
Numerical Solutions of Schrödinger’s Equation,

TB2

Neill Lambert

April 18, 2001

Abstract

A integration approach is taken to solve the eigenfunctions and eigen-
values of the Schrödinger Equation in a 1-Dimensional quantum well. The
’Shooting Method’, and the Runge-kutta Method, are used to intergrate
across the specified well, and calculate the eigenvalues. This will be ap-
plied to a Square Well (infinite, and finite), a (cosh2)−1 potential, and
to a potential barrier. Where appropriate, results will be compared to
expected analytical solutions.

Contents

1 Introduction 2

2 The Infinite Square Well 2
2.1 Introduction . 2

2.1.1 The Analytical Solution 3
2.2 The Shooting Method. 4
2.3 Root Finding . 6
2.4 Comparing Results . 7
2.5 The Infinite Well Program . 8

3 The Finite Square Well 8
3.1 Introduction . 8

3.1.1 The Wave Functions . 8
3.2 Changing the Shooting Method 9
3.3 Alternative Transcendent Method 10
3.4 Comparing Results . 11
3.5 Finite Square Well Programs . 11

4 The Inverse Cosh Potential 11
4.1 Introduction . 11
4.2 Changing the Program, and solving 12
4.3 The Legendre Analytical Solution 13
4.4 Comparing Results . 14
4.5 The Inverse Cosh Program . 14

1

5 The Potential Barrier 15
5.1 Introduction . 15
5.2 Analytical Solution . 15
5.3 Program Modifications . 18
5.4 Comparing Results . 18

5.4.1 Diagrams . 19
5.4.2 Data . 20

5.5 The Barrier Programs . 21

6 The Graphical Program 22
6.1 Overview . 22
6.2 Compiling the Graphical Program 22

7 Conclusion 22
7.1 Alternative Method . 23

7.1.1 Matrix-based Integration 23
7.1.2 Finite Difference Methods 23
7.1.3 Sturm-Liouville Problems 24
7.1.4 Variational Calculas . 24

References 24

1 Introduction

The numerical solution of Schrödinger’s Equation for one or more particles is
an important problem in the field of Quantum Mechanics, and, in most cases,
is the only method we can use to obtain a usable solution. Scenarios involving
such a solution generally involve some external potential felt by the particles,
and interactions between the particles.

The aim of this project is to derive Eigenvalues (E) and Eigen-vectors (ψ) for
the one-dimensional Schrödinger Wave Equation in a specified potential well.
(e.g, an electron trapped in a semi-conductor of some kind). Some of the cases
will also have correlating analytical solutions, which will enable us to check our
numerical results.

2 The Infinite Square Well

2.1 Introduction

We begin by considering the simplied conditions of the infinite Square Well.
As seen in the lecture notes, we can describe a ’time-independent’ version of
Schrödinger’s Equation by:

(−h̄2/2m)
d2ψ

dx2
+ V (x)ψ = Eψ

Which correlates to:
Ĥψ = Eψ

,

2

Figure 1: An Infinite Square Well Example

Where Ĥ is the Hamiltonian Operator, defined by Ĥ = ((−h̄2/2m)∇ +
V (x)).

In the case of the Infinite Potential Well, as can be seen in the diagram, the
wave function only exists between −L/2 < x < +L/2, where V (x) = 0.

(At all other points, V(x) is infinite, thus there is no probability of finding
the wave here).

Therefore, we can simplify our original equation to:

d2ψ

dx2
= −Eψ (1)

(Note, we have let (h̄2/2m) = 1).
Where E are the eigenvalues we wish to calculate. From our above diagram

we can also set the following boundary conditions for our equation, which will
allow us to evaluate E:

ψ(−L/2) = 0, ψ(+L/2) = 0, E > 0 (2)

2.1.1 The Analytical Solution

We now, to obtain an analytical solution, solve this like any other Differential
Equation. First, we introduce the substitution k2 = E, therefore our equation
is now:

d2ψ

dx2
= −k2ψ

This has a solution which is a superposition of plane waves:

ψ(x) = Aeikx +Be−ikx

..and, substituting our boundary conditions:

ψ(L/2) = AeikL/2 +Be−ikL/2

3

and..
ψ(−L/2) = Ae−ikL/2 +Be+ikL/2

Which, substituting Cos and Sin functions, correlates to:

2[ACos(kL/2) +BCos(kL/2)] = 0

2i[ASin(kL/2)−BSin(kL/2)] = 0

These two equations have non-trivial solutions for:

A = B

cos(kL/2) = 0

Therefore:
kn = (2n+ 1)π/L

with..
ψ(x) = 2Acos(knx)

Which is a Symmetrical ’even’ Eigen-function.
Similarly, for

B = −A

Sin(kL/2) = 0

Therefore:
kn = (2n)π/L

with..
ψ(x) = 2ASin(knx)

Which is a Symmetrical ’odd’ Eigen-function.
Therefore, in general the Eigen-energy can be calculated analytically in our

program (for comparison) by:

E(n) = (h̄2/2m)(n2π2)/L2

(in our case, (h̄2/2m) = 1).
So, summing up, we wish to solve equation (1) for boundary conditions (2)

numerically to give us successive Eigenvalues E that match those obtained for
the analytical solution. (Afterwhich, we can extend the project to consider more
realistic finite potential wells.)

