
QUANTUM MECHANICS I (Dr. T. Brandes): Example/Solution Sheets 1

Note to tutor: Most of the material required to do these examples is in the lecture notes.
The lecture notes are available in html and pdf format on the homepage

http://brandes.phy.umist.ac.uk/QM/.
Students shoudl be encouraged to work though the lecture notes before doing the examples.

1.1 The Radiation Laws and the Birth of Quantum Mechanics

1.1.1 Kirchhoff (5 min)

What did Kirchhoff postulate for the spectral energy density u of black body radiation?
SOLUTION: The radiation energy u per volume and per frequency interval is only a function of

the frequency ν and the temperature T of the walls, and does not depend, e.g., on the shape of the
container:

u = u(ν, T ) (1.1)

1.1.2 Rayleigh–Jeans law (5 min)

Why can the Rayleigh–Jeans law not be correct for all frequencies?
SOLUTION: The (Rayleigh–Jeans–law) is

u(ν, T ) = ρ(ν)Ē(ν) =
8πν2

c3
kBT, (1.2)

where kB is the Boltzmann constant. Rayleigh’s law followed from the density of states ρ(ν) =
8πν2/c3 (density of electromagnetic eigenmodes per volume, polarization direction and frequency) of
the electromagnetic field in a cavity, and the theorem of thermodynamics that gives each degree of
freedom of an oscillation in thermal equilibrium an average energy Ē(ν) = kBT (1/2kBT for kinetic
and potential energy each), independent of the frequency ν. It cannot hold for very large frequencies
where the energy density would become infinite which clearly is unphysical.

1.1.3 * Planck’s law (10 min)

Show that from Planck’s law, the Wien law and the Rayleigh–Jeans law follow as limiting
cases.

SOLUTION: Planck’s law is

u(ν, T ) =
8πν2

c3
hν

exp
(

hν
kBT

)

− 1
. (1.3)

For small x, approximate 1/(exp(x)− 1) ≈ 1/x which gives the Rayleigh–Jeans–law as limiting case
for hν/kBT small, i.e. small frequencies or large wave lengths. On the other hand, for large x,
approximate 1/(exp(x)− 1) ≈ exp(−x) which yields (Wien’s law),

u(ν, T ) =
4ν3

c3
b exp

(

−aν
T

)

, a, b = const. (1.4)

1.1.4 ** Stefan–Boltzmann constant (20-60 min)

Calculate the numerical value of the Stefan–Boltzmann constant

σ = (kBT/h)
48π5/15c3
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using the Planck radiation law for u(ν, T ). In the calculation, you need the integral
∫ ∞

0
dxx3/(ex − 1) =

π4/15 which you should try to prove.
SOLUTION:

U(T ) :=

∫ ∞

0
dνu(ν, T ) =

∫ ∞

0
dν

8πν2

c3
hν

exp
(

hν
kBT

)

− 1

=
8π(kBT )4

h4c3

∫ ∞

0
dx

x3

exp (x)− 1
=

8π5(kBT )4

15h4c3
. (1.5)

Furthermore,
∫ ∞

0
dx

x3

exp (x)− 1
=

∫ ∞

0
dx

x3e−x

1− e−x
=

∞
∑

n=0

∫ ∞

0
dxx3e−xenx

=
∞
∑

n=0

1

(n+ 1)4

∫ ∞

0
dyy3e−y = ζ(4)Γ(4) =

π4

90
3! =

π4

15
. (1.6)

The value of the Zeta function ζ(4) =
∑∞

n=0 1/n4 can be obtained from a Fourier series.

1.2 Waves, particles, and wave packets

1.2.1 Macroscopic Object (5 min)

Is the de Broglie wave length of large, macroscopic objects very small or very large? Calculate
the de Broglie wave length of a 70 kg mass point moving at a constant speed of 5 km/h.
Compare it to typical ‘macroscopic’ sizes of cars, chairs etc.

SOLUTION: de Broglie wave lengths of large, macroscopic objects are very small:

p = h/λ λ =
6.626 · 10−34Js

70kg(6000/3600)m/s
= 5.7 · 10−36m. (1.7)

1.2.2 * Geometrical Optic (2 min)

For which limit of wave lengths is geometrical optics a limiting case of the wave theory of
light?

SOLUTION: In the limit of very small wave lengths, geometrical optics is a limiting case of the

wave theory of light.

1.3 Interpretation of the Wave Function

1.3.1 Schrödinger Equation (5 min)

a) Write down the Schrödinger Equation for the wave function Ψ(x, t) for a particle with mass
m moving in a potential V (x) in one dimension.

b) Write down the Schrödinger Equation for the wave function Ψ(x, t) for a particle with
mass m moving in a potential V (x).

SOLUTION: a)

i~
∂

∂t
Ψ(x, t) =

[

−~
2∂2

x

2m
+ V (x)

]

Ψ(x, t) (1.8)

b)

i~
∂

∂t
Ψ(x, t) =

[

−~
2∆

2m
+ V (x)

]

Ψ(x, t). (1.9)
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1.3.2 Interpretation of the Wave Function (2 min)

What is the physical meaning of the wave function ?
SOLUTION: |Ψ(x, t)|2d3x is the probability for the particle to be in the (infinitesimal small)

volume d3x around x at time t.

1.3.3 Probability (2 min)

What is the probability P (Ω) for a particle with wave function Ψ(x, t) to be in a finite volume
Ω of space?

SOLUTION: The probability P (Ω) for the particle to be in a finite volume Ω of space is given
by the integral over this volume:

P (Ω) =

∫

Ω
d3x|Ψ(x, t)|2. (1.10)

1.3.4 Probability and current density of a particle (15 min)

Assume that a particle in an interval [−L/2, L/2] is described by a wave function

Ψ(x, t) =
1√
L
ei(kx−ωt).

What are the probability density ρ(x, t) and the current density j(x, t) for this wave function ?
How can one express the current density by the probability density and the velocity? What is
the probability to find the particle a) anywhere in the interval [−L/2, L/2]; b) in the interval
[−L/2, 0]; c) in the interval [0, L/4] ?

