INTRODUCTION

| have decided to do a project on how to approximate the ground state of a helium atom.
My project is amed at students that have successfully completed the course of quantum
mechanics one and are interested in finding out about this area quantum mechanics.

After quantum mechanics 1 students will be able to determine directly the A functions for
two particle systems such as the hydrogen atom and hydrogen like ions. In my
coursework project | will show the non-relativistic Schrodinger equation for the next
simplest atom the helium atom which contains three particles, cannot be solved directly.
In fact the Schrodinger equation has not been solved directly for any system which
contains more than two interacting particles. For all such systems one has to resort to
approximation methods. In my project | have considered the method of ignoring electron
repulsion, and a first order perturbation method. | wanted to write about the variation
method but chose not to as | didn’t want to make this project too big. Since most of the
atomic and molecular systems | will dea with are relatively complicated, it is then
important that | develop afew basic approximation techniques.

THE HELIUM ATOM




The helium atom, as depicted in below is a three—particle system which consist of two
electrons and a nucleus whose mass is 4.0026 amu (6.6461* 10> g) and whose charge is
+2e. | will assume that here, just as in the treatment of the hydrogen atom, the tota
Schrodinger equation may be separated into two equations, one involving the
trandational energy of the atom and the other involving the relative motion of the
electrons and the nucleus. | will ignore the trandation energy associated with the motion
of the centre of mass of the atom in space and will concentrate my attention on the
relative motion of particles within the atom and on the energy of the relative motion.
Furthermore, in my treatment of relative motion, | will assume that the nucleus is
stationary. Although this is no exactly true, the mass of the nucleus is so much larger
(about four thousand times larger) than the combined mass of the electrons that the
resultant error is not significant.
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1. The potentia energy of attraction between the first electron and the nucleus, —2€/r,,
wherer; is the distance between the first € ectron and the nucleus.

2. The potential energy of attraction between the second electron and the nucleus,
-2€?/r,, wherer, is the distance between the second el ectron and the nucleus.

3. The potential energy of repulsion between the two electrons +&%/r,, where ry, is the
distance between two electrons.



In writing the potential energy, | have assumed that infinite separation between any
particles represents zero potential energy of interaction. The total potential energy V for
the atom may then be expressed as

— = Q

Since V is not explicitly dependent on time, the force field is conservative, and we may
use the nonrel ativistic time—-independent Schrodinger amplitude equation
Hy = By, @

to calculate the family of wave functions { and the corresponding energies of relative
motion E. However, in writing the Hamiltonian operator in the model of the helium
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wherem, isthemassof each electron. Thefirst Laplacian operator, 0> operatesonly on
coordinates (xl, Vi, zl)of thefirst electron, and the second | apl acian operator, (12 operates
only on coordinates(x,, y, , z, )of thesecond electron, that is,
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atom, we must take into account the sum of the kinetic energies of the two particles (two

electrons) and must therefore include a kinetic energy operator term for each of the
particles.

Substitution of equation (1) and (3) into equation (2) yields the complete Shrodinger
amplitude equation for relative motion in the helium atom:
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Note that the Hamiltonian operator contains a Laplacian operator term for each electron
and a potential energy term for each interacting pair. The general rule requiring one
Laplacian operators term for each electron and one potential energy term for interacting
pair aso holds for other more complicated multi electron systems. By following thisrule,
it is not difficult to write the correct Schodinger equation for any atom we choose. The
real difficulty arises in solving the eigenvalue equation. Returning to the Schrodinger
eguation (6) for the helium atom, we note that if we ignore the electron repulsion term
eY/r,, we would be able to separate variables and solve the eigenvalue eguation
directly. Asit stand equation (6) has not been solved by any direct method.