2.2 The Shooting Method.

Generally, for a first or second order ODE, we use the ’Runge-Kutta’ method
to find specific solutions. We would feed in the ODE, and the initial conditions,
and the Runga Kutta method would feed out successive ’stepped’ values of the
function for which we are solving (’Y’, ’ψ’, whatever). In our case, there is an
unknown, ’E’, for which we want to find values that will make our equation fit
our BC’s. This is known as a ’Two-point Boundary Value’ problem, and can be
solved using the ’Shooting Method’. [1]

We begin by considering the conditions at x = 0. We know our solutions
are symmetrical, and therefore must be ’odd’ or ’even’. (i.e., cos and sin func-
tions...standing waves). Therefore, there are two possible conditions at x = 0:

4

Figure 2: Shooting Method Example

Cos conditions:

ψ(0) = 1,
dψ(0)
dx

= 0 (3)

Sin conditions:

ψ(0) = 0,
dψ(0)
dx

= 1 (4)

We take these as our initial conditions. First, we consider only the cos (3)
conditions. We next guess a value of ’E’, put it in our ODE equation (1), and
then feed this, and our initial conditions (3), into a ’Runga-kutta’ function for
0 < x < +L/2.

As seen in the diagram, we check the last value that comes out of the runge
kutta functions,ψ(L/2), and compare it with our final boundary condition (2):
ψ(L/2) = 0. If they don’t match, our guess was wrong... therefore we increase
our value of E, and try again! We keep doing this until the ψ(L/2) value returned
is within a specified tolerance of 0, at which point we have an Eigenvalue solution
for E!

We can continue doing this, for both initial conditions (3) and (4), for higher
and higher values of E, obtaining more solutions for E (and ψ). (Note, in my
program, we start at E=0, which is sensible, and use a bisection method to
home in on the required ’root’. More on this below).

Now, to make use of both of our boundary conditions, and make sure we
pick up every possible solution, we simply try each for each value of E. We
hence find that our first successful solution, E(1) comes from our cos initial
conditions, E(2) from our sin conditions, E(3) from our cos conditions...etc..
i.e, they alternate! See the following diagrams for graphs of some of the Psi
functions, and some of the E values.

5

Figure 3: Infinite Energy Solutions

Figure 4: The first Even Solution

2.3 Root Finding

There are several approaches that can be taken to find the second boundary
condition, so that we can find the Eigenvalue Energy to a given tolerance. The
simplest is similar to the ’approximation’ method used in ’root finding’. We
specify the value by which we increase E after each loop, and check for ψ(L/2) <
root− tolerance.

In general, we set this root-tolerance a factor of ten, or more, greater than
the E-increment. Unfortunately, this method is very slow if we want to find

6

Figure 5: The First Odd Solution

Figure 6: The Third Even Solution

E to any reasonable number of decimal points. A problem also arises which
causes the program to pick up the same Eigenvalue more than once, or even
skip certain results. The speed issue can be resolved to some extent by having
a dynamic E-tolerance, but in general it is far more efficient to use a form of
’Bisection’.

The Bisection method involves beginning with a low E-increment, and then
checking for a change in sign between consecutive values of ψ(L/2). We then
enter a loop, and continually decrease and swap the sign of the E-increment.
This continues until we find ψ(L/2) < root − tolerance. This method is very
fast, allowing us to obtain numerical results that match the expected analytical
answer by up to 5 or 6 decimal points.

2.4 Comparing Results

The following table of data shows the first 10 results of a well of length ’4’, with
a numerical results ’tolerance’ of ’0.000001’. The first few energies match the
expected analytical results to 5 decimal points. As we go up in n-values, this
accuracy diminishes.

7

n E (Numeric) E (Analytic)
1 0.6168514491 0.6168502752
2 2.467423466 2.467401101
3 5.551932058 5.551652477
4 9.871158188 9.869604404
5 15.42704192 15.42125688
6 22.22346924 22.20660991
7 30.2669709 30.22566349
8 39.56742819 39.47841761
9 50.1385235 49.96487229
10 61.99781171 61.68502752

2.5 The Infinite Well Program

The main program for the infinite well accepts the length of the Well, and the
number of Eigen-energies to find. It returns the numerical Eigenvalue solutions,
compared with the expected Analytical solution, and can be altered to return
some of the ’ψ’ values, which can then be used to plot graphs. (See Appendix
1 for a full copy of the code).