SOLUTION:

ρ(x, t) := Ψ(x, t)Ψ∗(x, t) =
1

L

j(x, t) := − i~

2m
[Ψ(x, t)∗∂xΨ(x, t)−Ψ(x, t)∂xΨ∗(x, t)] =

~k

mL
=

p

m
ρ = vρ,

where v is the particle velocity and p = ~k (de Broglie) was used.

The probabilities are a) 1; b) 1/2; c) 1/4.

1.4 Fourier Transforms and the Solution of the Schrödinger Equation

1.4.1 Definition of the Fourier Integral (2 min)

Write down the decomposition into plane waves of a function f(x) of one variable x by its
Fourier transform f̃(k).

SOLUTION: We define the decomposition into plane waves of a function f(x) of one variable x
by its Fourier transform f̃(k),

f̃(k) :=

∫ ∞

−∞

dxf(x)e−ikx, f(x) =
1

2π

∫ ∞

−∞

dkf̃(k)eikx. (1.11)

Remarks:
1. In this lecture, we define the Fourier transform with the factor 1/2π in front of f(x). Some people
define it symmetrically, i.e. 1/

√
2π in front of f(x) and f̃(k).

2. Remember the Minus signs in the exp functions.
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1.4.2 ** Math: Gauß (20 min)

Look up who Gauß was, where he lived etc. Write down the definition of the Gauss function.
Look up examples for areas of mathematics and physics where the Gauss function is used.

SOLUTION: The Gauss function is

g(x) :=
1√

2πσ2
e−

x
2

2σ2 . (1.12)

1.4.3 * Math: Gauß Integral 1 (10 min)

Use polar coordinates to calculate
∫ ∞

−∞
dxdye−x2−y2

in order to prove the above
∫ ∞

−∞
dxe−x2

=√
π.

SOLUTION:
(

∫ ∞

−∞

dxe−x2

)2

=

∫ ∞

−∞

dxdye−x2−y2

= 2π

∫ ∞

0
drre−r2

= [x = r2, dx = 2rdr] = π

∫ ∞

0
dxxe−x = π. (1.13)

1.4.4 Math: Gauß Integral 2 (10 min)

Use
∫ ∞

−∞
dxe−x2

=
√
π to prove the formula for the Gauß integral

∫ ∞

−∞

dxe−ax2+bx =

√

π

a
eb2/4a, a > 0. (1.14)

SOLUTION:
∫ ∞

−∞

dxe−ax2+bx =

∫ ∞

−∞

dxe−a(x−b/2a)2+b2/4a =

= [y =
√
a(x− b/2a)] =

1√
a

∫ ∞

−∞

dye−y2+b2/4a =

√

π

a
eb

2/4a. (1.15)

1.4.5 Math: Fourier Transform of Gauss Function (20 min)

The Gauss function

f(x) :=
1√

2πσ2
e−

x
2

2σ2 (1.16)

is a convenient example to discuss properties of the Fourier transform. Show that it can be
decomposed into plane waves by

f̃(k) =

∫ ∞

−∞

dxf(x)e−ikx = e−
1

2
σ2k2

, f(x) =
1

2π

∫ ∞

−∞

dke−
1

2
σ2k2

eikx. (1.17)

Draw f(x) and f̃(k) for different values of σ and discuss their relation.
SOLUTION: In principle, one first has to show that the formula 1.14 for the Gauss integral

also holds for complex b. This can be proven by complex integration, but we will not do it here.
Then, simple application of 1.14 with b = −ik yields the result for f̃(k). The equation for f(x)
then is simply the Fourier back–transformation (definition), but you can explicitely verify it again
by calculating the Gauss integral.
Small σ: corresponds to a narrow Gauss function f(x) in x–space and a broad distribution f̃(k) of
Fourier components in k–space.

Large σ: corresponds to a broad Gauss function f(x) in x–space and a narrow distribution f̃(k) of

Fourier components in k–space.
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1.4.6 * Wave packet (20 min)

We assume that a particle with energy E = p2/2m can be described by a function that is a
superposition of plane waves,

Ψ(x, t) =

∫ ∞

−∞

dka(k)ei(kx−ω(k)t), ~ω(k) = E = ~
2k2/(2m). (1.18)

Use
a(k) = C

√

σ2/(2π)e−k2σ2/2

to calculate the wave packet Ψ(x, t). Here, C is a constant. Show that

Ψ(x, t) =
C

√

1 + i(~t/mσ2)
exp

(

− x2

2σ2[1 + i(~t/mσ2)]

)

.

To simplify your calculation, you can set ~ = 2m = 1 during your calculation and re-install it
in the result. Why does this ‘trick’ work? Discuss Ψ(x, t) as a function of time.

SOLUTION: The solution of this problem is discussed in many text books. Basically, one has to

calculate a Gauss integral of the type 1.14. As a function of time, Ψ(x, t) becomes broader. Actually,

the physical interesting quantity is the square |Ψ(x, t)|2 which is the probability density to find the

particle in the interval [x, x+dx] at time t. We see from this calculation that this probability density

becomes broader with increasing time: If the particle was initially localized near the origin x = 0,

it ‘spreads’ out. However, this does not mean that the particle disintegrates into smaller pieces or

even into a continuous mass distribution. |Ψ(x, t)|2 is not a mass density but a probability density:

if we ‘look’ at time t if the particle is in the interval [x, x + dx], it is either there (with probability

|Ψ(x, t)|2dx) or not.

1.5 Position and Momentum in Quantum Mechanics

1.5.1 Normalization (2min)

Write down the normalization condition for the wave function Ψ(x, t) of a particle that is
necessary to interpret |Ψ(x, t)|2 as a probability density.

SOLUTION: The probability to find the particle somewhere in space must be one and hence

∫

R3

d3x|Ψ(x, t)|2 = 1. (1.19)

1.5.2 Expectation values in quantum mechanics (5min)

Write down the expectation value of the position x and the momentum p of a particle with a
normalized wave function Ψ(x, t).

SOLUTION:

〈x〉t =

∫

dxΨ∗(x, t)xΨ(x, t), 〈p〉t =

∫

dxΨ∗(x, t)
~∂x

i
Ψ(x, t) (1.20)

We recognize that the position x corresponds to the operator ‘multiplication with x’. On the other

hand, the momentum corresponds to the operator −i~∂x.
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1.5.3 Wave packet (10-30 min)

We consider the wave function (wave packet)

Ψ(x) =
1

√√
πa2

exp

(

− x2

2a2

)

. (1.21)

1. Show that this wave function is normalized (remember what normalization means!)
2. Using this wave function, calculate the expectation values 〈x2〉, 〈p2〉, and their product
〈x2〉 · 〈p2〉. You have to use the integral

∫ ∞

−∞
dyy2e−a2y2

=
√
π/(2a3).