FIRST APPROXIMATION: IGNORING THE ELECTRON REPUL SION

Since the presence of the electron repulsion term in equation (6) prevents me from
obtaining a direct solution, as afirst approximation | will assume that the electrons do
not repel one another and proceed with the calculations. By ignoring the total potential
energy of the free helium atom is given from equation (1) as
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and the Schrodinger amplitude equation is
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where the eigenvalues E° are the staionary state energies of reletive motion of the helium
atom assuming no electron repulsion and the eigenfunction Y° are the wave functions for
the helium atom in which electron repulsion isignored. The associated non repulsion

Hamiltonion operator is |'?Oisthen
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so that (8) may be written as

HY = EG° (10)
In order to separate the variables associated with the first electron from those associated
with the second electron, | will assume that the total wave function |° may be expressed
as a product of two functions, such that the first function Y ;, depends only on the

coordinates of the first electron, and the second function Y ,, depends only on the
coordinates of the second electron. That is

WO, ¥1.2. %, 5. 2,) =Y, (%0 Y 2 Y, (%0 Y, 2,) (11
or more simply

W =vy, 12)

Substitution of equation (12) into equation (8) followed by division of both sidesby Y1Y2
yields
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But the value of the first term in the bracket isin equation (13) depends only on the
coordinates of the first electron and is independent of the coordinates of the second
electron, and the value of the second term in equation (13) depends only on the
coordinates of the second electron and is independent of the coordinates of the first
electron. Since the sum of both termsis constant and since the two terms are independent
of one another, each term must separately be equal to a constant that is
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where E°= E1+ Ez (16)

Equations (14) and (15) can be rearranged to the more familiar forms of the equations
Schrodinger amplitude equation:
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Equations (17) and (18) are each recognised as being identical in form to the Schrodinger
equation for the hydrogen like ion, where Z=2. By ignoring electron repulsion we have
generated a model of the helium atom which isin effect a superposition of two He" ions
with only one nucleus however. Solving (16) and (17) yields
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From previous knowledge | have on Quantum mechanics, | know that Ey, the energy of
the hydrogen atom in the ground state, is given as
_-2n 2ue4
=
I will now assume that within the accuracy of the present approximation, u my be
replaced by me without significant error so that
-2n’me*

h* (21)
and since Z=2 for the He" ions, E; and E, as given by equations (19) and (20) may be
expressed as

EH
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so that E° from equation (16) becomes
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If each of the electronsin the nonrepulsive model of the helium atom isin its ground,
that isif n,=1 and n,=1, the ground state energy of the helium assuming no electron
repulsion is

E° =2E ., =8E,

He*

(23)

where B isthe ground state energy of a helium ion.

But E,, is—2.18x107" erg, whichisequivelent to—13.6eV. Thus E°, the ground state

energy for the helium atom in my first approximation is

The best experimental value for the energy Ere _of the helium atom in the ground state is
given in terms of thefirst ionization potential 1, which is the minimum energy absorbed
in the reaction in which the first electron leaves the ground state of a helium atom to
become afree electron:

He (ground state) ~ He™ +e (25)
Since the minimum kinetic energy corresponds to an gected electron having no
trandational kinetic energy, | can write the balance for equation (25) as

EHe +l = EHe* (26)

But | am able to solve the Schrodinger amplitude equation for By directly and show by
eguation 23 that

E.. =E°/2=-544eV

and | is experimentally determined to be 24.6eV. Thus from equation (26), the
experimental value for the ground state energy of a helium atom is given as

E,. = -54.4eV — 24.6eV = 79.0eV 27)

A comparison of Eve (experimental) from equation (27) with E° (calculated) in equation
(24) indicates that in the first approximation method, the calculated value for the ground
state energy is of ahelium atom is 38% lower (algebraically) than the experimental
value. Such alarge error indicates that the electron repulsion cannot be ignored.



SECOND APPROXIMATION:
A FIRST ORDER PERTABATION METHOD

| have shown that the correct Schrodinger wave equation for the helium atom is

Hy = By, @
Where
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Equation (2) cannot be solved directly, which means that we cannot directly evaluate the

true wave function, W | have shown that if electron repulsion ignore electron repulsion
isignored, then

HY®=EY° (29)
can be directly solved where, from equation (9)
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and where the eigenfunctions W~ are the wave functions for the helium atom in which
electron repulsion isignored. Substituting equation (30) into equation (28) yield