3 The Finite Square Well

3.1 Introduction

Now, we wish to extend our numerical solution to a slightly more complicated
case. That of the finite potential well. Unlike the infinite well, we assign the
potential outside of the well as:

V (x) = 0, x > L/2, x < −L/2

And within these limits:

V (x) = −V,L/2 > x > −L/2

(note, often the boundary is expressed in the form −a < x < a, but in
this case I’m using the clementure I used in the infinite Square Well problem).
Therefore, in the above boundary, our Schrodinger Equation is:

d2ψ

dx2
= (−E + V)ψ

3.1.1 The Wave Functions

Our general solution of the SE (from the lecture notes [5]) gives the following
Wave functions:

ψ(x) = a1e
(κx) + b1e

(−κx)forx < −L/2

ψ(x) = a2e
(Kx) + b2e

(−Kx)for − L/2 < x < L/2

ψ(x) = a3e
(κx) + b3e

(−κx)forx > L/2

8

Figure 7: Finite Well Example

Where the constants K, and κ, are given by:

K =
√

(−|E|+ V)

κ =
√

(|E|)

(not forgetting that we have set 2m = h̄ = 1).
As we can see from the Figure 7, the wave function must vanish as x→ ±∞,

therefore b1 = a3 = 0. The central wave functions, as in the case of the infinite
square well, give us symmetrical cos and sin functions! (See the notes on Parity
in lectures, and in the Infinite Square Well section above). Therefore we have
even solutions of the form:

ψ(x) = a1e
(κx),

ψ(x) = a2cos(Kx),

ψ(x) = a1e
(−κx)

(for each boundary), and odd solutions of the form:

ψ(x) = −A1e
(κx),

ψ(x) = A2sin(Kx),

ψ(x) = A2e
(−κx)

3.2 Changing the Shooting Method

At each boundary, we want the ψ wave function, and it’s derivative, dψ
dx , to be

continous. Therefore, at the right boundary condition (for the even functions,
for example):

a2cos(K(L/2)) = a1e
(−κ(L/2)) (5)

9

and, the derivative:

−ka2sin(K(L/2)) = −κa1e
(−κ(L/2)) (6)

Looking at the right hand side of this equation gives us the simple relation:

dψ(L/2)
dx

= −κψ(L/2)

and therefore:
dψ(L/2)
dx

+ κψ(L/2) = 0

This gives us a simple boundary condition we can insert into our current
infinite square well code, along with the initial conditions, which still apply:

Even Solns:

ψ(0) = 1,
dψ(0)
dx

= 0

Odd Solns:

ψ(0) = 0,
dψ(0)
dx

= 1

Therefore, as in the infinite square well situation, we integrate from x = 0
to x = L/2, using the above initial condition, and check the above boundary
condition at L/2. As before, we home in on the condition using a form of
’Bisection’.

3.3 Alternative Transcendent Method

We can check these results by performing another numerical calculation based on
the following ’transcendental’ equations (derived by dividing (6) by (5) (for the
even solution), and the same for the appropriate boundary condition equations
for the odd solution).:

−κ = −Ktan(Ka) (7)

(From (6)/(5), the even solution)

−κ = Kcot(Ka) (8)

(From the equivalent odd Boundary Conditions) Remember:

K =
√

(−|E|+ V)

κ =
√

(|E|)

We now perform a substitution of x = ka, y = ka to make our equations dimen-
sionless, and define:

x2 + y2 = r2 = (L/2)2V (9)

Even Solution:
y = xtan(x) (10)

Odd Solution:
y = −xcot(x) (11)

10

We solve these three equations numerically by finding where (7) and (8), or
(7) and (9) intersect. These points define a finite number of Eigen-energies, En,
via our previous definition of κ and K.

In the program, we set y2 = r2 − x2, and find, again using the bisection
method, where: For the even solution:√

(y2)−
√

(x2)tan(
√

(x2)) = 0

and, for the Odd solution:√
(y2) +

√
(x2)cot(

√
(x2)) = 0

For the y-value which fits either of these conditions, we define the Eigen-
energy as:

En = −y2/(L/2)2

3.4 Comparing Results

Again, as in the infinite square well, the first eigenfunction solution (for Eigen-
value E(1)) is even, and the subsequent solutions oscillate between even and
odd. The data obtained from both solutions fits this pattern, and the following
table compares the results from the ’shooting method’ with the results from the
’transcendent equation’ method (note, this is for V = −10, Shooting method
root tolerance= 0.000001, TE X-increment= 0.001 and L = 4).

n E (TE) E (SM)
1 -9.541 -9.541064623
2 -8.17675 -8.176890575
3 -5.95375 -5.953834945
4 -2.99875 -2.998487614
5 -0.0135 -0.01340610705

3.5 Finite Square Well Programs

The Finite Square Well program accepts a value of ’Well Length’, L, and a
potential Depth, V. It calculates the Eigen-energies to a tolerance (attempted
accuracy) of 0.000001. (This can be altered manually in the code, by changing
the constant ’tol’). It performs the intergration with a step-length proportional
to the Well Length, and outputs the Eigen-energy, and value of ψ(L/2). It
will then output the corresponding values calculated from the ’Transcendantal
Equations’. (See Appendix 2 for a full copy of the code).

