next up previous contents index
Next: Gauge invariance in single-particle Up: Potentials Previous: Gauge Transformations   Contents   Index

Coulomb Gauge

In the Coulomb gauge one sets
$\displaystyle \mathbf{A}_\Vert =0 \leadsto {\bf k}\hat{\mathbf{A}}({\bf k})=0 \leadsto \div\mathbf{A}=0.$     (1.16)

The vector potential \bgroup\color{col1}$ \mathbf{A}= \mathbf{A}_\perp$\egroup is purely transverse in the Coulomb gauge. We then have
$\displaystyle \hat{\mathbf{E}}({\bf k})$ $\displaystyle =$ $\displaystyle -i {\bf k}\phi({\bf k}) - \partial_t\hat{\mathbf{A}}({\bf k})\leadsto$  
$\displaystyle {\bf k} \hat{\mathbf{E}}({\bf k})$ $\displaystyle =$ $\displaystyle -i{\bf k} {\bf k}\phi({\bf k}) - \partial_t{\bf k}\hat{\mathbf{A}}({\bf k})
= -i{\bf k} {\bf k}\phi({\bf k})$ (1.17)
$\displaystyle \leadsto -i \rho({\bf k})/\varepsilon_0$ $\displaystyle =$ $\displaystyle -i{\bf k} {\bf k}\phi({\bf k})
\leadsto \nabla^2 \phi({\bf r},t) = -\rho({\bf r},t)/\varepsilon_0,$ (1.18)

which is the Poisson equation.



Tobias Brandes 2005-04-26