next up previous contents index
Next: `Re-Exponentiation' Up: Feynman-Vernon Influence Functional Theories Previous: Propagator for Damped Harmonic   Contents   Index

Another Look at Influence Functionals for General Baths

(This sub-section is partly due to private communications from W. Zwerger). Feynman and Vernon realised that the coupling of a system $ S$ to any bath $ B$ can be mapped onto the coupling to an equivalent oscillator bath, if the coupling is weak and second order perturbation theory can be applied: let us have another look at the operator form of the influence functional, Eq. (7.174),
$\displaystyle {\cal F}[q(t'),q'(t')]$ $\displaystyle \equiv$ $\displaystyle {\rm Tr_B} \left(\rho_B U_B^{\dagger}[q'] U_B[q] \right)$  
$\displaystyle H_{B}(t)$ $\displaystyle =$ $\displaystyle H_0+ V(t), \quad H'_{B}(t)= H_0+ V'(t),$ (211)

where $ U_B[q]$ is the time-evolution operator for $ H_{B}(t)$ and $ U_B^{\dagger}[q']$ the (backwards in time) evolution operator for $ H'_{B}(t)$. Here, $ H_{B}(t)$ and $ H'_{B}(t)$ refer to different paths $ q$ and $ q'$.

Example: For a Fermi bath, we could have

$\displaystyle H_0= \sum_k \varepsilon_k c^{\dagger}_k c_k,\quad V(t)\equiv V[q_t] =
\sum_{kk'} M_{kk'} \exp ({i(k-k')q_{t}}) c^{\dagger}_{k'} c_k.$     (212)

where $ c^{\dagger}_k$ creates a Fermion with quantum number $ k$.

We again introduce the interaction picture and write

$\displaystyle U_B[q]$ $\displaystyle =$ $\displaystyle e^{-iH_0t} \left\{ 1 + i \int_{0}^{t}dt' \tilde{V}(t') - \int_{0}^{t}\int_{0}^{t'}dt'ds
\tilde{V}(t')\tilde{V}(s)+...\right\}$  
$\displaystyle U^{\dagger}_B[q']$ $\displaystyle =$ $\displaystyle \left\{ 1 - i \int_{0}^{t}dt' \tilde{V'}(t') - \int_{0}^{t}\int_{0}^{t'}dt'ds
\tilde{V'}(s)\tilde{V'}(t')+...\right\}e^{iH_0t}$ (213)

The product of the two time-evolution operators therefore becomes
$\displaystyle U^{\dagger}_B[q'] U_B[q]$ $\displaystyle =$ $\displaystyle 1 - i \int_{0}^{t}dt' \left\{ \tilde{V'}(t') - \tilde{V}(t') \right\}
+ \int_{0}^{t}dt' \tilde{V'}(t') \int_{0}^{t}ds \tilde{V}(s)$  
  $\displaystyle -$ $\displaystyle \int_{0}^{t}\int_{0}^{t'}dt'ds \left\{ \tilde{V'}(s)\tilde{V'}(t') + \tilde{V}(t')\tilde{V}(s)\right\}
+...$  
  $\displaystyle =$ $\displaystyle 1 - i \int_{0}^{t}dt' \left\{ \tilde{V'}(t') - \tilde{V}(t') \rig...
...t}dt'ds \left\{ \tilde{V'}(t')\tilde{V}(s) +\tilde{V'}(s)\tilde{V}(t')
\right\}$  
  $\displaystyle -$ $\displaystyle \int_{0}^{t}\int_{0}^{t'}dt'ds \left\{ \tilde{V'}(s)\tilde{V'}(t') + \tilde{V}(t')\tilde{V}(s)\right\}
+...$  
  $\displaystyle =$ $\displaystyle 1 - i \int_{0}^{t}dt' \left\{ \tilde{V'}(t') - \tilde{V}(t') \rig...
...'}dt'ds \left\{ \tilde{V'}(t')\tilde{V}(s) +\tilde{V'}(s)\tilde{V}(t')
\right\}$  
  $\displaystyle -$ $\displaystyle \int_{0}^{t}\int_{0}^{t'}dt'ds \left\{ \tilde{V'}(s)\tilde{V'}(t') + \tilde{V}(t')\tilde{V}(s)\right\}
+...$  
  $\displaystyle =$ $\displaystyle 1 - i \int_{0}^{t}dt' \left\{ \tilde{V'}(t') - \tilde{V}(t') \rig...
...'}dt'ds \left\{\left[ \tilde{V'}(t')-\tilde{V}(t')\right] \tilde{V}(s) \right\}$  
  $\displaystyle -$ $\displaystyle \int_{0}^{t}\int_{0}^{t'}dt'ds \left\{\tilde{V'}(s)
\left[ \tilde{V'}(t') - \tilde{V}(t')\right]\right\}+...$ (214)