4 The Inverse Cosh Potential

4.1 Introduction

The Inverse cosh2 potential is an interesting function, somewhat similar to the
Harmonic Well. It has been solved numerically, using Legendre Polynomials,
and is covered in ”Theoretical Physics Volume 3: Quantum Mechanics” by
Landau and Lifshitz. [4] The Potential, V, is described by:

V (x) = −V0/(cosh2(αx))

11

Figure 8: Landau-Lifshitz Potential

This function describes a negatic ’harmonic’ well, of depth V0 , width scaled
by α, and:

For:
x− > ±∞, V (x)− > 0

(This can be seen in diagram 4).
We begin to solve this by making the following substitution for ’x’:

ξ = tanh(αx)

This quite simply maps the entire x-axis, from −∞ to +∞ onto ±1. This
enables us to perform the integration as if we were integrating to infinity, with
the boundary condition:

Psi(x) = 0, x→ ±∞

and therefore..
Psi(ξ) = 0, ξ → ±1 (12)

4.2 Changing the Program, and solving

Obviously, this is a very powerful mapping tool. To use it in our integration
program, we first have to rearrange the Schroginger Equation in terms of this
new variable. Remember, we are using h̄2 = 2m = 1, and schrodinger’s equation
(in terms of x) is:

d2ψ

dx2
+ (E + V0/(cosh2(αx)))ψ = 0

The derivatives of ψ(x) in terms of the new variable, ξ are:

dψ

dx
=
dψ

dξ

dξ

dx

12

where..
dξ

dx
= αsech2(αx)

dξ

dx
= α(1− ξ2)

Therefore..
dψ

dx
=
dψ

dξ
α(1− ξ2)

and...
d2ψ

dx2
= α2(1− ξ2).((1− ξ2)d

2ψ

dξ2
− 2ξ

dψ

dξ
) (13)

Next, we look at the energy terms of our SE, and make the following sub-
stitutions:

ε =
√
−E/α

and..
s(s+ 1) = V0/α

2

Now, we can re-arrange the energy terms in our SE to give:

α2(1− ξ2)[s(s+ 1)− ε2/(1− xi2)] (14)

Which, combined with our equation for d2ψ
dx2 gives us:

d2ψ

dξ2
= 2

dψ

dξ
/(1− ξ2)− [s(s+ 1)/(1− xi2)− ε2/(1− xi2)2]ψ (15)

Now, it is a trivial task to alter the code from our previous potentials. We
simply insert the above equation into our function for d2ψ

dξ2 , and integrate from
our central Even and Odd boundary conditions (which still hold), and check
that, as described above, ψ(1) = 0.

Even though our shooting is now dependant on our substitution ε, we still
use increments on ’E’ in both the calculation and bisection functions. This is
because it is slightly easier to increment ’E’ from E = −V0 → E = 0 than it is
to increment ε from ε = sqrts(s+ 1)→ ε = 0, or somesuch.

4.3 The Legendre Analytical Solution

The analytical solution, described by Landau and Lifshitz in chapter 3 of their
book ”Quantum Mechanics” is interesting in itself. It suggests an alternative
direction, using legendre polynomials, we could take in solving these Eigenvalue
equations numerically (This is covered in the final chapter of this report).

As quoted, details on Landau and Lifshitz solution can be found in their
book. Briefly, they solve the problem by turning it into a general Legendre
function with another substitution of:

ψ = (1− ξε/2)ω(ξ)

and the temporary substitution:

u(1− u)dω
dξ

+ (ε+ 1)(1− 2u)ώ − (ε− s)(ε+ s+ 1)ω = 0

13

We can use finite methods with this equation to compare our expected result
for ψ when ξ = 1, (i.e., x = ∞), and when ξ = −1. This shows that, for these
conditions:

s = ε+ n, n = 1, 2, 3...

therefore..
En = −α2/4[−(1 + 2n) +

√
1 + 4V0/α2]2

Now, we can use this equation in our program to compare with our numerical
results.

4.4 Comparing Results

I have displayed below results for four different well ’depths’. This is to show a
slightly unusual error that occurs in the higher energies for some depths. In all
four cases, α = 1, root finding tolerance is ’0.000001’, and the Energy increment
Tolerance is ’0.001’.