SOLUTION:

〈p2〉 =

∞
∫

−∞

ψ(x) (−~
2)

∂2

∂x2
ψ(x) dx = − ~

2

a
√
π

∞
∫

−∞

e−x2/(2a2) ∂2

∂x2
e−x2/(2a2) dx

= − ~
2

a
√
π

∞
∫

−∞

e−x2/(2a2) ∂

∂x

(

− x

a2
e−x2/(2a2)

)

dx

= − ~
2

a
√
π

∞
∫

−∞

(

− 1

a2
+
x2

a4

)

e−x2/(a2) dx

= − ~
2

a
√
π

(

−
√
π

a
+

√
π

2a

)

= − ~
2

a
√
π

(

−
√
π

2a

)

=
~

2

2a2

〈x2〉 =

∞
∫

−∞

ψ(x)x2 ψ(x) dx =
1

a
√
π

∞
∫

−∞

x2 e−x2/(a2) dx

=
a3

a
√
π

∞
∫

−∞

u2 e−u2

du =
a2

√
π

√
π

2
=
a2

2
. (1.22)

1.5.4 * Hamilton function (10min)

Write down the Hamilton function of a classical particle moving in a one dimensional potential
V (x). Write down the corresponding quantum mechanical Hamilton operator (‘Hamiltonian’).
Write down the Schrödinger equation in ‘abstract form’, using the Hamilton operator.

SOLUTION: The total energy in classical mechanics for a conservative system of a particle of
mass m in a potential V (x) (energy is conserved) is given by a Hamilton function

H(p,x) =
p2

2m
+ V (x). (1.23)

The correspondence principle from axiom 2 tells us that this Hamilton function in quantum
mechanics has to be replaced by a Hamilton operator (Hamiltonian) Ĥ

Ĥ = −~
2∆

2m
+ V (x̂). (1.24)

Here, we have used the definition of the Laplace operator ∆ = ∇ · ∇. In Cartesian coordinates, it
is ∆ = ∂2

x + ∂2
y + ∂2

z . The Hamilton operator represents the total energy of the particle with mass
m in the potential V (x). We have introduced the hat as a notation for operators, but often the hat
is omitted for simplicity. We make the important observation that Ĥ is exactly the expression that
appears on the right hand side of the Schrödinger equation. This means we can write the Schrödinger
equation as

i~
∂

∂t
Ψ(x, t) = ĤΨ(x, t). (1.25)
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1.5.5 * Commutator 1 (10 min)

Prove the commutator relation in one dimension, [x̂, p̂] := i~, where [A,B] := AB −BA.
SOLUTION: Position x and momentum p are operators in quantum mechanics. Acting on wave

functions, the operator product xp has the property

x̂p̂Ψ(x) =
~

i
x
∂

∂x
Ψ(x) =

~

i
xΨ′(x)

p̂x̂Ψ(x) =
~

i

∂

∂x
xΨ(x) =

~

i

(

Ψ(x) + xΨ′(x)
)

(1.26)

The result depends on the order of x̂ and p̂: both operators do not commute. One has

(x̂p̂− p̂x̂)Ψ(x) = i~Ψ(x) (1.27)

Comparing both sides, we have the commutation relation

[x̂, p̂] := x̂p̂− p̂x̂ = i~. (1.28)

2.6 The stationary Schrödinger Equation

2.6.1 Definitions (2min)

Write down the stationary Schrödinger equation in one and three dimensions for a particle of
mass m in a potential V (x).

SOLUTION: The stationary Schrödinger equation is

Ĥψ(x) = Eψ(x)←→
[

−~
2∆

2m
+ V (x)

]

ψ(x) = Eψ(x) (2.29)

in three dimensions, in one dimensions x instead of x and ∂2
x instead of ∆. Mathematically, the

equation Ĥψ = Eψ with the operator Ĥ is an eigen value equation. We know eigenvalue equations
from linear algebra where Ĥ is a matrix and ψ is a vector. The wave function has been separated
according to (see lecture notes)

Ψ(x, t) = ψ(x)e−iEt/
�

. (2.30)

2.6.2 Piecewise constant potentials in one dimension (5min)

Write down the general solution of

[

− ~
2

2m

d2

dx2
+ V

]

ψ(x) = Eψ(x), x ∈ [x1, x2] (2.31)

for E < V and E > V . What is the difference between these two cases?
SOLUTION: This is a second order ordinary differential equation with constant coefficients.

There are two independent solutions

ψ+(x) = eikx, ψ−(x) = e−ikx, k :=

√

2m

~2
(E − V ). (2.32)

1. If E > V , the wave vector k is a real quantity and the two solutions ψ±(x) are plane waves
running in the positive and the negative x–direction. Such solutions are called oscillatory solutions.
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2. If E < V , k becomes imaginary and we write

k = iκ := i

√

2m

~2
(V −E) (2.33)

with the real quantity κ. The two independent solutions then become exponential functions e±κx.
Such solutions are called exponential solutions.

For fixed energy E, the general solution ψ(x) will be a superposition, that is a linear combination

ψ(x) = aeikx + be−ikx (2.34)

with k either real or imaginary, k = iκ. Since the wave function in general is a complex function,

the coefficients a, b can be complex numbers. Note that we can not have linear combinations with

one real and one imaginary term in the exponential like aeikx + be−κx, a, b 6= 0.

2.7 The Infinite Potential Well

2.7.1 Energies and Eigenstates I (10-20 min)

Consider the motion of a particle of mass m within the interval [x1, x2] = [0, L], L > 0 between
the infinitely high walls of the potential

V (x) =







∞, −∞ < x ≤ 0
0, 0 < x ≤ L
∞ L < x <∞

(2.35)

Show that the normalized energy eigenstate wave functions and energies are

ψn(x) =

√

2

L
sin

(nπx

L

)

, E = En =
n2

~
2π2

2mL2
, n = 1, 2, 3, ... (2.36)

SOLUTION: (see lecture notes) Outside the interval [0, L] the particle can not exist and its wave
function must be zero, i.e.

