next up previous contents index
Next: Born-Oppenheimer Approximation Up: Hamiltonian Previous: Hamiltonian   Contents   Index

Angular Momentum of Two Particles

If two particles have positions \bgroup\color{col1}$ {\bf r}_1$\egroup and \bgroup\color{col1}$ {\bf r}_2$\egroup and momenta \bgroup\color{col1}$ {\bf p}_1$\egroup and \bgroup\color{col1}$ {\bf p}_2$\egroup, the angular momentum of the total system of the two particles is
$\displaystyle {\bf L}$ $\displaystyle =$ $\displaystyle {\bf r}_1 \times {\bf p}_1 + {\bf r}_2 \times {\bf p}_2.$ (1.1)

We introduce center-of-mass and relative coordinates according to
$\displaystyle {\bf R}$ $\displaystyle =$ $\displaystyle \frac{m_1{\bf r}_1+ m_2{\bf r}_2}{m_1+m_2},\quad {\bf r} = {\bf r}_2-{\bf r}_1,$ (1.2)

and furthermore momenta
$\displaystyle {\bf P}$ $\displaystyle =$ $\displaystyle {\bf p}_1 + {\bf p}_2$ (1.3)
$\displaystyle {\bf p}$ $\displaystyle =$ $\displaystyle \frac{m_1{\bf p}_2- m_2{\bf p}_1}{m_1+m_2}.$ (1.4)

Note that the relative momentum \bgroup\color{col1}$ {\bf p}$\egroup is not just the difference of the individual momenta. It is rather defined such that in terms of
$\displaystyle \mu \equiv \frac{m_1m_2}{m_1+m_2}$   reduced mass$\displaystyle ,$     (1.5)

one has
$\displaystyle \mu \dot{\bf r} = \mu (\dot{\bf r}_2 -\dot{\bf r}_1) =
\mu \left( \frac{{\bf p}_2}{m_2} -\frac{{\bf p}_1}{m_1} \right) = {\bf p}.$     (1.6)

Using these definitions, one checks
$\displaystyle {\bf L}$ $\displaystyle =$ $\displaystyle {\bf r}_1 \times {\bf p}_1 + {\bf r}_2 \times {\bf p}_2$ (1.7)
  $\displaystyle =$ $\displaystyle {\bf R} \times {\bf P} + {\bf r} \times {\bf p}.$ (1.8)

This is the sum of a center-of-mass angular momentum, \bgroup\color{col1}$ {\bf R} \times {\bf P}$\egroup, and a relative angular momentum, \bgroup\color{col1}$ {\bf r} \times {\bf p}$\egroup.


next up previous contents index
Next: Born-Oppenheimer Approximation Up: Hamiltonian Previous: Hamiltonian   Contents   Index
Tobias Brandes 2005-04-26