For V0 = −10

nth result: Numeric Energy: Analytic Energy
0 -7.298664802 -7.298437881
1 -2.891326433 -2.895313644
2 -0.2888599662 -0.4921894064

For V0 = −15

nth result: Numeric Energy: Analytic Energy
0 -11.5950479 -11.59487516
1 -5.785451677 -5.784625486
2 -1.943378701 -1.97437581

For V0 = −20

nth result: Numeric Energy: Analytic Energy
0 -16.00013563 -16
1 -9.000954813 -9
2 -3.997725357 -4
3 -0.8346578926 -1

What we have discovered is the limitation on our shooting method, for solv-
ing these Eigenvalue problems. What seems to occur is, as the Eigen-energies
approach 0, the solutions become more frequent. Therefore, especially in this
complex mapping case, the integration routines find it harder to obtain accu-
rate solutions because of the high frequency, and narrow gaps between these
Eigen-energies.

4.5 The Inverse Cosh Program

The program for this potential asks the user for the ’depth’ of the well, as well
as the scale factor, or width, α of the potential. Again, the accuracy of the
program is controlled by the variables ’Etol’ and ’tol’. It will output (either
in table or report format) the results, along with the corresponding analytical
solutions, up to E = 0, after which our boundary conditions no longer apply.
(See Appendix 3 for a full copy of the code).

14

Figure 9: A Potential Barrier

5 The Potential Barrier

5.1 Introduction

The final potential configuration we will investigate, is that of the ’Symmetric
Potential Well Barrier within two Infinite Potential Walls’ (Sometime referred to
as a two-level system). While the changes required to our program are almost
trivial, the potential provides us with a way to investigate some of the most
important, and fascinating, aspects of Quantum Mechanics.

The potential of the system (as shown in the diagram), can be expressed as:

x < −(L/2), V (x)→∞

−(L/2) < x < −(a/2), V (x)→ 0

−(a/2) < x < (a/2), V (x)→ Vbar

(a/2) < x < (L/2), V (x)→ 0

x > (L/2), V (x)→∞

5.2 Analytical Solution

We can begin to caclulate an analytical solution, based on our work on the
solutions for the Infinite Potential Well and our class work on Scattering Reso-
nances. Unfortunately, this does not lead us to a general analytical solution for

15

any barrier potential height or width. It can, though, provide us with a solution
for some ’limiting cases’, which we can use to test the accuracy of our program.

Because we have defined our barrier potential to be symmetric around the
origin, we can state that our Eigen-functions must have odd or even parity.
(Just like all the other potentials we have investigated, thus enabling us to still
use our cos and sin initial conditions when we approach it numerically).

We also know that between the barrier, and the Infinitely high walls, we
must have a some superposition of plane waves that vanishes at those walls.
Therefore, we define:

ψ±(x) = ψL(x) + φ±(x)± ψR(x),

ψL(x) := Asink(x+ L/2) = −L/2 < x < −a/2

ψR(x) := Asink(L/2− x) = a/2 < x < L/2

Where ψL is confined within the left part of the well (x < −a/2), ψR is
confined within the right side of the well, and φ is some exponential function
within our potential barrier, connecting both sides. (Note, the + and - notation

represents the even and odd solutions respectively, and k =
√

(2m/h̄2)E as
usual).

Because both sides are binded by the part of the wave function which tunnels
through this barrier, we can call on the transfer matrix formulisation used in
the calculations for a wave packet tunneling through a similar barrier. This will
enable us to calculate the allowed Eigen-energies, E.

The above two equations, for the ψ function on either side of the barrier,
are connected via a transfer matrix, which gives us the following two linear
equations (using complex exponentials instead of sin functions):

±eikL/2 = −M11e
−ikL/2 +M12eikL/2

∓e−ikL/2 = −M∗
1 2e−ikL/2 +M22e

ikL/2

These therefore give us the condition for k, and subsequently the Eigenen-
ergies E, by:

±1 = −M11(k)eikL +M12(k) (16)

Therefore, by defining the two transer matrix elements for several limiting
cases, we can determine the appropriate eigenenergies for those potentials. The
simplest is of course, for V (x) = 0, where we find:

M11 = 1,

M12 = 0

Therefore:
±1 = −eikl → k = nπ/L

n = 1, 2, 3....etc

Which is what we expect for an infinite potential well.
Now, we can define our transfer matrix M for a tunnel barrier using the

solution we found for a scattering barrier in class. We can then attempt to solve

16

our k-dependant equation for these matrix elements for some further limiting
cases.

M11 = eika[cosh(κa) + iε−/2sinh(κa)]

M12 = iε+/2sinh(κa)

ε± := κ/k ± k/κ, k :=
√

(2m/h̄2)E, κ
√

(2m/h̄2)(V − E

Now, we can perform some algebra using this, and the equation we derived
for calculating ’k’, and seperating the real and imaginary parts (both of which
can be shown to give the same result), we obtain: For the Even solutions:

1 = κ/ktan(K(a− L)/2)tanh(κa/2) (17)

..and for the odd solutions:

1 = κ/ktan(K(a− L)/2)coth(κa/2) (18)

We can now test this using V (x) =∞, and then see if we can obtain an analytical
result for the case of V(x) being finite, but still very large.

