next up previous contents index
Next: 2-Fermion Systems Up: Basis vectors for Fermi Previous: -Boson systems   Contents   Index

\bgroup\color{col1}$ N$\egroup-Fermion systems

In this case, we have to use anti-symmetrized states with anti-symmetric wave functions,
    $\displaystyle \vert\nu_1,...,\nu_N\rangle_A= \hat{A}\vert\nu_1,...,\nu_N\rangle =
\frac{1}{\sqrt{N!}}\sum_p \hat{\Pi}_p{\rm sign}(p)\vert\nu_1,...,\nu_N\rangle$  
  $\displaystyle \leftrightarrow$ $\displaystyle \langle \xi_1,...,\xi_N \vert\nu_1,...,\nu_1\rangle_A
\equiv
\fra...
...!}}\sum_p \hat{\Pi}_p {\rm sign}(p)
\psi_{\nu_1}( \xi_1)...
\psi_{\nu_N}(\xi_N)$  
  $\displaystyle =$ \begin{displaymath}\frac{1}{\sqrt{N!}}
\left\vert
\begin{array}{cccc}
\psi_{\nu_...
... \xi_2) & ... & \psi_{\nu_N}( \xi_N)\\
\end{array}\right\vert.\end{displaymath} (1.24)

These determinants are called Slater determinants. Finally, we remark that in Slater determinants we can let the permutations all operate either on the coordinates \bgroup\color{col1}$ \xi_i$\egroup, or all on the indices \bgroup\color{col1}$ \nu_i$\egroup:
    $\displaystyle \langle \xi_1,...,\xi_N \vert\nu_1,...,\nu_N\rangle_A
\equiv
\fra...
...t{N!}}\sum_p {\rm sign}(p) \psi_{\nu_1}( \xi_{p(1)})...\psi_{\nu_N}(\xi_{p(N)})$  
  $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{N!}}\sum_p {\rm sign}(p) \psi_{\nu_{p(1)}}( \xi_1)...\psi_{\nu_{p(N)}}(\xi_N).$ (1.25)

Exercise: Explicitly verify this identity for the case of \bgroup\color{col1}$ N=3$\egroup particles.

This is in particular useful when it comes to calculation of matrix elements. The last form justifies the notation

$\displaystyle \vert\nu_1,...,\nu_1\rangle_A = \frac{1}{\sqrt{N!}}\sum_p {\rm sign}(p) \vert\nu_{p(1)},...,\nu_{p(N)} \rangle.$     (1.26)


next up previous contents index
Next: 2-Fermion Systems Up: Basis vectors for Fermi Previous: -Boson systems   Contents   Index
Tobias Brandes 2005-04-26