next up previous contents index
Next: Solution of the PDE Up: -representation Previous: Revision: -representation   Contents   Index

Derivation of the PDE

In order to transform the master equation, we require the $ P$-representation of terms like $ a\rho a^{\dagger}$ etc. Let us start with $ a^{\dagger}\rho$.

Method 1: We follow Walls/Milburn and introduce Bargmann states

$\displaystyle \vert\vert z\rangle \equiv e^{\vert z\vert^2/2}\vert z\rangle \equiv \sum_n \frac{z^n}{(n!)^{1/2}}\vert n\rangle,$     (72)

(`coherent states without the normalisation factor in front'). Therefore,
$\displaystyle a^{\dagger}\vert\vert z\rangle = \frac{\partial}{\partial z}\vert...
...ad
\langle z \vert\vert a = \frac{\partial}{\partial z^*} \langle z \vert\vert.$     (73)

We use this to write
$\displaystyle \rho$ $\displaystyle =$ $\displaystyle \int \frac{d^2 z}{\pi}\vert\vert z\rangle \langle z\vert\vert e^{-\vert z\vert^2} \underline{P(z)} \leadsto$ (74)
$\displaystyle a^{\dagger}\rho$ $\displaystyle =$ $\displaystyle \int \frac{d^2 z}{\pi}a^{\dagger} \vert\vert z\rangle \langle z\v...
...tial z}
\vert\vert z\rangle \right] \langle z\vert\vert e^{-\vert z\vert^2}P(z)$  
  $\displaystyle =$ $\displaystyle -\int \frac{d^2 z}{\pi} \vert\vert z\rangle \langle z\vert\vert\f...
...vert z\vert^2}
\underline{\left( z^*- \frac{\partial}{\partial z}\right) P(z)},$  

using integration by parts, $ \frac{\partial}{\partial z}\langle z\vert\vert=0$, and assuming the vanishing of $ P(z)$ at infinity. Comparison yields
$\displaystyle a^{\dagger}\rho \leftrightarrow \left( z^*- \frac{\partial}{\partial z}\right) P(z).$     (75)

Method 2: Use the Metha formula for $ \hat{\theta} = a^{\dagger}\rho$,

$\displaystyle P(a^{\dagger}\rho;z)$ $\displaystyle =$ $\displaystyle e^{\vert z\vert^2} \int \frac{d^2z'}{\pi}
\langle -z'\vert a^{\dagger}\rho \vert z'\rangle e^{\vert z'\vert^2} e^{zz'^*-z^*z'}$  
  $\displaystyle =$ $\displaystyle e^{zz^*} \int \frac{d^2z'}{\pi}(-z'^*)
\langle -z'\vert \rho \vert z'\rangle e^{\vert z'\vert^2} e^{zz'^*-z^*z'}=$  
  $\displaystyle =$ $\displaystyle \left[ -\frac{\partial}{\partial z} + z^*\right]
(e^{zz^*}) \int ...
...\pi}
\langle -z'\vert \rho \vert z'\rangle e^{\vert z'\vert^2} e^{zz'^*-z^*z'}.$ (76)

Here, we generate $ -z'^*$ in the integral by differentiation with respect to the parameter $ z$ and subsequent compensation of the term aring from $ e^{zz^*}$, thus arriving even faster at Eq.(7.76). Similarly,
$\displaystyle P(\rho a;z)$ $\displaystyle =$ $\displaystyle e^{zz^*} \int \frac{d^2z'}{\pi}
\langle -z'\vert \rho \vert z'\rangle z' e^{\vert z'\vert^2} e^{zz'^*-z^*z'}=$  
  $\displaystyle =$ $\displaystyle \left[ -\frac{\partial}{\partial z^*} + z\right]
(e^{zz^*}) \int ...
...\pi}
\langle -z'\vert \rho \vert z'\rangle e^{\vert z'\vert^2} e^{zz'^*-z^*z'}.$ (77)