As V (x)→∞, κ→∞, and:

k/κ = 0 = tan(k(a− L)/2),→ k(L− a)/2 = nπ

n = 1, 2, 3...etc

These are the same energies we’d expect for the two completely seperate infinite
potential wells (both of width (L-a)/2).

Now, we can let V < ∞, V >> 0. As we mentioned earlier, with a finite
barrier the two sides of the well will become ’coupled’, hence our use of the
’transfer matrix’ method. We begin by introducing two dimensionless variables
(something unneccessary in the numerical solution):

x = ka/2, α :=
√
ma2V/2h̄2

Substituting these into equations [17] and [18] gives us:

−1 =
√
α2 − x2/xtanx[tanh(

√
α2 − x2]±1

By performing a taylor expansion of this for α >> 1 around the lowest
eigen-energy solution for V → ∞, (i.e. x1 = pi,→ x = x1 + y, y << 1), we
obtain:

x ≈ π(1− 1/α[tanh(α)]±1)

Which, using our earlier definition of ’x’, gives us the two wave vectors for
the lowest eigen-energy solution!:

k+ ≈ 2π/a[1− 1/(αtanh(alpha))] (19)

k− ≈ 2π/a[1− tanh(α)/α] (20)

17

We have obtained two slightly different ’k’, and thus Energy, (E = h̄2k2/2m),
solutions for what should be the lowest single ’k’ solution (at least for an equiv-
alent infinite potential well). This is known as ’level splitting’, and is an impor-
tant consequence of coupling two regions in space via the ’tunnel effect’. We
will discuss this further in the results section, as it is interesting to observe how
these energies split under different conditions.

Now that was have these ’limiting case’ solutions, we can use them as a
’bench mark’ to see what our program produces under similar conditions. Later,
we will also plot some of our solutions graphically, and see how it compares with
what we expect for these ’coupled’ wave functions.

5.3 Program Modifications

As mentioned in the introduction, the modifications to our infinite potential
well program are trivial. Our two-boundary conditions still hold, for both even
and odd solutions: Even conditions:

ψ(0) = 1,
dψ(0)
dx

= 0

Odd conditions:

ψ(0) = 0,
dψ(0)
dx

= 1

Even though our wave function for the origin is ’within’ the barrier, these
conditions still hold because our potential is symmetric. (In effect, within the
barrier the even functions are Cosh functions, and the odd functions are Sinh
functions). As before, we then integrate to our +L/2 boundary to match an ’E’
value to:

ψ(L/2) = 0

We now only have to change the Differential equation that we feed into
Runga Kutta. We simply set the condition (again, h̄2 = 2m = 1!):

For L/2 > |x| > a/2:
d2ψ

dx2
= −Eψ (21)

and, for a/2 > |x| > 0:
d2ψ

dx2
= (V − E)ψ (22)

We don’t have to worry about matching ’continuity’ while passing from the
barrier, to the zero potential area, as it is done automatically via our integration.

5.4 Comparing Results

I have arranged my program so that it will display the most relevant analytical
solution to compare with each numerical result. For example, if the length of the
well is twice the length of the barrier (L=2a), it will calculate and display the
above analytical solution for large V(x) for the first two lowest states, (n1, n2.

If L! = 2a, or n > 2 it will display the approriate ’closest’ infinite square
well Energy (because each ’infinite well energy’ has been split in two!), for the
well width (L− a)/2.

Finally, if E > Vbarrier, it will display the infinite square well result (without
the splitting) for a well of width L.

18

5.4.1 Diagrams

The graph of energies should hopefully illustrate this more clearly

Figure 10: Eigen-energy Solutions

The two wave-function pictures illustrate the two lowest Eigen-functions for
a barrier of potential 10, Well length 4, and Barrier Width 2. (They were taken
from the graphical program, with a ’y-magnification factor’ of 20).

Figure 11: The first Cos solution

19

Figure 12: The first Sin solution

5.4.2 Data

The following are the results for the first two eigenenergies for three different
’Depths’ of well. The other parameters of the calculation are the same as used
for the above graphs. (L = 4, a = 2, T olerance = 0.0001).

Potential Barrier height of ’10’:
nth result: Numeric Energy: Analytic Energy

1 5.453921598 4.599169126
2 5.53971392 4.629759292

Potential Barrier height of ’50’:
nth result: Numeric Energy: Analytic Energy

1 7.726374401 7.275447353
2 7.726387615 7.275454269

Potential Barrier height of ’150’
nth result: Numeric Energy: Analytic Energy

1 8.646448765 8.323702116
2 8.646448765 8.323702116

In all three cases, the analytical energies have been given by our even and
odd analytical equations [17] and [18]. The interesting thing to note, is how
as the potential ’height’ increases, the ’matching’ between the numerical and
analytical values increase. This is because we derived the equations [17] and
[18] for the case of V <∞, V >> 0.