ψ(x) =







0, −∞ < x ≤ 0
aeikx + be−ikx, 0 < x ≤ L

0, L < x <∞
(2.37)

We demand that the wave function vanishes at x = 0 and x = L so that it is continuous a these
points. Clearly, this makes physically sense because at x = 0, L the potential is infinitely high and
the probability density |ψ(x)|2 to find the particle there should be zero. We obtain

ψ(0) = 0 0 = a+ b ψ(x) = c sin(kx), 0 ≤ x ≤ L, c = const.

ψ(L) = 0 sin(kL) = 0. (2.38)

The first condition tells us that the wave function must be a sine–function. The second condition is
more interesting: it sets a condition for the possible values kn that k can have,

kL = nπ  k ≡ kn =
nπ

L
, n = 1, 2, 3, ... (2.39)

The second boundary condition at x = L restricts the possible values of the energy E, because
k :=

√

(2m/~2) (E − V ) =
√

(2m/~2)E. Therefore, the energy can only acquire values

En =
~

2k2
n

2m
=
n2

~
2π2

2mL2
, n = 1, 2, 3, ... (2.40)
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In order to interpret the absolute square wave of the wave functions φn(x) = c sin(knx) as a probability
density, we have to demand

1 =

∫ L

0
dx|ψn(x)|2 =

∫ L

0
dx|c|2 sin2(nπx/L)

=
1

2

∫ L

0
dx|c|2[1− cos(n2πx/L)] =

|c|2L
2

|x|2 =
2

L
 c =

√

2

L
eiφ  ψn(x) =

√

2

L
sin(nπx/L)eiϕ, (2.41)

where ϕ ∈ R is a (real) phase factor. This normalization condition determines the wave functions

ψn(x) uniquely only up to a phase factor.

2.7.2 Energies and Eigenstates II (10-20 min)

Consider the motion of a particle of mass m within the infinitely high potential well

V (x) =







∞, −∞ < x ≤ −L/2
0, −L/2 < x ≤ L/2
∞ L/2 < x <∞

(2.42)

Determine the eigenfunctions ψn(x) and energy eigenvalues En explicitly. What are the sym-
metry properties of the eigenfunctions? Can you recover them from the solutions of the infinite
well on the interval [0, L] (see above and lecture notes)?

SOLUTION: We write the general wave function as

ψ(x) =







0, −∞ < x ≤ −L/2
a′eikx + b′e−ikx, −L/2 < x ≤ L/2

0, L/2 < x <∞
(2.43)

To make our life easier, we write this by re–defining the coefficients a′ and b′ as

ψ(x) = aeik(x−L/2) + be−ik(x−L/2), −L/2 < x ≤ L/2. (2.44)

From ψ(L/2) = 0 we immediately obtain a+ b = 0 which is fine because it tells us ψ(x) ∝ sin k(x−
L/2). From ψ(−L/2) = 0 we immediately obtain sinkL = 0 whence kL = nπ, n = 1, 2, 3, 4, ... (n = 0
is the zero solution, n = −1,−2, .. give nothing new. The possible energies therefore are

En =
~

2k2
n

2m
=
n2

~
2π2

2mL2
, n = 1, 2, 3, ... (2.45)

We thus have (within the well)

ψ(x) ∝ sin(kx− nπ/2) ∝
{

sin kx, n = 2, 4, 6, ... even
cos kx, n = 1, 3, 5, ... odd

(2.46)

Writing ∝ is a convenient way to avoid too much notation until the point were we eventually have
to become clear about the normalization: Within the well,

ψ(x) =







√

2
L sinkx, n = 2, 4, 6, ... odd function

√

2
L cos kx, n = 1, 3, 5, ... even function

(2.47)
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2.7.3 * Orthonormality (10 min)

Consider the Hilbert space H of wave functions ψ(x) of the infinite potential well on the
interval [0, L] with ψ(0) = ψ(L) = 0. Show that the basis vectors

ψn(x) =

√

2

L
sin

(nπx

L

)

form an orthonormal system.
SOLUTION: We have to show that the ψn(x) form an orthonormal basis:

∫ L

0
dxψ∗

n(x)ψm(x) = δnm. (2.48)

We therefore have to calculate the integral
∫ L

0
dx

√

2

L
sin

(nπx

L

)

√

2

L
sin

(mπx

L

)

. (2.49)

For n = m we have already calculated this integral above when we obtained the normalization of

the wave functions. For n 6= m we have to show that 2.49 is zero: Do this by expanding the sin into

exponentials and calculating the integrals, or use a theorem for trigonometric functions, or look it

up in a table.

2.7.4 Time Evolution (2 min)

Consider a wave function ψ(x) of the infinite potential well on the interval [0, L]. Consider
the case when the wave function at time t = 0 is one of the eigenstates of energy En, i.e.
Ψ(x, t = 0) = ψn(x) and check that the time evolution of a wave function that is an energy
eigenstate is just given by multiplication with the time–dependent phase factor e−iEnt/

�

, that
is

Ψ(x, t = 0) = ψn(x) Ψ(x, t) = ψn(x)e−iEnt/
�

. (2.50)

SOLUTION: In principle, this is in general already clear from the definition of the stationary
states (see lecture notes): To solve

i~
∂

∂t
Ψ(x, t) = ĤΨ(x, t), (2.51)

we had made a separation ansatz

Ψ(x, t) = ψ(x)f(t). (2.52)

Inserting into the Schrödinger equation, we have

i~∂tf(t)

f(t)
=
Ĥψ(x)

ψ(x)
= E, (2.53)

where we have separated the t– and the x–dependence. Both sides of depend on t resp. x indepen-
dently and therefore must be constant = E. Solving the equation for f(t) yields f(t) = exp−iEt/~
and therefore

Ψ(x, t) = ψ(x)e−iEt/
�

. (2.54)

We recognize: the time evolution of the wave function Ψ(x, t) is solely determined by the factor
exp−iEt/~. Furthermore, the constant E must be an energy (dimension!).