In order to be a little bit more definite, a useful parametrisation of the interaction operators might be
$\displaystyle \hat{V}(t)\equiv \sum_{\alpha\beta}g_{\alpha\beta}(t) \hat{X}_{\a...
...
\hat{V'}(t)\equiv \sum_{\alpha\beta}g'_{\alpha\beta}(t) \hat{X}_{\alpha\beta},$     (215)

with bath operators $ \hat{X}_{\alpha\beta}$. Note that this comprises the cases considered so far (harmonic oscillator, Fermi bath). Taking the trace over $ \rho_B$, we obtain
$\displaystyle {\cal F}[q(t'),q'(t')]$ $\displaystyle \equiv$ $\displaystyle {\rm Tr_B} \left(\rho_B U_B^{\dagger}[q'] U_B[q] \right)\equiv
\langle U_B^{\dagger}[q'] U_B[q] \rangle_0$  
  $\displaystyle =$ $\displaystyle 1 - i\sum_{\alpha\beta} \int_{0}^{t}dt' \left\{ g'_{\alpha\beta}(t')-g_{\alpha\beta}(t')\right\}
\langle \tilde{X}_{\alpha\beta}(t') \rangle_0$  
  $\displaystyle +$ $\displaystyle \sum_{\alpha\beta\gamma\delta}
\int_{0}^{t}\int_{0}^{t'}dt'ds \le...
...ta}(s) \langle \tilde{X}_{\alpha\beta}(t') \tilde{X}_{\gamma\delta}(s)\rangle_0$  
  $\displaystyle -$ $\displaystyle g'_{\gamma\delta}(s) \langle \tilde{X}_{\gamma\delta}(s) \tilde{X}_{\alpha\beta}(t') \rangle_0
\Big]
+...$ (216)

Introducing the correlation tensor
$\displaystyle L_{\alpha\beta\gamma\delta}(t',s)\equiv
\langle \tilde{X}_{\alpha\beta}(t') \tilde{X}_{\gamma\delta}(s)\rangle_0,$     (217)

this can be written as
    $\displaystyle {\cal F}[q(t'),q'(t')] = 1 - i\sum_{\alpha\beta} \int_{0}^{t}dt' ...
...}(t')-g_{\alpha\beta}(t')\right\}
\langle \tilde{X}_{\alpha\beta}(t') \rangle_0$  
  $\displaystyle +$ $\displaystyle \sum_{\alpha\beta\gamma\delta}
\int_{0}^{t}\int_{0}^{t'}dt'ds \le...
...amma\delta}(t',s) - g'_{\gamma\delta}(s)
L_{\gamma\delta\alpha\beta}(s,t')\Big]$  
  $\displaystyle +$ $\displaystyle ...$ (218)



Subsections
next up previous contents index
Next: `Re-Exponentiation' Up: Feynman-Vernon Influence Functional Theories Previous: Propagator for Damped Harmonic   Contents   Index
Tobias Brandes 2004-02-18