Another aspect our results we can observe quite easily, is the differences
between the ’split’ energies, and the ’source’ infinite potential well energies. For
example, the following data shows the first 10 eigen-energies for a barrier of
height ’100’, and the other parameters as before:

20

nth result: Numeric Energy: Analytic Energy
1 8.353770507 7.99437956
2 8.353770532 7.994379574
3 33.16472528 39.47841761
4 33.16472411 39.47841761
5 73.15418593 88.82643963
6 73.15488671 88.82643963
7 102.1779417 30.22566349
8 108.13675 39.47841761
9 116.09675 49.96487229
10 123.92375 61.68502752

As you may notice, the first two analytical solutions are again given using our
limiting case equations. The solutions for n = 3 → n = 6 are compared with the
corresponding energy for an Infinite Potential well of width: Lwell = (L−a)/2.
As you can see, the ’split’ energies, are all slightly lower than equivalent Infinite
well energies.

As the Eigen-energies become greater than the height of the barrier, it be-
comes difficult to match them to an equivalent analyitical solution. (n > 6 in
this case). Fortunately, we can say that if we were allow our program to continue
to calculate higher and higher Eigen-energies (E >> Vbarrier), the solutions will
tend towards those of a normal infinite potential well of width ’L’. (These are
the values we have included in the analytical column for n > 6).

5.5 The Barrier Programs

As mentioned before, the code for this potential is very similar to the infinite
potential well. (So much so that it is used to produce both types of graphs in
the graphical program, discussed in the next chapter).

The program prompts the user for the width between the Infinite Potential
walls, the width of the potential barrier, and the potential ’height’ of that bar-
rier. It also asks how many Eigen-energies to find. This is so we can observe the
nature of the Eigen-energies for E > The Height of the Barrier. (See Appendix
4 for a full copy of the code).

Unfortunately, due to the nature of our shooting method, the program will
most likely crash for large well ’widths’. It is a matter of trial and error, to
’increase the accuracy’ of the Energy-increment tolerance (i.e., decrease the
value of Etol), to reduce the large ’jumps’ in ψ(L/2) (which would take the
Bisection function a large amount of time to bisect), while trying to reduce the
time it takes to ’count’ up in these increasingly small increments.

If more time were available, it would be feasible to create normalised dynamic
’tolerances’, which modify themselves according to the dimensions of the well.
Unfortunately, this would take a large amount of time for testing and finding
the neccessary boundaries and parameters for the different tolerances to operate
under.

21

6 The Graphical Program

6.1 Overview

I have produced a short graphical program which calculate the ψ functions for
both the infinite potential well, and for the potential barrier. For variety, and
speed, the code has been altered to use a simple ’approximation method’ (as
discussed in the first chapter), which only finds the solutions for a relatively
low eigen-energy accuracy. Fortunately, this makes very little difference to the
appearence of the function.

Unfortunately, it is not possible to change the parameters during runtime. It
is preset to calculate 10 solutions for an infinite well of length ’4’, and performs
the intergration over 400 steps (and hence a steplength of 0.01) to obtain a
smooth curve plot. To introduce a potential barrier, simply alter the initial
values of the variables ’Hbri’, for the potential height of the barrier, and ’Lbri’,
for the width of the barrier.

The main graphical function draws the x and y (ψ) axes, two lines to repre-
sent the infinitely high walls, and (if one exists) a ’reduced’ approximation of the
barrier. It then draws the positive part of the ψ functions, and a symmetrical
image (Odd or Even, depending on the solution ’type’) for the negative part.

The final important new variable is ’yfac’. This alter’s the magnification,
or reduction, scale of the y-part of the ψ function. For an infinite well, it is
satisfactory to leave it at it’s default value of ’100’. For the barrier potential, it
may be neccessary to reduce it by a factor of 10, depending of the dimensions
of the problem.

(This program was used to produce all of the Eigen-vector plots in this
report).

6.2 Compiling the Graphical Program

The graphical program uses Borland’s C++ OWL library. This enables us
to create, and modify ’Windows’ objects, and perform rudimentary graphical
representations. Unfortunately, it is incredibly awkward and fiddly.

To compile the Graphical code provided with this report in Borland C++
V4.5+, it is neccessary to create a new project of type ’Win32 Application’, and
the OWL selection must be included in the ’Standard Libraries’ selection box.
Then goto ’Options’-’Project’, and add the ’bin’ directory to the ’Intermediate’
and ’Final’ boxes under ’Directories’-’Output Directories’. (See Appendix 5 for
a full copy of the code).

7 Conclusion

We have developed the basics of solving the sublime Schrödinger’s Equation,
and applying it to some interesting, and practically useful potentials. In par-
ticular, the finite barrier potential has provided us with a tool to investigate
the use of such structures in semi-conductors, and even gives us a glimpse of
yet another future in the form of Quantum Computing. The idea of quantum
’binding’ between the two wells by the electron ’tunneling’ through an interven-
ing potential, and the energy level-splitting that ensues, forms the foundation
of the concept of ’qubits’, or quantum bits.

