next up previous contents index
Next: Constant Up: Time-dependent Hamiltonians Previous: Time-dependent Hamiltonians   Contents   Index

Spin \bgroup\color{col1}$ \frac{1}{2}$\egroup in Magnetic Field

This case is, for example, extremely important for NMR (nuclear magnetic resonance). Even here the Hamiltonian \bgroup\color{col1}$ {\mathcal H}(t)$\egroup is in general not exactly soluble, its form is
$\displaystyle {\mathcal H}(t)$ $\displaystyle \equiv$ $\displaystyle {\bf B}(t)$   $\displaystyle \mbox{\boldmath$\sigma$}$$\displaystyle \equiv B_x(t) \hat{\sigma}_{x} + B_y(t) \hat{\sigma}_{y}+ B_z(t) \hat{\sigma}_{z}$  
  $\displaystyle \equiv$ $\displaystyle \left( \begin{matrix}B_z(t) & B_{\Vert}^*(t)\\
B_{\Vert}(t) & - B_z(t)\end{matrix}\right),\quad B_{\Vert}(t)\equiv B_x(t) + i B_y(t),$ (2.1)

where the Pauli-matrices are defined as
$\displaystyle \hat{\sigma}_{x}$ $\displaystyle \equiv$ $\displaystyle \begin{pmatrix}0 & 1  1 & 0 \end{pmatrix},\quad
\hat{\sigma}_{y...
...hat{\sigma}_{z}\equiv \left( \begin{matrix}1 & 0  0 & -1 \end{matrix}\right).$ (2.2)

Why is that so difficult? Let us write the Schrödinger equation
$\displaystyle i\partial_t \vert\Psi(t)\rangle$ $\displaystyle =$ $\displaystyle {\mathcal H}(t)\vert\Psi(t)\rangle,\quad
\vert\Psi(t)\rangle \equiv \begin{pmatrix}\psi_1(t)  \psi_2(t)\end{pmatrix}$  
$\displaystyle \leadsto i\frac{d}{dt}\psi_1(t)$ $\displaystyle =$ $\displaystyle B_z(t) \psi_1(t) + B_{\Vert}^*(t) \psi_2(t)$  
$\displaystyle i\frac{d}{dt}\psi_2(t)$ $\displaystyle =$ $\displaystyle B_{\Vert}(t) \psi_1(t) - B_z(t) \psi_2(t).$ (2.3)

We assume \bgroup\color{col1}$ { B_{\Vert}}\ne 0$\egroup and write (omit the \bgroup\color{col1}$ t$\egroup-dependence for a moment)
$\displaystyle \psi_1$ $\displaystyle =$ $\displaystyle \frac{i\dot{\psi}_2 + B_z \psi_2}{ B_{\Vert}}$ (2.4)
$\displaystyle i \ddot{\psi}_2$ $\displaystyle =$ $\displaystyle \dot{B_{\Vert}} \psi_1 + B_{\Vert}\dot{\psi_1} - \dot{B_z} \psi_2 - B_{z}\dot{\psi_2}$  
  $\displaystyle =$ $\displaystyle \frac{\dot{B_{\Vert}}}{B_{\Vert}} [ i\dot{\psi}_2 + B_z \psi_2] -...
...\Vert} [B_z \psi_1 + B_{\Vert}^* \psi_2]
- \dot{B_z} \psi_2 - B_{z}\dot{\psi_2}$  
  $\displaystyle =$ $\displaystyle \frac{\dot{B_{\Vert}}}{B_{\Vert}} [ i\dot{\psi}_2 + B_z \psi_2]
-...
...z \psi_2] -iB_{\Vert} B_{\Vert}^* \psi_2
- \dot{B_z} \psi_2 - B_{z}\dot{\psi_2}$  
  $\displaystyle =$ $\displaystyle i\frac{\dot{B_{\Vert}}}{B_{\Vert}} \dot{\psi}_2 + \left[ \frac{\d...
...}{B_{\Vert}} B_z
-i B_z^2 -i \vert B_{\Vert}\vert^2 - \dot{B}_z \right] \psi_2.$ (2.5)

This is a second order ODE with time-dependent coefficients, which in general is not solvable in terms of known functions (it can of course be solved numerically quite easily).



Subsections
next up previous contents index
Next: Constant Up: Time-dependent Hamiltonians Previous: Time-dependent Hamiltonians   Contents   Index
Tobias Brandes 2005-04-26