next up previous contents index
Next: Remarks Up: Master Equation IV: Phase Previous: Solution of the PDE   Contents   Index

$ W$-representation

An alternative phase-space method is to convert the operator master equation into a PDE for the Wigner function $ W(A;z)$ of an operator $ A$. We recall Formula (4.177b) for the Wigner function of an operator product $ AB$,
$\displaystyle W(AB;z)= W(A;z) \exp \left[
\frac{1}{2}\left(\overleftarrow{\part...
...erleftarrow{\partial}_{z^*} \overrightarrow{\partial}_{z} \right)\right] W(B;z)$     (95)

We obtain
$\displaystyle W(a)$ $\displaystyle =$ $\displaystyle z,\quad W(a^{\dagger})=z^*$  
$\displaystyle W(a^{\dagger}a)$ $\displaystyle =$ $\displaystyle z^*
\left(1+\frac{1}{2}\left(\partial_z\partial_{z^*}-\partial_{z^*}\partial_{z}\right)\right)
z
=z^*z -\frac{1}{2}$  
$\displaystyle W(a^{\dagger}a\rho)$ $\displaystyle =$ $\displaystyle \left(z^*z -\frac{1}{2}\right)
\left(1+\frac{1}{2}\left(\partial_...
...\left(\partial_z\partial_{z^*}-\partial_{z^*}\partial_{z}\right)
\right)W(\rho)$  
  $\displaystyle =$ $\displaystyle \left(z^*z -\frac{1}{2}\right)W(\rho)
+\frac{1}{2}z^*\partial_{z^...
...\frac{1}{2}z\partial_{z} W(\rho) -\frac{2}{8}\partial_{z}\partial_{z^*} W(\rho)$  
$\displaystyle W(\rho a^{\dagger}a)$ $\displaystyle =$ $\displaystyle W(\rho)\left(1+\frac{1}{2}\left(\partial_z\partial_{z^*}-\partial...
...l_{z^*}-\partial_{z^*}\partial_{z}\right)
\right)\left(z^*z -\frac{1}{2}\right)$  
  $\displaystyle =$ $\displaystyle \left(z^*z -\frac{1}{2}\right)W(\rho)
-\frac{1}{2}z^*\partial_{z^...
...\frac{1}{2}z\partial_{z} W(\rho) -\frac{2}{8}\partial_{z}\partial_{z^*} W(\rho)$ (96)

Similarly,
$\displaystyle W(a\rho)$ $\displaystyle =$ $\displaystyle z
\left(1+\frac{1}{2}\left(\partial_z\partial_{z^*}-\partial_{z^*}\partial_{z}\right)\right)
W(\rho)
= zW(\rho) +\frac{1}{2}\partial_{z^*}W(\rho)$  
$\displaystyle W(a\rho a^{\dagger})$ $\displaystyle =$ $\displaystyle \left(zW(\rho) +\frac{1}{2}\partial_{z^*}W(\rho)\right)
\left(1+\...
...}{2}\left(\partial_z\partial_{z^*}-\partial_{z^*}\partial_{z}\right)\right) z^*$  
  $\displaystyle =$ $\displaystyle \left(zz^*W(\rho) +\frac{1}{2}z^*\partial_{z^*}W(\rho)\right)
+\frac{1}{2}\partial_z(zW(\rho))+\frac{1}{4}\partial_z\partial_{z^*}W(\rho)$  
$\displaystyle W(a^{\dagger}\rho)$ $\displaystyle =$ $\displaystyle z^*
\left(1+\frac{1}{2}\left(\partial_z\partial_{z^*}-\partial_{z^*}\partial_{z}\right)\right)
W(\rho)
= z^*W(\rho) -\frac{1}{2}\partial_{z}W(\rho)$  
$\displaystyle W(a^{\dagger}\rho a)$ $\displaystyle =$ $\displaystyle \left(z^*W(\rho) -\frac{1}{2}\partial_{z}W(\rho)\right)
\left(1+\frac{1}{2}\left(\partial_z\partial_{z^*}-\partial_{z^*}\partial_{z}\right)\right)z$  
  $\displaystyle =$ $\displaystyle \left(zz^*W(\rho) -\frac{1}{2}z\partial_{z}W(\rho)\right)
-\frac{1}{2}\partial_{z^*}(z^*W(\rho))+\frac{1}{4}\partial_z\partial_{z^*}W(\rho)$  

Thus,
$\displaystyle \Big\{ a^{\dagger} a {\rho} + \rho a^{\dagger} a - 2 a \rho a^{\dagger}
\Big\}$ $\displaystyle \leftrightarrow$ $\displaystyle -\Big\{2+z\partial_z+z^*\partial_{z^*}+\partial_z\partial_{z^*}\Big\}W(\rho)$  
$\displaystyle \Big\{ a^{\dagger} a {\rho}
+\rho (a^{\dagger}a+1) - a \rho a^{\dagger} -a^{\dagger} \rho a \Big\}$ $\displaystyle \leftrightarrow$ $\displaystyle -\partial_z\partial_{z^*}W(\rho)$  
$\displaystyle \left[ a^{\dagger} a,\rho \right]$ $\displaystyle \leftrightarrow$ $\displaystyle \left(z^*\partial_{z^*}-z\partial_z\right)W(\rho).$ (97)

Therefore, the master equation Eq.(7.69) is converted into
$\displaystyle \frac{\partial}{\partial t}W(z,t)$ $\displaystyle =$ $\displaystyle -i\bar{\Omega} \left(z^*\partial_{z^*}-z\partial_z\right)W(z,t)
+\kappa\Big\{2+z\partial_z+z^*\partial_{z^*}+\partial_z\partial_{z^*}\Big\}W(z,t)$  
  $\displaystyle +$ $\displaystyle 2\kappa n_B(\Omega)\partial_z\partial_{z^*}W(z,t)$  
$\displaystyle =\left\{ 2\kappa \right.$ $\displaystyle +$ $\displaystyle \left. i\left[ \bar{\Omega} - i\kappa\right]z\frac{\partial}{\par...
...z^*}
+\kappa[1+2 n_B] \frac{\partial^2}{\partial z^*\partial z}\right\} W(z,t).$  

We compare this with the PDE for the $ P$-function, Eq.(7.79):
$\displaystyle \frac{\partial}{\partial t}P(z,t) =
\left\{ 2\kappa + i\left[ \ba...
...tial z^*}
+2\kappa n_B \frac{\partial^2}{\partial z^*\partial z}\right\} P(z,t)$      

The difference is just in the diffusion term, i.e., $ 1+2 n_B$ in the Wigner representation instead of $ 2 n_B$ in the P representation. In the Wigner representation, even at zero temperature $ T=0$ ($ n_B=0$) one has a diffusion term in the PDE. Technically, the solution proceeds as before: one first solves the first order part via characteristics and then the diffusive part via Fourier transformation.


next up previous contents index
Next: Remarks Up: Master Equation IV: Phase Previous: Solution of the PDE   Contents   Index
Tobias Brandes 2004-02-18