22

We have also been able to investigate the limitations of our shooting method,
via the propagation of errors in the potentials with corresponding analytical
solutions, and the loss of accuracy with the Landau-Lifshitz potential. While
we can be fairly certain this won’t occur with our finite barrier potential, it could
still be a problem if we wanted to apply this shooting method to an application
which involves similar ’high-frequency’ errors as Landau’s Cosh potential.

7.1 Alternative Methods

This causes us to give a brief consideration to possible alternatives, especially
if we wanted to simply increase the speed, and accuracy, of solving this kind of
problem. There are many possible routes to take, all of which require a large
amount of description. I will simply give a brief overview, and if applicable, a
reference to a corresponding text.

7.1.1 Matrix-based Integration

All of the methods I will describe involve the manipulation of the problem via
some kind of matrix-based method. After all, we are considering Schrödinger’s
in essence as an Eiganvalue problem.

In most mathematical integration problems, the traditional method of inter-
gration is converted into a matrix problem. In some sense, it reduces the whole
integration calculation into the ’diagonlisation’ of the said matrix.

For example, the equation we use in Runga-Kutta (and most finite-step
intergration routines) can be expressed as:

f
′′
(x) =

f(n+ 1)− 2f(n) + f(n− 1)
2∆2

= g(x)

So we can convert this ’equation’, or what effectively is a group of simulta-
neous equations in ’n’, into a matrix, much like we would any other group of
simultaneous equations. We could then solve it using any freely available matrix
diagonlisation routines from a text book, or the internet.

This is covered in great detail in ”Numerical Recipes: The art of Scientific
Computing” by William. H. Press, et al. [1] and ”Computational Physics”, by
J.M.Thijssen, Cambridge University Press. [2]

7.1.2 Finite Difference Methods

Another very common way of manipulating Boundary-value problems, and solv-
ing our differential equations is via what is known as ”Finite Differences”. It
involves discretising the equation onto a ’straight line’, or in the case of a 2D
problem, a square lattice. The equation is manipulated in this new ’form’, using
the ’Relaxation Method’, so that it in essence becomes another type of initial
value problem. This is because, by ’discretising’ the problem, any solution ψij
must be equal to the average of it’s four neighbours, plus some function of x.
This enables us to start with trial functions of ψ0 and develop a sequence of
possible solutions.

Again, this method is widely used for all forms of boundary value problems,
and can be modified for increased efficiency using several different iterative

23

methods. It also leads on to the even more interesting method of solving such
PDE’s via Fast Fourier Transforms, which we won’t discuss here.

(See Appendix A.7 of ”Computational Physics”, by J.M.Thijssen, Cam-
bridge University Press). [2]

7.1.3 Sturm-Liouville Problems

Our Schrödinger’s Equation can also be expressed as a ’Self-Adjoint Sturm
Liouville’ problem, similar to the steps we took to solve the Landau-Lifshitz
potential analytically. Briefly, it involves re-arranging our equation to the form:

−(pý)́ + qy = λωy

.. and then to calculate the Eigenvalues, and Eigenfunctions of the said
equation for some regular or singular boundary conditions. There are many
texts on this subject, as it is a very general problem throughout numerical
physics. One such recomended text is: Q. Kong, and A. Zettl, ”Eigenvalues
of regular Sturm-Liouville problems”, J.Differential Equations, V. 131, no. 1,
(1996), 1-19. [3]

7.1.4 Variational Calculas

The Variational Calculas is called into use when the problem involves solving
Schrödinger’s Equation in realistic electronic structure calculations, and a huge
number of grid points are called in to play. Also, like most finite methods, it
mainly used to calculate the grounds states of such complex systems

This method involves restricting the possible solutions to a subset of Hilbert
Space, and in this subspace the best solutions are found. In general, the subspace
of ’Linear Variational Calculas’ is used, and Schrödinger’s Equation is once again
formulated as an eigen-value problem using this Orthonormal basis. Once again,
the matrix methods described above are used to find the Eigenvalues of this new
equation.

(See Chapter 3 of ”Computational Physics”, by J.M.Thijssen, Cambridge
University Press). [2]

References

[1] ”Numerical Recipes: The art of Scientific Computing” by William. H.
Press, et al. Cambridge University Press.

[2] ”Computational Physics”, by J.M.Thijssen, Cambridge University Press.

[3] Q. Kong, and A. Zettl, ”Eigenvalues of regular Sturm-Liouville problems”,
J.Differential Equations, V. 131, no. 1, (1996), 1-19.

[4] ”Course in Theoretical Physics Volume 3: Quantum Mechanics” by L.D.
Landau, E.M. Lifshitz. Butterworth-Heinemann.

[5] ”Quantum Mechanics 1 Lecture Notes” By Dr T. Brandes,
http://bursill.phy.umist.ac.uk/QM/qm1.html

24

