
INTRODUCTION

I have decided to do a project on how to approximate the ground state of a helium atom.
My project is aimed at students that have successfully completed the course of quantum
mechanics one and are interested in finding out about this area quantum mechanics.

After quantum mechanics 1 students will be able to determine directly the λ functions for
two particle systems such as the hydrogen atom and hydrogen like ions. In my
coursework project I will show the non−relativistic Schrodinger equation for the next
simplest atom the helium atom which contains three particles, cannot be solved directly.
In fact the Schrodinger equation has not been solved directly for any system which
contains more than two interacting particles. For all such systems one has to resort to
approximation methods. In my project I have considered the method of ignoring electron
repulsion, and a first order perturbation method. I wanted to write about the variation
method but chose not to as I didn’ t want to make this project too big. Since most of the
atomic and molecular systems I will deal with are relatively complicated, it is then
important that I develop a few basic approximation techniques.

THE  HELIUM ATOM
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The helium atom, as depicted in below is a three−particle system which consist of two
electrons and a nucleus whose mass is 4.0026 amu (6.6461*10−24 g) and whose charge is
+2e. I will assume that here, just as in the treatment of the hydrogen atom, the total
Schrodinger equation may be separated into two equations, one involving the
translational energy of the atom and the other involving the relative motion of the
electrons and the nucleus. I will ignore the translation energy associated with the motion
of the centre of mass of the atom in space and will concentrate my attention on the
relative motion of particles within the atom and on the energy of the relative motion.
Furthermore, in my treatment of relative motion, I will assume that the nucleus is
stationary. Although this is no exactly true, the mass of the nucleus is so much larger
(about four thousand times larger) than the combined mass of the electrons that the
resultant error is not significant. 

1. The potential energy of attraction between the first electron and the nucleus, −2e2/r1,
where r1 is the distance between the first electron and the nucleus.

2. The potential energy of attraction between the second electron and the nucleus,
−2e2/r2, where r2 is the distance between the second electron and the nucleus.

3. The potential energy of repulsion between the two electrons +e2/r12, where r12 is the
distance between two electrons.
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In writing the potential energy, I have assumed that infinite separation between any
particles represents zero potential energy of interaction. The total potential energy V for
the atom may then be expressed as
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Since V is not explicitly dependent on time, the force field is conservative, and we may
use the nonrelativistic time−independent Schrodinger amplitude equation

to calculate the family of wave functions ψ and the corresponding energies of relative
motion E. However, in writing the Hamiltonian operator in the model of the helium

atom, we must take into account the sum of the kinetic energies of the two particles (two
electrons) and must therefore include a kinetic energy operator term for each of the
particles. 

Substitution of equation (1) and (3) into equation (2) yields the complete Shrodinger
amplitude equation for relative motion in the helium atom:

Note that the Hamiltonian operator contains a Laplacian operator term for each electron
and a potential energy term for each interacting pair. The general rule requiring one
Laplacian operators term for each electron and one potential energy term for interacting
pair also holds for other more complicated multi electron systems. By following this rule,
it is not difficult to write the correct Schodinger equation for any atom we choose. The
real difficulty arises in solving the eigenvalue equation. Returning to the Schrodinger
equation (6) for the helium atom, we note that if we ignore the electron repulsion term
e2ψ/r12, we would be able to separate variables and solve the eigenvalue equation
directly. As it stand equation (6) has not been solved by any direct method. 
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FIRST APPROXIMATION: IGNORING THE ELECTRON REPULSION

Since the presence of the electron repulsion term in equation (6) prevents me from
obtaining a direct solution, as a first approximation I will assume that the electrons do
not repel one another and proceed with the calculations. By ignoring the total potential
energy of the free helium atom is given from equation (1) as 
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and the Schrodinger amplitude equation is 

where the eigenvalues E0  are the staionary state energies of reletive motion of the helium
atom assuming no electron repulsion and the eigenfunction ψ0 are the wave functions for
the helium atom in which electron repulsion is ignored.  The associated non repulsion