We can also check directly that Ψ(x, t) fulfills the time–dependent Schrödinger equation:

Ĥψn(x) = Enψn(x) i~
∂

∂t
Ψ(x, t) = i~

∂

∂t
ψn(x)e−iEnt/

�

= Enψn(x)e−iEnt/
�

= Ĥψn(x)e−iEnt/
�

= ĤΨ(x, t). (2.55)
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2.7.5 Expectation values (15 min)

Calculate the expectation value of a) the momentum square p2 and b) the kinetic energy
of a particle in the one–dimensional infinite well on the interval [0, L] with wave function
Ψ(x, t) = ψn(x)e−iEnt/

�

.
SOLUTION: Use ∂2

xψn(x) = −(n2
~

2/L2)ψn(x):

〈p2〉t =

∫ L

0
dxψn(x)

~
2∂2

x

i2
ψn(x) = −~

2

∫ L

0
dxψn(x)

(

−n
2π2

L2

)

ψn(x)

=
n2

~
2π2

L2
 〈 p

2

2m
〉t =

n2
~

2π2

2L2m2
= En. (2.56)

This is a very obvious result: since the energy of the wave function ψn(x) is En, the expectation
value of the kinetic energy E = p2/2m (= the total energy), i.e. the value one obtains on averaging
the results from many measurements on the same system with the same wave function, must be En.
We can obtain this result even easier by calculating the expectation value of the energy

〈Ĥ〉t =

∫ L

0
dxψn(x)Hψn(x) =

∫ L

0
dxψn(x)Enψn(x) = En, (2.57)

where we have used the Schrödinger equation Ĥψn = Enψn and the orthonormality of the ψn.

2.7.6 * Time evolution of superposition (10 min)

a) What is the time evolution of an arbitrary wave function Ψ(x, t = 0),

Ψ(x, t = 0) =
∞

∑

n=0

cnψn(x), cn =

∫ L

0

dxψ∗
n(x)Ψ(x)? (2.58)

b) Consider the wave function

Ψ(x, t = 0) =
1√
2

(ψ1(x) + ψ2(x)) . (2.59)

What is the probability density to find the particle at x at time t?
SOLUTION:

a) The Schrödinger equation is a linear partial differential equation, so the answer is simple: it is
just given by the superposition

Ψ(x, t) =

∞
∑

n=0

cnψn(x)e−iEnt/
�

(2.60)

 i~∂tΨ(x, t) =
∞
∑

n=0

cnEnψn(x)e−iEnt/
�

=

∞
∑

n=0

cnĤψn(x)e−iEnt/
�

= Ĥ

∞
∑

n=0

cnψn(x)e−iEnt/
�

= ĤΨ(x, t),

where we used the fact that Ĥ is a linear operator.
b) The time evolution is obtained as

Ψ(x, t) =
1√
2

(

ψ1(x)e
−iE1t/

�

+ ψ2(x)e
−iE2t/

� )

. (2.61)

From this we obtain the probability density

|Ψ(x, t)|2 =
1

2

(

ψ2
1(x) + ψ2

2(x) + 2ψ1(x)ψ2(x) cos[(E1 −E2)t/~]
)

, (2.62)

which is no longer constant as a function of time.
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2.8 The Finite Potential Well

2.8.1 Parity (10 min)

Show that the solutions of the stationary Schrödinger equation with the one–dimensional
potential

V (x) =







0, −∞ < x ≤ −a
−V < 0, −a < x ≤ a

0 a < x <∞
(2.63)

can be chosen as even and odd solutions.
SOLUTION: (see lecture notes) For symmetric potentials V (x) = V (−x), the Schrödinger

equation has an important property: If ψ(x) is a solution of Ĥψ(x) = Eψ(x), then also ψ(−x) is
a solution with the same E, i.e. Ĥψ(−x) = Eψ(−x) (replace −x → x and note that ∂2

x = ∂2
−x.

Since Ĥ is linear, also linear combinations of solutions with the same eigenvalue E are solutions with
eigenvalue E, in particular the symmetric (even) and anti symmetric (odd) linear combinations

ψe(x) :=
1√
2
[ψ(x) + ψ(−x)], ψo(x) :=

1√
2
[ψ(x) − ψ(−x)]. (2.64)

These are the solutions with even (e) and odd (o) parity, respectively.

2.8.2 Wave functions (5 min)

Draw the wave functions for energy E < 0 corresponding to the potential V (x), (2.63). What
about energies E < −V ?

SOLUTION: There are no solutions for E < −V .

2.9 Scattering states in one dimension

2.9.1 Plane Waves (5 min)

Show that plane waves solve the one–dimensional stationary Schrödinger equation for zero
potential. Derive the dispersion relation E = E(k), where E is the energy and k the wave
vector. Show that plane waves can not be normalized over the whole x–axis.

SOLUTION: We check this by inserting into the Schrödinger equation:

−~
2∂2

x

2m
ψk(x) = Eψk(x), ψk(x) = eikx

 E = E(k) =
~

2k2

2m
. (2.65)

A problem arises, because ψk(x) can not be normalized over the whole x–axis according to

∫ ∞

−∞

dx|ψk(x)|2 = 1, (2.66)

because this integral is infinite. A practical solution is to consider a large, but finite interval
[−L/2, L/2] instead of the total x–axis, and to normalize the wave functions according to

ψk =
1√
L
eikx,

∫ L/2

−L/2
dx|ψk(x)|2 = 1. (2.67)

See lecture notes for a further discussion.
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2.9.2 Piecewise constant potential (25 min)

We consider a 1d piecewise constant potential and a stationary wave function at energy E.

