next up previous contents index
Next: Hartree-Fock for Molecules Up: Bonding and Antibonding Previous: Symmetries of MOs in   Contents   Index

Molecular Potential Energy

Within BO approximation, the energies \bgroup\color{col1}$ E_{\pm}(R)$\egroup enter the nuclear Hamiltonian (cf. Eq. ([*]) with \bgroup\color{col1}$ \varepsilon_\alpha=E_{\pm}$\egroup) for the wave functions \bgroup\color{col1}$ \chi$\egroup
$\displaystyle \left[ \sum_{i=a,b}\frac{{\bf P}_i^2}{2M}
+ E_{\pm}(R)\right]\chi_{\pm}({\bf x}_a,{\bf x}_b)$ $\displaystyle =$ $\displaystyle E \chi_{\pm}({\bf x}_a,{\bf x}_b)$ (3.25)

of the nuclear system with \bgroup\color{col1}$ R =\vert{\bf x}_a-{\bf x}_b\vert$\egroup, cf. Eq. (V.3.1). Clearly, a separation in center-of mass and relative motion is easily done here. The potential energy for the nuclei is given by the function \bgroup\color{col1}$ E_{\pm}(R)$\egroup, cf. Eq. (V.3.22),
$\displaystyle E_{\pm}(R)= E_{1s}+\frac{e^2}{4\pi\varepsilon_0 a_0}\left[\frac{1}{R}\mp \frac{j(R)\pm k(R)}{1\pm S(R)}\right],$     (3.26)

with the explicit expression for \bgroup\color{col1}$ j(R)$\egroup, \bgroup\color{col1}$ k(R)$\egroup, \bgroup\color{col1}$ S(R)$\egroup, in Eq. (V.3.22). The parametric eigenenergies of the electronic system become the potential for the nuclei, which is the characteristic feature of the BO approximation. The corresponding potential curves are shown in Fig.(V.3.3.4).

Figure: $ E_{\pm}(R)$, Eq. (V.3.26), for the $ H_2^+$-ion in Born-Oppenheimer approximation and using the MO-LCAO Rayleigh-Ritz method, from Weissbluth [4].
\includegraphics[width=1\textwidth]{energy_H2}


next up previous contents index
Next: Hartree-Fock for Molecules Up: Bonding and Antibonding Previous: Symmetries of MOs in   Contents   Index
Tobias Brandes 2005-04-26