Hamiltonion operator is 
0?H is then

  so that (8) may be written as 

In order to separate the variables associated with the first electron from those associated
with the second electron, I will assume that the total wave function ψ0 may be expressed
as a product of two functions, such that the first function γ 1, depends only on the

coordinates of the first electron, and the second function γ 2, depends only on the
coordinates of the second electron. That is
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or more simply 
)12(21
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Substitution of equation (12) into equation (8) followed by division of both sides by 21γγ
yields 
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But the value of the first term in the bracket is in equation (13) depends only on the
coordinates of the first electron and is independent of the coordinates of the second
electron, and the value of the second term in equation (13) depends only on the
coordinates of the second electron and is independent of the coordinates of the first
electron. Since the sum of both terms is constant and since the two terms are independent
of one another, each term must separately be equal to a constant that is 
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where E0=E1+E2 (16)

Equations (14) and (15) can be rearranged to the more familiar forms of the equations
Schrodinger amplitude equation:
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Equations (17) and (18) are each recognised as being identical in form to the Schrodinger
equation for the hydrogen like ion, where Z=2. By ignoring electron repulsion we have
generated a model of the helium atom which is in effect a superposition of two He+ ions
with only one nucleus however. Solving (16) and (17) yields
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From previous knowledge I have on Quantum mechanics, I know that EH, the energy of
the hydrogen atom in the ground state, is given as 
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I will now assume that within the accuracy of the present approximation, µ my be
replaced by me without significant error so that 
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and since Z=2 for the He+ ions, E1 and E2 , as given by equations (19) and (20) may be
expressed as 

5



                                       
2
2

H
22

1

H
1

4
and

4

n

E
E

n

E
E ==

so that E0 from equation (16) becomes 









+=

2
2

2
1

H1

11
4

nn
EE

(22)

If each of the electrons in the nonrepulsive model of the helium atom is in its ground,
that is if  n1=1 and n2=1, the ground state energy of the helium assuming no electron
repulsion is 

HHe

0 82 EEE == + (23)

where +He
E

 is the ground state energy of a helium ion. 
 eV.6.13  toequivelent is which erg, 102.18 is But 11

H −×− −E Thus E0, the ground state
energy for the helium atom in my first approximation is 

( )eV6.1380 −=E (24)

The best experimental value for the energy HeE _of the helium atom in the ground state is
given in terms of the first ionization potential I, which is the minimum energy absorbed
in the reaction in which the first electron leaves the ground state of a helium atom to
become a free electron:

He (ground state) eHe +→ +
(25)

 Since the minimum kinetic energy corresponds to an ejected electron having no
translational kinetic energy, I can write the balance for equation (25) as 

+=+
HeHe EIE

 (26)

But I am able to solve the Schrodinger amplitude equation for +He
E

 directly and show by
equation 23 that 

eV4.542/0

He
−==+ EE

and I is experimentally determined to be 24.6eV. Thus from equation (26), the
experimental value for the ground state energy of a helium atom is given as

eV0.79eV6.24eV4.54He =−−=E
 (27)

A comparison of HeE  (experimental) from equation (27) with
0E (calculated) in equation

(24) indicates that in the first approximation method, the calculated value for the ground
state energy is of a helium atom is 38% lower (algebraically) than the experimental
value. Such a large error indicates that the electron repulsion cannot be ignored.
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SECOND APPROXIMATION:
A FIRST ORDER PERTABATION METHOD