V (x) =































V1,
V2,
V3,
... ...
VN

VN+1

ψ(x) =































a1e
ik1x + b1e

−ik1x, −∞ < x ≤ x1

a2e
ik2x + b2e

−ik2x, x1 < x ≤ x2

a3e
ik3x + b3e

−ik3x, x2 < x ≤ x3

... ...
aNe

ikNx + bNe
−ikN x, xN−1 < x ≤ xN

aN+1e
ikN+1x + bN+1e

−ikN+1x, xN < x <∞

(2.68)

a) Show that kj =
√

(2m/~2) (E − Vj). Discuss the behaviour of the wave functions in regions
with Vj < E and Vj > E.
b) We consider the case E > V1, VN+1 such that k1 and kN+1 are real wave vectors and ψ(x)
describes running waves outside the ‘scattering region’ [x1, xN ]. Prove the matrix equation

u1 = T1u2, ui =

(

ai

bi

)

, i = 1, 2, (2.69)

with

T1 =
1

2k1

(

(k1 + k2)e
i(k2−k1)x1 (k1 − k2)e

−i(k1+k2)x1

(k1 − k2)e
i(k2+k1)x1 (k1 + k2)e

−i(k2−k1)x1

)

. (2.70)

SOLUTION: This problem looks complicated but it isn’t. Most of it is described in detail in the
lecture notes: We demand that ψ(x) and its derivative ψ ′(x) are continuous at x = x1. This gives
two equations

a1e
ik1x1 + b1e

−ik1x1 = a2e
ik2x1 + b2e

−ik2x1

a1e
ik1x1 − b1e−ik1x1 = (k2/k1)(a2e

ik2x1 − b2e−ik2x1) (2.71)

or

a1 =
1

2

(

k2

k1
+ 1

)

ei(k2−k1)x1a2 +
1

2

(

1− k2

k1

)

e−i(k2+k1)x1b2

b1 =
1

2

(

1− k2

k1

)

ei(k2+k1)x1a2 +
1

2

(

1 +
k2

k1

)

e−i(k2−k1)x1b2 (2.72)

which can be written in the above matrix form.

2.9.3 Transfer matrix (5 min)

How is the definition of the transfer matrix M , defined by
(

a1

b1

)

=

(

M11 M12

M21 M22

) (

aN+1

bN+1

)

? (2.73)

Express M as a product of matrices of the type (2.70).
SOLUTION: (again see lecture notes) In completely the same manner as in the above problem,

we obtain the transfer matrix T2 at the ‘slice’ x = x2 and

u2 = T2u3  u1 = T1u2 = T1T2u3. (2.74)

Doing this for all the slices x1, ..., xN , we obtain the complete transfer matrix M that connects the
wave function on the left side of the potential with the one on the right side,

u1 = MuN+1, M = T1T2...TN . (2.75)
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2.9.4 Transmission, * Reflection (10min)

We define the transmission coefficient T and the reflection coefficient R as

T :=
kN+1

k1

∣

∣

∣

∣

aN+1

a1

∣

∣

∣

∣

2

, R :=

∣

∣

∣

∣

b1
a1

∣

∣

∣

∣

2

, (2.76)

where the scattering condition bN+1 = 0 is assumed. Formulate this scattering condition in
words. Show

T =
kN+1

k1

1

|M11|2
, R =

∣

∣

∣

∣

M21

M11

∣

∣

∣

∣

2

, (2.77)

where Mij are the matrix elements of the transfer matrix.
SOLUTION: From

(

a1

b1

)

=

(

M11 M12

M21 M22

)(

aN+1

bN+1

)

(2.78)

and the scattering condition bN+1 = 0 it follows

a1 = M11aN+1 +M12bN+1 = M11aN+1

b1 = M21aN+1 +M22bN+1 = M21aN+1 = M21a1/M11

 T =
kN+1

k1

1

|M11|2
, R =

∣

∣

∣

∣

M21

M11

∣

∣

∣

∣

2

. (2.79)

To calculate the transmission and reflection coefficient through a piecewise constant one–dimensional

potential, it is therefore sufficient to know the total transfer matrix M . The fact that M =

T1T2...TN is just the product of the individual two–by two transfer matrices makes it a very convenient

tool for computations. The scattering condition bN+1 = 0 means that we are only looking for solutions

where no waves are coming in from the far right of the barrier.

2.10 The Tunnel Effect and Scattering Resonances

2.10.1 M–matrix for tunnel barrier (15 min)

Calculate the elements M11 and M12 of the transfer matrix M = T1T2 for a rectangular barrier.
In (2.68), set N = 2, x2 = −x1 = a, V1 = V3 = 0, and V2 = V > 0.
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SOLUTION: By matrix multiplication:

M =

(

M11 M12

M21 M22

)

=
1

4k1k2

(

(k1 + k2)e
i(k2−k1)x1 (k1 − k2)e

−i(k1+k2)x1

(k1 − k2)e
i(k2+k1)x1 (k1 + k2)e

−i(k2−k1)x1

)

.

×
(

(k2 + k1)e
i(k1−k2)x2 (k2 − k1)e

−i(k2+k1)x2

(k2 − k1)e
i(k1+k2)x2 (k2 + k1)e

−i(k1−k2)x2

)

 M12 =
1

4k1k2

[

(k1 + k2)(k2 − k1)e
i(k1−k2)a−i(k2+k1)a

+ (k1 − k2)(k2 + k1)e
i(k1+k2)a−i(k1−k2)a

]

=
k2
2 − k2

1

4k1k2

[

e−2ik2a − e2ik2a
]

=
k2
1 − k2

2

4k1k2
2i sin(2k2a)

 M11 =
1

4k1k2

[

(k1 + k2)(k2 + k1)e
i(k1−k2)a−i(k2−k1)a

+ (k1 − k2)(k2 − k1)e
i(k1+k2)a+i(k2+k1)a

]

=
e2ik1a

4k1k2

[

(k1 + k2)
2e−2ik2a − (k1 − k2)

2e2ik2a
]

= e2ik1a

[

k2
1 + k2

2

2k1k2
i sin(−2k2a) + cos(2k2a)

]

. (2.80)

Correspondingly for M21 and M22.

2.10.2 * Transmission coefficient (15 min)

Verify the expressions for the transmission coefficients of the tunnel barrier, given in the lecture
notes.

2.10.3 Transmission coefficient (10 min)

a) Draw the transmission coefficient of a tunnel barrier (roughly) as a function of energy E.
What are transmission resonances?
b) Draw the transmission coefficient of a potential step (roughly) as a function of energy E.

