \rho a^{\dagger} aa^{\dagger}a
- 2 a \rho a^{\dagger}a^{\dagger}a
\Big\}$  
  $\displaystyle -$ $\displaystyle 2\kappa n_B(\Omega)$Tr$\displaystyle \Big\{ a^{\dagger} a a^{\dagger} a {\rho}
+\rho a a^{\dagger} a^{...
... a - a^{\dagger} a a \rho a^{\dagger} -
a^{\dagger} a a^{\dagger} \rho a \Big\}$  
  $\displaystyle =$ $\displaystyle -i\bar{\Omega}$Tr$\displaystyle \left(a^{\dagger} a a^{\dagger}a{\rho}
-a^{\dagger}a{\rho}a^{\dagger}a\right)
- \kappa$   Tr$\displaystyle \Big\{2 a^{\dagger}a a^{\dagger} a {\rho}
- 2 \rho a^{\dagger}(aa^{\dagger}-1) a
\Big\}$  
  $\displaystyle -$ $\displaystyle 2\kappa n_B(\Omega)$Tr$\displaystyle \Big\{ a^{\dagger} a a^{\dagger} a {\rho}
+\rho ( a^{\dagger}a+1)...
...-a^{\dagger}(a a^{\dagger} -1) a \rho -
a a^{\dagger} a a^{\dagger} \rho \Big\}$  
  $\displaystyle =$ $\displaystyle -2\kappa$   Tr$\displaystyle \Big\{ \rho a^{\dagger} a \Big\}$  
  $\displaystyle -$ $\displaystyle 2\kappa n_B(\Omega)$Tr$\displaystyle \Big\{ a^{\dagger} a a^{\dagger} a {\rho}
+\rho ( a^{\dagger}a+1)...
...ger}(a a^{\dagger} -1) a \rho -
( a^{\dagger}a+1) ( a^{\dagger}a+1) \rho \Big\}$  
  $\displaystyle =$ $\displaystyle -2\kappa$   Tr$\displaystyle \Big\{ \rho a^{\dagger} a \Big\}
+2\kappa n_B(\Omega)$  
  $\displaystyle =$ $\displaystyle -2\kappa\left(\langle n \rangle (t) - n_B(\Omega)\right).$ (50)

This now is a simple first order differential equation which has the solution
$\displaystyle \langle n \rangle (t) = \langle n \rangle (t=0) e^{-2\kappa t}
+ \kappa n_B(\Omega) \left( 1- e^{-2\kappa t}\right).$     (51)

In particular, one has
$\displaystyle \langle n \rangle (t\to \infty) = n_B(\Omega).$     (52)

For large times, the occupation number is thus given by the thermal equilibrium Bose distribution, regardless of the initial condition $ \langle n \rangle (t=0)$.


next up previous contents index
Next: Master Equation (Non-RWA Model) Up: Master Equation II: the Previous: Final Form of Master   Contents   Index
Tobias Brandes 2004-02-18