I have shown that the correct Schrodinger wave equation for the helium atom is 

Where 

Equation (2) cannot be solved directly, which means that we cannot directly evaluate the
true wave function, ψ . I have shown that if electron repulsion ignore electron repulsion
is ignored, then 

can be directly solved where, from equation (9)

and where the eigenfunctions
0ψ are the wave functions for the helium atom in which

electron repulsion is ignored. Substituting equation (30) into equation (28) yield

and substitution of equation (31) into equation (2) yields

an equation which cannot be directly solved. I will now compare equations (29) and
equations (32). The difference in the operators in the two eigenvalue equations is the

repulsion term 12
2 / re . The smaller the value of the 12

2 / re the closer the two equations

will be. If I let 12
2 / re equal zero (ignore electron repulsion) then the two equations will

be the same. This means that E values are given by Eo values and ψ functions are given

by 
0ψ functions.
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When using the perturbation method I will assume that 12
2 / re is small enough to be

considered as a minor modification or perturbation of the operator
0?H , an operator for

which we may directly calculate the eigenfunctions
0ψ . I will further hope that the

perturbation of the operator
0ψ will not be too different from ψ (which cannot be

directly evaluated)

Thus when evaluating the ground state energy of a helium atom in a given state, I will

combine the use of the correct hamiltonion operator += 0?? HH 12
2 / re with an incorrect

wave function
0ψ for that state which is regarded to be fairly close to what the correct

wave function should be. The nonrepulsive operator
0?H is said to be perturbed to the first

order by term 12
2 / re , and the present method of approximation is called a first order

perturbation method. The previous approximation method in which I ignored electron

repulsion altogether is called a zero order perturbation method, since I used
0?H directly

as the operator. This means that I added no perturbation terms to the nonrepulsive

hamiltonion that I used. It is important to mention that for a given state,
0ψ is not an

eigenfunction of H? and therefore the operation of H? on
0ψ will not yield an exact

energy eigenvalue. Rather, because of the perturbation of energy due to the repulsion

term, the value of E obtained by the operation H?on
0ψ for a given state will depend on

the relative positions of the two electrons so that an approximate average value of E
~

must be calculated through use of the mean value postulate as   
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Substituting of equation (29) into equation (33) yields
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but since for any given state, 
0E  is constant
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According to equation (35) the approximate first order energy E
~

for the helium atom in

a given state is given by the sum of
0E , the energy og the nonperturbed atom in that

same state in which electron repulsion is ignored (the zero order energy), and a term
which is equivelent to the approximate average potential energy of electron repulsion
over all space. Note that the second term of the right hand side of equation (35) would

be, according to the mean value postulate, the meen value of 12
2 / re if

0ψ were used as

the correct wave function, since the quantum mechanical operator for 12
2 / re is also

12
2 / re .

The second term of the right hand side of equation (35) is called the perturbation energy
’E .Therefore one can write

   
’0~

EEE += (36)
where the perturbation energy is
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Thus when using the perturbation method, one must think of the energy E
~

of a given

state of the helium atom as consisting of the total of
0E , the exact sum of the kinetic

energy and potential energy of the attraction in the same state calculated by ignoring

repulsion, and
’E , the approximate mean potential energy of repulsion, which in this

case is a perturbation energy. 

Since I want to evaluate
’E for ground state energy of the helium atom, (n1=1 and n2=1),

we must use 1’s orbitals for each of the electrons. From tables of Normalised Hydrogen
wave functions where Z=2
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Substituting equations (40) and (41) into equation (37) yields
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or, in terms of the co−ordinates of each of the particles,
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Substituting of the value for
0E form equation (24) and

’E from equation (44) into
equation (36) yields 

eV8740348108 ...E
~ −=+−= (45)

for the approximate ground state energy of the helium atom, as calculated by a first

order perturbation method. A comparison of E
~

(−74.8eV) with the experimental value
(−79.0eV) shows that the calculated value is about 5.3% too high algebraically. If I use

the calculatedE
~

 value to compute a value for the ionisation potential, then I get

( ) eV420874454
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E
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As compared with the experimental value of I, which is 24.6eV, the value calculated by
perturbation method is 17% too low. It appears that a comparison of calculated and
experimental first ionisation potentials is a more sensitive measure of the accuracy of the
given approximation method than is a comparison of ground state energies, the reasons
being that the ionisation potential is a measure of a difference in energy levels.
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