For the terms $ a^{\dagger}a\rho$, the first method is easier:
$\displaystyle a^{\dagger}a\rho$ $\displaystyle =$ $\displaystyle \int \frac{d^2 z}{\pi}a^{\dagger} a \vert\vert z\rangle \langle z...
...l z}
\vert\vert z\rangle \right] \langle z\vert\vert e^{-\vert z\vert^2} z P(z)$  
  $\displaystyle =$ $\displaystyle -\int \frac{d^2 z}{\pi} \vert\vert z\rangle \langle z\vert\vert\f...
...ert z\vert^2}
\underline{\left( z^*- \frac{\partial}{\partial z}\right) z P(z)}$  
$\displaystyle \rho a^{\dagger}a$ $\displaystyle =$ $\displaystyle \int \frac{d^2 z}{\pi}\vert\vert z\rangle \langle z\vert\vert a^{...
...c{\partial}{\partial z^*}\langle z\vert\vert\right] e^{-\vert z\vert^2} z^*P(z)$  
  $\displaystyle =$ $\displaystyle -\int \frac{d^2 z}{\pi} \vert\vert z\rangle \langle z\vert\vert\f...
...t z\vert^2}
\underline{\left( z- \frac{\partial}{\partial z^*}\right) z^* P(z)}$  
$\displaystyle a \rho a^{\dagger}$ $\displaystyle =$ $\displaystyle \int \frac{d^2 z}{\pi}a \vert\vert z\rangle \langle z\vert\vert a...
...ert\vert z\rangle \langle z\vert\vert e^{-\vert z\vert^2}
\underline{zz^* P(z)}$  
$\displaystyle a^{\dagger} \rho a$ $\displaystyle =$ $\displaystyle \int \frac{d^2 z}{\pi} \left[\frac{\partial}{\partial z}
\vert\ve...
...frac{\partial}{\partial z^*}\frac{\partial}{\partial z}e^{-\vert z\vert^2} P(z)$  
  $\displaystyle =$ $\displaystyle \int \frac{d^2 z}{\pi}\vert\vert z\rangle \langle z\vert\vert e^{...
...tial}{\partial z^*}\right)
\left( z^*- \frac{\partial}{\partial z}\right)P(z)}.$  

In particular, for the master equation we need
$\displaystyle \Big\{ a^{\dagger} a {\rho} + \rho a^{\dagger} a - 2 a \rho a^{\dagger}
\Big\}$ $\displaystyle \leftrightarrow$ $\displaystyle \Big\{ \left( z^*- \frac{\partial}{\partial z}\right) z +
\left( z- \frac{\partial}{\partial z^*}\right) z^*
- 2 zz^* \Big\} P(z)$  
$\displaystyle = - \Big\{ \frac{\partial}{\partial z} z+\frac{\partial}{\partial z^*} z^*\Big\} P(z)$ $\displaystyle =$ $\displaystyle - \Big\{ z\frac{\partial}{\partial z} +z^*\frac{\partial}{\partial z^*} +2 \Big\} P(z)$  
$\displaystyle \Big\{ a^{\dagger} a {\rho}
+\rho (a^{\dagger}a+1) - a \rho a^{\dagger} -a^{\dagger} \rho a \Big\}$ $\displaystyle \leftrightarrow$ $\displaystyle \Big\{\left( z^*- \frac{\partial}{\partial z}\right) z +
\left( z- \frac{\partial}{\partial z^*}\right) z^* +1$  
  $\displaystyle -$ $\displaystyle zz^* - \left( z- \frac{\partial}{\partial z^*}\right)
\left( z^*- \frac{\partial}{\partial z}\right)\Big\} P(z)$  
$\displaystyle =\Big\{-\frac{\partial}{\partial z} z + z \frac{\partial}{\partial z}+1 + \frac{\partial}{\partial z^*}
\frac{\partial}{\partial z}\Big\} P(z)$ $\displaystyle =$ $\displaystyle \frac{\partial}{\partial z^*}
\frac{\partial}{\partial z}P(z)$  
$\displaystyle \left[ a^{\dagger} a,\rho \right]$ $\displaystyle \leftrightarrow$ $\displaystyle \left[-\frac{\partial}{\partial z}z + \frac{\partial}{\partial z^...
...ft[-z\frac{\partial}{\partial z} + z^*\frac{\partial}{\partial z^*}\right]P(z).$  

The whole master equation is therefore transformed into
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\frac{\partial}{\partial...
...n_B \frac{\partial^2}{\partial z^*\partial z}\right\} P(z,t)\\
\end{array}$\ }$     (78)

Here, we have explicitely indicated that the $ P$-function depends both on $ z$ and on the time $ t$.

Remarks:


next up previous contents index
Next: Solution of the PDE Up: -representation Previous: Revision: -representation   Contents   Index
Tobias Brandes 2004-02-18