next up previous contents index
Next: -Boson systems Up: Basis vectors for Fermi Previous: -particle system   Contents   Index

Permutations

There are \bgroup\color{col1}$ N!$\egroup permutations of \bgroup\color{col1}$ N$\egroup particles. We label the permutations by \bgroup\color{col1}$ N!$\egroup indices \bgroup\color{col1}$ p$\egroup and define a permutation operator \bgroup\color{col1}$ \hat{\Pi}_p$\egroup, for example
$\displaystyle \hat{\Pi}_{p=(1,3)} \Psi(\xi_1,\xi_2,\xi_3)$ $\displaystyle =$ $\displaystyle \Psi(\xi_3,\xi_2,\xi_1)$ (1.7)
$\displaystyle \hat{\Pi}_{p=(1,2,3)} \Psi(\xi_1,\xi_2,\xi_3)$ $\displaystyle =$ $\displaystyle \hat{\Pi}_{p=(2,3)}\Psi(\xi_2,\xi_1,\xi_3)=
\Psi(\xi_2,\xi_3,\xi_1)$ (1.8)

We furthermore define the symmetrization operator \bgroup\color{col1}$ \hat{S}$\egroup and the anti-symmetrization operator \bgroup\color{col1}$ \hat{A}$\egroup,
$\displaystyle \hat{S}$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{N!}}\sum_p \hat{\Pi}_p$ (1.9)
$\displaystyle \hat{A}$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{N!}}\sum_p \hat{\Pi}_p {\rm sign}(p),$ (1.10)

where \bgroup\color{col1}$ {\rm sign}(p)$\egroup is the sign of the permutation which is either \bgroup\color{col1}$ -1$\egroup or \bgroup\color{col1}$ +1$\egroup, \bgroup\color{col1}$ {\rm sign}(p)=({-1})^{n(p)}$\egroup where \bgroup\color{col1}$ n(p)$\egroup is the number of swaps required to achieve the permutation \bgroup\color{col1}$ p$\egroup.


next up previous contents index
Next: -Boson systems Up: Basis vectors for Fermi Previous: -particle system   Contents   Index
Tobias Brandes 2005-04-26