next up previous contents index
Next: Some Remarks on Fields Up: Gauge invariance for many Previous: Coulomb Gauge   Contents   Index

Power-Zienau-Woolley Transformation

One can now show that the Coulomb gauge Hamiltonian \bgroup\color{col1}$ {\mathcal H}_{\rm Coul} (t)$\egroup can be transformed into a Hamiltonian \bgroup\color{col1}$ {\mathcal H}(t)$\egroup in any other gauge as specified by \bgroup\color{col1}$ {\bf g}_\perp$\egroup and given by Eq. (VII.3.8). This is achieved by the so-called Power-Zienau-Woolley Transformation which is a unitary transformation of the Coulomb gauge Hamiltonian \bgroup\color{col1}$ {\mathcal H}_{\rm Coul} (t)$\egroup,
$\displaystyle {\mathcal H}(t) = \Lambda^{-1} {\mathcal H}_{\rm Coul} (t)\Lambda...
...da \equiv \exp \left[i \int d{\bf r} \mathbf{A}({\bf r},t) \P({\bf r}) \right].$     (3.12)

A relation can be derived between \bgroup\color{col1}$ \mathbf{A}$\egroup and \bgroup\color{col1}$ \mathbf{A}_{\rm Coul}$\egroup, cf. Woolley [8],
$\displaystyle \mathbf{A}({\bf r},t) = \mathbf{A}_{\rm Coul}({\bf r},t) - \div\int d{\bf r}' \mathbf{A}_{\rm Coul}({\bf r}',t){\bf g}_\perp({\bf r}',{\bf r}).$     (3.13)

If this is inserted into \bgroup\color{col1}$ {\mathcal H}(t)$\egroup, Eq. (VII.3.8), one obtains
$\displaystyle {\mathcal H}(t)$ $\displaystyle =$ $\displaystyle H(t) + H_{\rm rad}$  
$\displaystyle H_{\rm rad}$ $\displaystyle =$ $\displaystyle \frac{1}{2}\int d{\bf r} \left[ \varepsilon_0 \mathbf{E}_\perp^2 + \mu_0^{-1} \mathbf{B}^2\right]$ (3.14)
$\displaystyle H(t)$ $\displaystyle =$ $\displaystyle \sum_n \frac{{\bf p}_n^2}{2m_n} + V_{\rm Coul}+
V_{\bf EP}+V_{\bf PP}+$   magnetic terms  
$\displaystyle V_{\rm Coul}$ $\displaystyle \equiv$ $\displaystyle \frac{1}{2}\sum_{n,m}\frac{q_nq_m}{4\pi\varepsilon_0\vert{\bf r}_n-{\bf r}_m\vert}$  
$\displaystyle V_{\bf EP}$ $\displaystyle \equiv$ $\displaystyle - \int d {\bf r} \mathbf{E}_\perp \P_\perp$  
$\displaystyle V_{\bf PP}$ $\displaystyle \equiv$ $\displaystyle \frac{1}{2\varepsilon_0}\int d {\bf r} {\bf P}_\perp({\bf r})^2.$ (3.15)

Basically, apart from the magnetic terms the \bgroup\color{col1}$ {\bf pA}$\egroup coupling is transformed away and one has instead a coupling not to the vector potential, but to the electric field \bgroup\color{col1}$ \mathbf{E}_\perp $\egroup. As a slight warning, here things can again get a little bit confusing: compare the discussion in Cohen-Tannoudji, Dupont-Roc and Grynberg [7], and the lecture notes by K.P. Marzlin, http://qis.ucalgary.ca/ pmarzlin/lectures/al0203/ who gives more detailed derivations. In fact, one has to interpret the field in the transformed Hamiltonian as a displacement field \bgroup\color{col1}$ D_\perp$\egroup rather than the electric field \bgroup\color{col1}$ E_\perp$\egroup.


next up previous contents index
Next: Some Remarks on Fields Up: Gauge invariance for many Previous: Coulomb Gauge   Contents   Index
Tobias Brandes 2005-04-26