next up previous contents index
Next: Expectation Values, Einstein Equations, Up: Spontaneous Emission (Atom without Previous: Model for : Two-Level   Contents   Index

Mapping onto harmonic oscillator master equation

We now use the fact that $ H_{SB}$ has the same form as for the the damped single bosonic mode if we identify $ \sigma_+\to a^{\dagger}$, $ \sigma_-\to a$. We can therefore `copy' the derivation of the master equation of the damped harmonic oscillator, as long as no commutation relations are used! This is the case up to Eq.(7.46),
$\displaystyle \frac{d}{dt}\rho(t)$ $\displaystyle =$ $\displaystyle -i[\Omega a^{\dagger}a,{\rho}(t)]$  
  $\displaystyle -$ $\displaystyle \frac{1}{2}\Big\{ \left[(\gamma_+ + 2 i \Delta_+)a^{\dagger} a
+ (\gamma + 2i \Delta) a a^{\dagger}\right]{\rho}(t)$  
  $\displaystyle +$ $\displaystyle {\rho}(t)
\left[ (\gamma - 2i \Delta) a a^{\dagger} +
(\gamma_+ -2i \Delta_+)
a^{\dagger} a\right]$  
  $\displaystyle -$ $\displaystyle 2\gamma_+
a{\rho}(t)a^{\dagger}
-2\gamma a^{\dagger}{\rho}(t)a
\Big\},$   harmonic oscillator$\displaystyle .$  

The interaction picture for the two-level atom is with respect to the Hamiltonian
$\displaystyle H_0\equiv \frac{\omega_0}{2}\sigma_z+H_B\leadsto \tilde{\sigma}_{\pm}(t) = \sigma_{\pm}
e^{\pm i\omega_0 t},\quad \tilde{\sigma}_{z}(t)=\sigma_z.$     (125)

In the interaction picture, the Master equation for the two-level atom therefore reads
$\displaystyle \frac{d}{dt} \tilde{\rho}(t)$ $\displaystyle =$ $\displaystyle -\frac{1}{2}\Big\{ \left[(\gamma_+ + 2 i \Delta_+) \sigma_+ \sigma_-
+ (\gamma + 2i \Delta) \sigma_-\sigma_+ \right]\tilde{\rho}(t)$  
  $\displaystyle +$ $\displaystyle \tilde{\rho}(t)
\left[ (\gamma - 2i \Delta) \sigma_-\sigma_+ +
(\gamma_+ -2i \Delta_+)
\sigma_+ \sigma_- \right]$  
  $\displaystyle -$ $\displaystyle 2\gamma_+
\sigma_-\tilde{\rho}(t)\sigma_+
-2\gamma \sigma_+\tilde{\rho}(t)\sigma_-
\Big\}.$ (126)

We now use
$\displaystyle \sigma_+\sigma_-=\frac{1}{2}\left(1+\sigma_z\right),\quad
\sigma_-\sigma_+=\frac{1}{2}\left(1-\sigma_z\right),$     (127)

re-arrange and transform back into the Schrödinger picture,
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\frac{d}{dt}{\rho}(t) &=...
..._+\rho + \rho \sigma_- \sigma_+
-2\sigma_+{\rho}\sigma_-\Big\}.
\end{array}$\ }$     (128)

We recall (note that the harmonic oscillator frequency $ \Omega$ has to be replaced by $ \omega_0$)
$\displaystyle \gamma_+$ $\displaystyle \equiv$ $\displaystyle 2\pi \rho(\omega_0)[1+n_B(\omega_0)],\quad
\gamma\equiv 2\pi \rho(\omega_0) n_B(\omega_0)$  
$\displaystyle \Delta_+ -\Delta$ $\displaystyle \equiv$ $\displaystyle \delta \omega_0 \equiv
P\int_{0}^{\infty}d\omega\frac{\rho(\omega)[1+2n_B(\omega)] }{\omega_0-\omega}.$ (129)

Remarks:


next up previous contents index
Next: Expectation Values, Einstein Equations, Up: Spontaneous Emission (Atom without Previous: Model for : Two-Level   Contents   Index
Tobias Brandes 2004-02-18