2.10.4 ** Determinant of M (10 min)

Consider the case k1 = kN+1 in (2.68). Use the definitions for T1 (Tn correspondingly) and M

T1 =
1

2k1

(

(k1 + k2)e
i(k2−k1)x1 (k1 − k2)e

−i(k1+k2)x1

(k1 − k2)e
i(k2+k1)x1 (k1 + k2)e

−i(k2−k1)x1

)

, M = T1T2...TN , (2.81)

to show that the determinant of the transfer matrix det(M) = 1.
SOLUTION: The determinant of a matrix product is the product of the determinants,

det(M) = detT1...det Tn. (2.82)

Furthermore,

detT1 =
1

4k2
1

[

(k1 + k2)
2 − (k1 − k2)

2
]

=
k2

k1

det T1...det Tn =
k2

k1

k3

k2
...
kN+1

kN
=
kN+1

k1
= 1. (2.83)
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2.10.5 ** A more general definition of the transfer matrix M (> 30 min)

We consider a one–dimensional potential of the form

V (x) =







0,
v(x),

0
ψ(x) =







aeikx + be−ikx, −∞ < x ≤ x1

φ(x), x1 < x ≤ x2

ceikx + de−ikx, x2 < x <∞
(2.84)

Here, v(x) is an arbitrary real potential. The central part φ(x) of the wave function ψ(x)
therefore in general is very difficult to calculate. We can, however, relate the coefficients a, b
(left side) with the coefficients c, d (right side): if some fixed values for c and d are chosen,
this determines the solution ψ(x) everywhere on the x–axis and therefore in particular a and
b. We write this relation as

(

a
b

)

=

(

M11 M12

M21 M22

) (

c
d

)

. (2.85)

a) With ψ(x) also the conjugate complex ψ∗(x) must be a solution of the stationary Schrödinger
equation Ĥψ(x) = Eψ(x). Why ?
b) Take the conjugate complex ψ∗(x) in (2.84) and show that this leads to the exchange a↔ b∗

and c↔ d∗ in (2.85).
c) Take the conjugate complex of the whole equation (2.85) and compare with the equation
you obtain from part b). Show that

M∗
11 = M22, M∗

12 = M21. (2.86)

d) Consider the current density and show that

|a|2 − |b|2 = |c|2 − |d|2. (2.87)

Write this equation as a scalar product of vectors in the form

(a∗b∗)

(

1 0
0 −1

) (

a
b

)

= (c∗d∗)

(

1 0
0 −1

) (

c
d

)

. (2.88)

Use the matrix M to derive from this

det(M) = 1. (2.89)

3.11 Axioms of Quantum Mechanics and the Hilbert Space

3.11.1 Definition (2min)

What is a Hilbert space?
Def.: A Hilbert space is a complete unitary space.

3.11.2 Orthonormality (5 min)

Consider the Hilbert space H of wave functions ψ(x) of the infinite potential well on the
interval [0, L] with ψ(0) = ψ(L) = 0. Show that the basis vectors

ψn(x) =

√

2

L
sin

(nπx

L

)

form an orthonormal system.
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3.11.3 * Expansion into eigenmodes (40 min)

Consider the vector f ∈ H, f(x) = cx(L− x).
a) Calculate the constant c such that f is normalized, i.e. ‖f‖ = 1. Show that c =

√

30/L/L2.

1 = ‖f‖2 =

∫ L

0
dxf∗(x)f(x) = c2

∫ L

0
x2(L− x)2 =

= c2
∫ L

0
dx[x4 − 2Lx3 + L2x2] = c2L5

[

1

5
− 2

4
+

1

3

]

 c =

√

30

L

1

L2
.

b) Show that f can be expanded in the basis ψn as

f =

∞
∑

n=1

cnψn, cn = 2
√

60
1− (−1)n

n3π3
(3.90)

cn = 〈ψn|f〉 = c

√

2

L

∫ L

0
dxx(L− x) sin

(nπx

L

)

= [y = x/L) =

=
√

60

∫ 1

0
dy(y − y2) sin(nπy).

We have
∫ 1

0
dyy sin(nπy) = −cos(nπ)

nπ
∫ 1

0
dyy2 sin(nπy) = − 2

n3π3
+

2− n2π2

n3π3
cos(nπ)

 

∫ 1

0
dy(y − y2) sin(nπy) = 2

1− (−1)n

n3π3

c) Use b) to prove the formula

π3

32
=

∞
∑

k=0

(−1)k

(2k + 1)3
.

We have
√

30

L

1

L2
x(L− x) =

√
60

∞
∑

n=1

2
1− (−1)n

n3π3

√

2

L
sin

(nπx

L

)

, setx = L/2

(1/2)(1/4) =
∞
∑

n=1

2
1− (−1)n

n3π3
sin

(nπ

2

)

= [n = 2k + 1] =
∞
∑

k=0

4(−1)k

π3(2k + 1)3

 

π3

32
=

∞
∑

k=0

(−1)k

(2k + 1)3
.

3.11.4 * Scalar product (20 min)

a) Use the bra and ket notation to show that for an orthonormal basis {|ψn〉} and two Hilbert
space vectors |ψ〉 and |χ〉, one has

〈ψ|χ〉 =
∞

∑

n=0

〈ψ|ψn〉〈ψn|χ〉. (3.91)
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b) Show that in the case of vectors x, y ∈ Rd, this reduces to the standard formula for the
scalar product in Rd,

〈x|y〉 =

d
∑

i=1

x∗i yi.

c) Use Eq.(3.91) and Eq.(3.90) to prove

π6

960
=

∞
∑

k=0

1

(2k + 1)6

3.12 Operators and Measurements in Quantum Mechanics

3.12.1 Definitions (2 min)

Show that the momentum operator p̂ = −i~∇ is a linear operator.
Apply −i~∇ to a linear combination of two wave functions.

3.12.2 Adjoint operator (10 min)

Consider the complex two–dimensional Hilbert space with basis vectors (1, 0) and (0, 1). Use
the definition of the adjoint operator to prove the following for the adjoint A† of the operator
A: If A is given as a complex two–by– two matrix,

A =

(

a b
c d

)

 A† =

(

a∗ c∗

b∗ d∗

)

.

Def.: The adjoint operator A† of a linear operator A acting on a Hilbert space H is defined by

〈ψ|Aφ〉 = 〈A†ψ|φ〉, ∀φ, ψ ∈ H. (3.92)

We calculate the scalar products with the basis vectors e1, e2:

A11 = (e1, Ae1) = a = (A†e1, e1) = (A†
11e1, e1) =

(

A†
11

)∗

. (3.93)

By this we have the element A†
11 of the adjoint matrix of A. Here, we used the fact that a scalar

c in the first argument of the scalar product appears as its conjugate complex when pulled out,

(cψ, φ) = c∗(ψ, φ). In completely the same manner we prove it for the other matrix elements.

