next up previous contents index
Next: Exact solution Up: A `Mini-Molecule': Perturbation Theory Previous: A `Mini-Molecule': Perturbation Theory   Contents   Index

Example: Two-Level System

Figure: Vector representation of left and right lowest states of double well potential.
\includegraphics[width=0.4\textwidth]{dwell3b} \includegraphics[width=0.4\textwidth]{dwell3a}

The two-level system describes a particle in an `abstract' double well with just two states. We associate a Hamiltonian \bgroup\color{col1}$ \hat{H_0}$\egroup with the two isolated wells: the unperturbated Hamiltonian is a two-by-two matrix,

\begin{displaymath}\hat{H}_0=\left(
\begin{array}{cc}
\varepsilon_L & 0\\
0 & \...
... \quad
\hat{H}_0 \vert R\rangle = \varepsilon_R \vert R\rangle,\end{displaymath}     (2.2)

i.e., \bgroup\color{col1}$ \vert L\rangle$\egroup is eigenvector of \bgroup\color{col1}$ \hat{H}_0$\egroup with eigenvalue \bgroup\color{col1}$ E_L$\egroup and \bgroup\color{col1}$ \vert R\rangle$\egroup is eigenvector with eigenvalue \bgroup\color{col1}$ E_R$\egroup. The tunnel effect is considered as a perturbation \bgroup\color{col1}$ \hat{H}_1$\egroup to \bgroup\color{col1}$ \hat{H}_0$\egroup,
\begin{displaymath}\hat{H}_1= \left(
\begin{array}{cc}
0 & T_c\\
T_c & 0
\end{a...
...n}{2} & T_c\\
T_c & -\frac{\varepsilon}{2}
\end{array}\right),\end{displaymath}     (2.3)

with a tunnel coupling \bgroup\color{col1}$ T_c$\egroup (real parameter). We furthermore set \bgroup\color{col1}$ \varepsilon_L\equiv \varepsilon/2$\egroup and \bgroup\color{col1}$ \varepsilon_R = -\varepsilon/2$\egroup.



Subsections
next up previous contents index
Next: Exact solution Up: A `Mini-Molecule': Perturbation Theory Previous: A `Mini-Molecule': Perturbation Theory   Contents   Index
Tobias Brandes 2005-04-26