next up previous contents index
Next: `Monte Carlo' Procedure Up: Unravelling and Decomposition into Previous: Super-Operators   Contents   Index

Decomposition into Histories

We may write the Master equation Eq.(7.143) as
$\displaystyle \frac{d}{dt}\rho(t)$ $\displaystyle =$ $\displaystyle \left( {\cal L}_0 + {\cal L}_1 \right) \rho(t).$ (143)

This can be formally solved as follows: we define
$\displaystyle \bar{\rho}(t)$ $\displaystyle \equiv$ $\displaystyle e^{-{\cal L}_0 t} \rho(t),\quad \bar{{\cal L}}_1(t)
\equiv e^{-{\cal L}_0 t} {\cal L}_1 e^{{\cal L}_0 t}$ (144)
$\displaystyle \leadsto \frac{d}{dt} \bar{\rho}(t)$ $\displaystyle =$ $\displaystyle -{\cal L}_0\bar{\rho}(t) + e^{-{\cal L}_0 t} \left( {\cal L}_0 + ...
...L}_1 \right)
e^{{\cal L}_0 t} \bar{\rho}(t) = \bar{{\cal L}}_1(t) \bar{\rho}(t)$  
$\displaystyle \leadsto\bar{\rho}(t)$ $\displaystyle =$ $\displaystyle \rho(0) + \int_{0}^{t}dt_1 \bar{{\cal L}}_1(t_1)\bar{\rho}(t_1)$  
  $\displaystyle =$ $\displaystyle \rho(0) + \int_{0}^{t}dt_1 \bar{{\cal L}}_1(t_1) \rho(0)
+ \int_{...
...1 \int_{0}^{t_1}dt_2 \bar{{\cal L}}_1(t_1) \bar{{\cal L}}_1(t_2)\bar{\rho}(t_2)$  
    $\displaystyle ...$  
  $\displaystyle =$ $\displaystyle \rho(0)+ \sum_{n=1}^{\infty} \int_{0}^{t} dt_1... \int_{0}^{t_n}dt_n
\bar{{\cal L}}_1(t_1)... \bar{{\cal L}}_1(t_n)\rho(0).$ (145)

Transforming back to $ \rho(t)$, we can explicitely write this as
$\displaystyle {\rho}(t)$ $\displaystyle =$ $\displaystyle e^{{\cal L}_0 t} \rho(0)$  
  $\displaystyle +$ $\displaystyle \sum_{n=1}^{\infty} \int_{0}^{t} dt_1... \int_{0}^{t_n}dt_n
e^{{\...
...e^{{\cal L}_0 t_2}...
e^{-{\cal L}_0 t_n} {\cal L}_1 e^{{\cal L}_0 t_n} \rho(0)$  
  $\displaystyle =$ $\displaystyle e^{{\cal L}_0 t} \rho(0)$  
  $\displaystyle +$ $\displaystyle \sum_{n=1}^{\infty} \int_{0}^{t} dt_1... \int_{0}^{t_n}dt_n
\unde...
..._2-t_3)}...
e^{{\cal L}_0 (t_{n-1}-t_n)} {\cal L}_1 e^{{\cal L}_0 t_n} \rho(0)}$  
  $\displaystyle \equiv$ $\displaystyle e^{{\cal L}_0 t} \rho(0) + \sum_{n=1}^{\infty} \int_{0}^{t} dt_1... \int_{0}^{t_n}dt_n
\underline{\rho_c(t;t_1,...,t_n)},$ (146)

where we defined the un-normalised, conditioned `density matrix' $ \rho_c(t;t_1,...,t_n)$ at time $ t$ with $ n$ quantum jumps occuring at times $ t_1,...,t_n$. This object (the underlined term in Eq.(7.150)) indeed corresponds to the original density matrix $ \rho(0)$, `freely' time-evolved with the effective Hamiltonian $ H_{\rm eff}$ during the time intervals $ (0,t_n]$, $ (t_n,t_{n-1}]$,... interrupted by $ n$ `jumps' at times $ t_n$, $ t_{n-1}$, ..., $ t_1$. The total density matrix $ \rho(t)$ at time $ t$ then is the sum over all possible `trajectories' with $ n=0,...,\infty$ jumps occuring in between a `free', effective time evolution.


next up previous contents index
Next: `Monte Carlo' Procedure Up: Unravelling and Decomposition into Previous: Super-Operators   Contents   Index
Tobias Brandes 2004-02-18