next up previous contents index
Next: Radial Solutions Up: Hydrogen Atom (non-relativistic) Previous: Coulomb Potential   Contents   Index

Orbital Angular Momentum

The central potential has rotational symmetry and therefore a conserved quantity, the angular momentum (Nöther's theorem [*]). Here, we introduce polar coordinates and realise that the Laplacian can be written as
$\displaystyle \Delta = \frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}
-\frac{{\bf L}^2}{\hbar^2 r^2},$     (1.9)

where the angular momentum is
$\displaystyle \hat{L}_x$ $\displaystyle =$ $\displaystyle -i\hbar \left( -\sin \varphi \frac{\partial}{\partial \theta} -\cos \varphi \cot \theta \frac{\partial}{\partial \varphi} \right)$  
$\displaystyle \hat{L}_y$ $\displaystyle =$ $\displaystyle -i\hbar \left( \cos \varphi \frac{\partial}{\partial \theta} -\sin \varphi \cot \theta \frac{\partial}{\partial \varphi} \right)$  
$\displaystyle \hat{L}_z$ $\displaystyle =$ $\displaystyle -i\hbar\frac{\partial}{\partial \varphi}.$ (1.10)

and its square is given by
$\displaystyle {\bf\hat{L}}^2=
-\hbar^2 \left[\frac{1}{\sin \theta}\frac{\partia...
...a}\right)
+\frac{1}{\sin^2 \theta}\frac{\partial^2}{\partial \varphi^2}\right].$     (1.11)

The eigenvalue equations for $ {\bf\hat{L}}^2$ and $ \hat{L}_z$ are
$\displaystyle {\bf\hat{L}}^2 Y_{lm}(\theta,\varphi)$ $\displaystyle =$ $\displaystyle \hbar^2 l(l+1)Y_{lm}(\theta,\varphi),\quad
l=0,1,2,3,...$ (1.12)
$\displaystyle \hat{L}_z Y_{lm}(\theta,\varphi)$ $\displaystyle =$ $\displaystyle \hbar m Y_{lm}(\theta,\varphi),$ (1.13)

where the spherical harmonics have quantum numbers $ {\color{col1}l}$ and $ {\color{col1}m}$ and the explicit form
$\displaystyle Y_{lm}(\theta,\varphi)$ $\displaystyle =$ $\displaystyle (-1)^{(m+\vert m\vert)/2}i^l
\left[\frac{2l+1}{4\pi}\frac{(l-\ver...
...}{(l+\vert m\vert)!}\right]^{1/2}
P_l^{\vert m\vert}(\cos \theta) e^{im\varphi}$  
$\displaystyle P_l^{\vert m\vert}(x)$ $\displaystyle :=$ $\displaystyle \frac{1}{2^ll!}(1-x^2)^{\vert m\vert/2}\frac{d^{l+\vert m\vert}}{d x^{l+\vert m\vert}}(x^2 -1)^l$  
$\displaystyle l$ $\displaystyle =$ $\displaystyle 0,1,2,3,...;\quad m= -l,-l+1,-l+2,...,l-1,l.$ (1.14)

The $ P_l^{\vert m\vert}$ are called associated Legendre polynomials. The spherical harmonics are an orthonormal function system on the surface of the unit sphere $ \vert{\bf x}\vert=1$. We write the orthonormality relation both in our abstract bra -ket and in explicit form:
$\displaystyle \vert lm\rangle$ $\displaystyle \longleftrightarrow$ $\displaystyle Y_{lm}(\theta,\varphi)$ (1.15)
$\displaystyle \langle l'm'\vert lm \rangle = \delta_{ll'}\delta_{mm'}$ $\displaystyle \longleftrightarrow$ $\displaystyle \int_0^{2\pi} \int_0^{\pi}
Y_{l'm'}^*(\theta,\varphi)Y_{lm}(\theta,\varphi)\sin \theta d\theta d \varphi =
\delta_{ll'}\delta_{mm'}.$  

The spherical harmonics with $ l=0,1,2,3,4,...$ are denoted as $ s$-, $ p$-, $ d$-, $ f$-, $ g$-,... functions which you might know already from chemistry (`orbitals'). The explicit forms for some of the first sphericals are
$\displaystyle Y_{00}=\frac{1}{\sqrt{4\pi}},\quad
Y_{10}= i \sqrt{\frac{3}{4\pi}...
...quad
Y_{1\pm 1}= \mp i \sqrt{\frac{3}{8\pi}}\sin \theta \cdot e^{\pm i\varphi}.$     (1.16)

Figure: Absolute squares of various spherical harmonics. From http://mathworld.wolfram.com/SphericalHarmonic.html
Image /.automount/brandes/home/brandes/brandes/tex/qm2005//s2img1808.gif

Further information on spherical harmonics in various books and under

http://mathworld.wolfram.com/SphericalHarmonic.htmlhttp://mathworld.wolfram.com/SphericalHarmonic.html.

The Spherical harmonics are used in many areas of science, ranging from nuclear physics up to computer vision tasks. If you like online physics teaching, have a look at

http://scienceworld.wolfram.com/physics/HydrogenAtom.htmlhttp://scienceworld.wolfram.com/physics/HydrogenAtom.html .


next up previous contents index
Next: Radial Solutions Up: Hydrogen Atom (non-relativistic) Previous: Coulomb Potential   Contents   Index
Tobias Brandes 2005-04-26