next up previous contents index
Next: Double Path Integrals Up: Feynman-Vernon Influence Functional Theories Previous: Introduction, Motivation   Contents   Index


Single Path Integrals

We assume a time-independent Hamiltonian for a particle of mass $ M$ in a one-dimensional potential $ V(x)$ (the generalisation to larger than one dimension is easy),
$\displaystyle H \equiv T+V,\quad T\equiv \frac{p^2}{2M}.$     (153)

The solution of the Schrödinger equation can be written as
$\displaystyle \vert\Psi(t)\rangle = e^{-iHt}\vert\Psi(0)\rangle,\quad
\langle x...
...Psi(t)\rangle = \int dx' G(x,t;x',t'=0) \langle x'\vert\Psi(0)\rangle,\quad t>0$     (154)

with the help of the propagator
$\displaystyle G(x,t;x')$ $\displaystyle \equiv$ $\displaystyle G(x,t;x',t'=0)\equiv \langle x\vert e^{-iHt}\vert x' \rangle.$ (155)

We now use the Trotter product formula
$\displaystyle e^{-\lambda(T+V)} =
\left( e^{-\frac{\lambda}{N} (T+V)} \right) ^...
...N\to \infty}\left( e^{-\frac{\lambda}{N} T} e^{-\frac{\lambda}{N} V} \right) ^N$     (156)

with $ \lambda=i t$ ($ \hbar =1$) and write (inserting the identity $ N-1$ times)
$\displaystyle G(x,t;x')$ $\displaystyle =$ $\displaystyle \lim_{N\to \infty} \int dx_1...dx_{N-1}
\prod_{j=0}^{N-1} \langle...
... T} e^{-\frac{\lambda}{N} V} \vert x_j \rangle,\quad
x_N \equiv x,x_0 \equiv x'$  
  $\displaystyle =$ $\displaystyle \lim_{N\to \infty} \int dx_1...dx_{N-1}
\prod_{j=0}^{N-1} \langle...
...\vert e^{-\frac{\lambda}{N} T} \vert x_j \rangle e^{-\frac{\lambda}{N} V(x_j)}.$ (157)

Now use (cf. p 1.15, 1.17),
$\displaystyle \int \frac{dp}{(2\pi)}\vert p\rangle \langle p \vert$ $\displaystyle =$ $\displaystyle 1,\quad \langle x\vert p\rangle =e^{ipx}\leadsto$  
$\displaystyle \langle x\vert e^{-\frac{\lambda}{N} T} \vert y \rangle$ $\displaystyle =$ $\displaystyle \langle x\vert e^{-\frac{\lambda}{2MN} p^2} \vert y \rangle$  
$\displaystyle \int \frac{dp}{2\pi} \langle x\vert p\rangle e^{-\frac{\lambda}{2MN} p^2} \langle p \vert y \rangle$ $\displaystyle =$ $\displaystyle \int \frac{db}{2\pi} e^{-\frac{\lambda}{2MN} p^2+LP(x-y)} =
\sqrt{\frac{MN}{2\pi \lambda}} e^{-MN(x-y)^2/2\lambda},$ (158)

where we analytically continued the formula for Gaussian integrals
$\displaystyle \fbox{$ \displaystyle \int_{-\infty}^{\infty}dx e^{-ax^2+bx}=\sqrt{\frac{\pi}{a}}e^{b^2/4a},
\quad \mbox{\rm Re } a>0, $}$     (159)

$ a\to ia+\eta, \eta>0$, cf. Fresnel integrals and the book by H. Kleinert, `Path Integrals' 2nd edition, World Scientific (Singapore, 1995).

We now introduce $ \varepsilon = t/N = \lambda/iN$ and have

$\displaystyle G(x,t;x')$ $\displaystyle =$ $\displaystyle \lim_{N\to \infty} \int dx_1...dx_{N-1} \left(\frac{MN}{2\pi \lam...
...p \left[
-\frac{MN(x_j-x_{j+1})^2}{2\lambda} - \frac{\lambda V(x_j)}{N} \right]$  
  $\displaystyle =$ $\displaystyle \lim_{N\to \infty} \int dx_1...dx_{N-1} \left(\frac{M}{2\pi i \va...
...eft[ \frac{M}{2}
\frac{(x_j-x_{j+1})^2}{\varepsilon^2} - V(x_j) \right] \right]$  
  $\displaystyle \equiv$ $\displaystyle \int_{x'}^{x} {\cal{D}}x e^{i\int_0^t dt' {\cal{L}}(x,\dot{x}) },\quad
{\cal{L}}(x,\dot{x}) = \frac{1}{2}M \dot{x}^2 - V(x).$ (160)

Here, we have defined the Lagrange Function $ {\cal{L}}$ for the path $ x(t'), 0\le t' \le t, x(0)\equiv x',x(t)\equiv x$ with start point $ x$ and end point $ x'$ in configuration space. The Feynman path integral measure $ {\cal{D}}x$ is a symbolic way of writing the limit $ N\to \infty$,
$\displaystyle {\cal{D}}x = \lim_{N\to \infty} \int dx_1...dx_{N-1} \left(\frac{M}{2\pi i \varepsilon}\right)^\frac{N}{2}.$     (161)


next up previous contents index
Next: Double Path Integrals Up: Feynman-Vernon Influence Functional Theories Previous: Introduction, Motivation   Contents   Index
Tobias Brandes 2004-02-18