next up previous contents index
Next: Application: Polaron-Transport Up: `Semiclassical' Limit for Damped Previous: Discussion   Contents   Index

Linear Dissipation (`Ohmic Bath')

The influence phase for the linear model, Eq.(7.212), the influence phase is (cf. Eq. (7.235,7.214,7.213))
$\displaystyle \Phi[x_{t'},y_{t'}]$ $\displaystyle =$ $\displaystyle \int_{0}^{t}dt'\int_{0}^{t'}ds
y_{t'}
\left\{ \mbox{\rm Re }L(t'-s) y_{s} + 2i \mbox{\rm Im }L(t'-s) x_{s}\right\}$  
  $\displaystyle +$ $\displaystyle i {\mu}\int_0^t dt'x_{t'}y_{t'},\quad
\mu \equiv
\frac{1}{2}\sum_...
..._\alpha\Omega_\alpha^2}=\frac{2}{\pi}
\int_{0}^{\infty}\frac{J(\omega)}{\omega}$  
$\displaystyle L(\tau)$ $\displaystyle \equiv$ $\displaystyle \frac{1}{\pi} \int_{0}^{\infty}d\omega J(\omega)
\left( \coth \frac{\beta\omega}{2}
\cos \omega \tau - i \sin \omega \tau\right),$ (250)

whence the deterministic friction force $ F_B[x_s,t']$ becomes
$\displaystyle F_B[x_s,t']$ $\displaystyle =$ $\displaystyle \mu x_{t'} + \int_{0}^{t'}ds 2$Im $\displaystyle L(t'-s) x_{s}$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\infty}d\omega\frac{J(\omega)}{\omega}x_{t...
...\pi}\int_{0}^{\infty}d\omega J(\omega) \int_{0}^{t'}ds \sin \omega (t'-s) x_{s}$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\infty}d\omega\frac{J(\omega)}{\omega}x_{t...
...'}{\omega}x_0
- \int_{0}^{t'}ds\frac{\cos \omega(t'-s)}{\omega}\dot{x}_s\right]$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\infty}d\omega J(\omega)
\left[ \frac{\cos...
...}{\omega}x_0 + \int_{0}^{t'}ds\frac{\cos \omega(t'-s)}{\omega}\dot{x}_s\right].$ (251)

The term $ x_{t'}$ from the integration by parts has cancelled exactly with the counter-term $ \mu x_{t'}$. If one now assumes a linear spectral function $ J(\omega)$,
$\displaystyle J_{\rm ohmic} (\omega)\equiv \eta \omega,$     (252)

we recover the original Caldeira-Leggett description of quantum friction (plus the additional term $ 2 \eta x_0 \delta(t')$ that was missing there, cf. A. O. Caldeira, A. J. Leggett, Physica 121 A, 587 (1983); ibid. 130 A, 374(E), (1985); Weiss book chapter 5.1),
$\displaystyle F_{\rm ohmic}[x_s,t']$ $\displaystyle =$ $\displaystyle \frac{2\eta}{\pi} \int_{0}^{\infty}d\omega
\left[x_0\cos \omega t'+ \int_{0}^{t'}ds\cos \omega(t'-s)\dot{x}_s\right]$  
  $\displaystyle =$ $\displaystyle 2 \eta x_0 \delta(t') + 2 \eta \int_{0}^{t'}ds \delta(t'-s) \dot{x}_s
= 2 \eta x_0 \delta(t') + \eta \dot{x}_{t'}.$ (253)

The resulting stochastic equation of motion Eq. (7.251) is
$\displaystyle M\ddot{x}_{t'} + \eta \dot{x}_{t'} + V'(x_{t'}) =\xi_{t'} -2 \eta x_0 \delta(t').$     (254)

Note that the `awkward' term $ 2 \eta x_0 \delta(t')$ brings in a dependence on the `initial condition' $ x_0$.


next up previous contents index
Next: Application: Polaron-Transport Up: `Semiclassical' Limit for Damped Previous: Discussion   Contents   Index
Tobias Brandes 2004-02-18