H=H° +f—2 (3D

and substitution of equation (31) into equation (2) yields

E—?Hf—zﬁu =Ey (32)

an equation which cannot be directly solved. | will now compare equations (29) and
eguations (32). The difference in the operators in the two eigenvalue equations is the

2 2
e’/r, & /Ty the closer the two equations

repulsion term . The smaller the value of the

2
will be. If I let © I, equal zero (ignore electron repulsion) then the two equations will
be the same. This means that E values are given by E°values and W functions are given

0
by ¥~ functions.
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When using the perturbation method | will assume that € /"zis small enough to be

considered as a minor modification or perturbation of the operator |'?0, an operator for
0
which we may directly calculate the eigenfunctions W™ 1 will further hope that the

0
perturbation of the operator W™ will not be too different from ¥ (which cannot be
directly evaluated)

Thus when evaluating the ground state energy of a helium atom in a given state, | will
2
combine the use of the correct hamiltonion operator H=H®+ € /T2 yith an incorrect

0
wave function ¥ for that state which is regarded to be fairly close to what the correct

wave function should be. The nonrepulsive operator H° is said to be perturbed to the first
2

order by term € /"2 and the present method of approximation is called a first order

perturbation method. The previous approximation method in which | ignored electron

repulsion atogether is called a zero order perturbation method, since | used |'?Odi rectly
as the operator. This means that | added no perturbation terms to the nonrepulsive

0
hamiltonion that | used. It is important to mention that for a given state, Vs not an

0
eigenfunction of H and therefore the operation of H on ¥ will not yield an exact
energy eigenvalue. Rather, because of the perturbation of energy due to the repulsion

0
term, the value of E obtained by the operation |'?on Y~ fora given state will depend on

the relative positions of the two electrons so that an approximate average value of E
must be calculated through use of the mean value postulate as
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Substituting of equation (29) into equation (33) yields
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but since for any given state, E° is congant
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According to equation (35) the approximate first order energy E for the helium atom in

a given dtate is given by the sum of E° the energy og the nonperturbed atom in that
same state in which electron repulsion is ignored (the zero order energy), and a term
which is equivelent to the approximate average potential energy of electron repulsion
over al space. Note that the second term of the right hand side of equation (35) would

2 0
be, according to the mean value postulate, the meen value of e/, if V" were used as

2
the correct wave function, since the quantum mechanical operator for € /" is also
e’/r,

The second term of the right hand side of equation (35) is called the perturbation energy
E' Therefore one can write
E=E°+E (36)
where the perturbation energy is
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Thus when using the perturbation method, one must think of the energy E of a given

state of the helium atom as consisting of the total of E° the exact sum of the kinetic
energy and potential energy of the attraction in the same state calculated by ignoring

repulsion, and E the approximate mean potential energy of repulsion, which in this
case is a perturbation energy.

Since | want to evaluate E for ground state energy of the helium atom, (n;=1 and n,=1),
we must use 1's orbitals for each of the electrons. From tables of Normalised Hydrogen
wave functions where Z=2

=3 =B&§E§ en/% (38)
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Substituting equations (40) and (41) into equation (37) yields
8
E =
ag %J. Mo (e 2r2/a0e 2r2/80)d0 (42)
or, in terms of the co—ordinates of each of the particles,
8 © 2
E =
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> E, =- —( -13.6eV) =+ 34.0eV
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Substituting of the value for E”form equation (24) and E from equation (44) into
eguation (36) yields

E =-108.8+34.0 = ~74.8¢V (45)
for the approximate ground state energy of the helium atom, as calculated by a first

order perturbation method. A comparison of E (-74.8eV) with the experimental value
(=79.0eV) shows that the calculated value is about 5.3% too high algebraically. If | use
the calculated E value to compute avalue ior the ionisation potential, then | get
|l =E,. —E
= -54.4— (- 74.8)= 20.4eV
As compared with the experimental value of I, which is 24.6eV, the value calculated by
perturbation method is 17% too low. It appears that a comparison of calculated and
experimental first ionisation potentials is a more sensitive measure of the accuracy of the

given approximation method than is a comparison of ground state energies, the reasons
being that the ionisation potential is a measure of adifferencein energy levels.
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