next up previous contents index
Next: Propagator for Damped Harmonic Up: Applications: Linear Coupling, Damped Previous: Applications: Linear Coupling, Damped   Contents   Index

Linear Coupling

In many applications, one assumes (often for simplicity) a linear coupling to the bath,
$\displaystyle H_B[x]+H_{SB}[xq]$ $\displaystyle =$ $\displaystyle \sum_{\alpha=1}^N \left[
\frac{p_\alpha^2}{2M_\alpha}+ \frac{1}{2...
...ha^2 \left(x_\alpha -
\frac{c_\alpha}{M_\alpha\Omega_\alpha^2}q\right)^2\right]$  
  $\displaystyle =$ $\displaystyle \sum_{\alpha=1}^N \left[
\frac{p_\alpha^2}{2M_\alpha}+ \frac{1}{2...
...pha q x_\alpha
+\frac{1}{2}\frac{c_\alpha^2}{M_\alpha\Omega_\alpha^2}q^2\right]$  
$\displaystyle {\cal F}[q_{t'},q'_{t'}]$ $\displaystyle =$ $\displaystyle \exp \left\{-\Phi[q_{t'},q'_{t'}] \right\}$   Influence Functional  
$\displaystyle \Phi[q_{t'},q'_{t'}]$ $\displaystyle =$ $\displaystyle \int_{0}^{t}dt'\int_{0}^{t'}ds \left\{
q_{t'} - q'_{t'} \right\}
\left\{ L(t'-s) q_{s} - L^*(t'-s) q'_{s}\right\}$  
  $\displaystyle +$ $\displaystyle i \frac{\mu}{2}\int_0^t dt'\left\{ q_{t'}^2-(q'_{t'})^2 \right\}$ (208)

Here, the kernel $ L(t)$ and the spectral density $ J(\omega)$ are
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
L(\tau)&\equiv& \frac{1}...
...rac{\beta\omega}{2}
\cos \omega \tau - i \sin \omega \tau\right)\end{array}$\ }$      
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
J(\omega)&\equiv& \frac{...
..._\alpha^2}{M_\alpha\Omega_\alpha} \delta(\omega-\Omega_\alpha).
\end{array}$\ }$     (209)

Note that in this form, an additional term appears in $ H_{SB}$ as a potential
$\displaystyle V_{\rm counter}(q) \equiv \frac{1}{2}\mu q^2,\quad \mu \equiv
\fr...
...\alpha\Omega_\alpha^2}=\frac{2}{\pi}
\int_{0}^{\infty}\frac{J(\omega)}{\omega}.$     (210)

Since the action $ S$ appears as $ \exp(iS[q])$ in the path integral for $ q$ and $ \exp(-iS[q])$ in the path integral for $ q'$, we could absorb the counter term into the influence phase as

$\displaystyle \exp (i \frac{\mu}{2}\int_0^t dt'\left\{ q_{t'}^2-(q'_{t'})^2 \right\}).$

Note that the entire information on the coupling to the bath is now contained in the spectral density $ J(\omega)$, which we have defined following the notation of Weiss, `Quantum Dissipative Systems'.


next up previous contents index
Next: Propagator for Damped Harmonic Up: Applications: Linear Coupling, Damped Previous: Applications: Linear Coupling, Damped   Contents   Index
Tobias Brandes 2004-02-18