3.12.3 Observables (5 min)

Which of the following matrices could describe physical observables in a Hilbert space of two
states ?

A =

(

1 1
0 2

)

, B =

(

−1 0
0 0

)

, C =

(

−100 i+ 1
i+ 1 2

)

, D =

(

0 −i
i 0

)

.

Physical observabes are represented hermitian operators. Def.: A linear operator A on the Hilbert
space H is called hermitian, if the following relation holds:

〈Aψ|φ〉 = 〈ψ|Aφ〉, ∀φ, ψ ∈ H. (3.94)

Therefore, only B and D describe physical observables. For example, B could describe a two level

atom in the basis of its two eigenstates with energy −1 and 0 (in some energy unit). D is the Pauli
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matrix σy and could describe the Zeeman energy of a spin 1/2 in a magnetic field in y direction in

the basis of spin states for magnetic field in the z direction. Alternatively, it could be an operator

that simply performs a flip of a spin 1/2, or an operator that describes the tunneling of a particle

from one side of a well to another.

3.12.4 Eigenvalues (5min)

Show that the eigenvalues of a hermitian operator are real numbers.
Theorem: The eigenvalues of hermitian operators A are real. This is because

A|ψ〉 = λ|ψ〉 λ =
〈ψ|A|ψ〉
〈ψ|ψ〉 ∈ R. (3.95)

Furthermore,

〈ψ|Aψ〉 = 〈A†ψ|ψ〉 = 〈Aψ|ψ〉 = 〈ψ|Aψ〉∗. (3.96)

3.13 The Two–Level System I

3.13.1 Model (20 min)

Repeat the steps that lead to the form

Ĥ =

(

εL T
T∗ εR

)

(3.97)

of the Hamiltonian of the two–level system, see Fig. 3.1. Explain the terms appearing in the

R







=

1

0
R

L







=

0

1
L

Fig. 3.1: Vector representation of left and right lowest states of double well potential.

two–by–two matrix Ĥ.

3.13.2 Eigenvalues of the energy, eigenvectors (50 min)

Calculate the two eigenvectors |i〉 and eigenvalues εi of Ĥ, eq. (3.97), that is the solutions of

Ĥ|i〉 = εi|i〉, i = 1, 2. (3.98)
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Show that

|1〉 =
1

N1
[−2T |L〉+ (∆ + ε)|R〉] , ε1 =

1

2
(εL + εR −∆)

|2〉 =
1

N2
[ 2T |L〉+ (∆− ε)|R〉] , ε2 =

1

2
(εL + εR + ∆)

ε := εL − εR, ∆ := ε2 − ε1 =
√

ε2 + 4|T |2
N1,2 :=

√

4|T |2 + (∆± ε)2. (3.99)

3.13.3 Absorption Experiment (5 min)

In an experiment, microwaves are irradiated upon a double quantum well. An absorption peak
is observed when electrons absorb a photon hν that matches the energy difference between
the lowest state 1 and the first excited state 2 of the system. Plot the absorption peak photon
energy as a function of the tunnel coupling T between both wells, when the energies in both
wells are kept fixed.

The absorption energy hν has to match the energy difference

∆ := ε2 − ε1 =
√

ε2 + 4|T |2

between the ground and the excited state. We thus have to plot ∆(T )!

3.13.4 * Vector Representation (10 min)

Represent the eigenvectors of the two–level system for arbitrary real, negative T = −|T | and
arbitrary ε as vectors in the two–dimensional plane.

3.14 The Two–Level System: Measurements and Probabilities

3.14.1 Qubit 1 (5 min)

A Qubit is a state in a two–dimensional complex Hilbert space. If |0〉 and |1〉 are denoted as
basis vectors of this space, what is the general form of a qubit?

A general superposition is

c0|0〉+ c1|1〉, |c1|2 + |c2|2 = 1,

with complex coefficients c1 and c2.

3.14.2 Qubit 2 (5 min)

We assume that the above qubit is realized as a particle that can tunnel between two regions
of space 0 and 1. What is the probability to find it in region 0 (state |0〉) if the qubit is in the
quantum state

1√
2

(i|0〉 − 1|1〉) , i =
√
−1?

P (0) =

∣

∣

∣

∣

1√
2
i

∣

∣

∣

∣

2

=
1

2
.
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3.14.3 Qubit 3: NOT-Gate (5 min)

Construct the quantum mechanical operator ‘NOT’ that flips the qubit

|0〉 → |1〉, |1〉 → |0〉.

Write ‘NOT’ as a two–by–two matrix in the basis {|0〉 = (1, 0)T , |1〉 = (0, 1)T}. How does
’NOT’ operate on a general qubit?

NOT =

(

0 1
1 0

)

. (3.100)

3.14.4 * Qubit 4: HADAMARD–Gate (10 min)

Construct a gate (2 by 2 matrix) Ĥ that shifts the basis vectors into superpositions

|0〉 → 1√
2

(|0〉+ |1〉) , |1〉 → 1√
2

(|0〉 − |1〉) . (3.101)

Write down the explicit form of Ĥ.

Ĥ =
1√
2

(

1 1
1 −1

)

. (3.102)

4.15 The Harmonic Oscillator I

4.15.1 Model (2 min)

Write down the Hamiltonian of the one–dimensional harmonic oscillator of mass m and fre-
quency ω.

SOLUTION:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (4.103)

4.15.2 Energies (2 min)

Write down the energy eigenvalues of the one–dimensional harmonic oscillator of mass m and
frequency ω.

SOLUTION:

En = ~ω

(

n +
1

2

)

, n = 0, 1, 2, 3, ... (4.104)
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4.15.3 Linear combination (10-20 min)

We introduce our ‘vector notation’ (Dirac notation) from section 3, where the normalized
wave functions ψn(x) are denoted as |n〉, because they are vectors in a Hilbert space. In this
problem, the |n〉 shall correspond to the normalized wave functions of the one–dimensional
harmonic oscillator of frequency ω. The |n〉 form an orthogonal system; we write the scalar
product as

〈n|m〉 ≡
∫ ∞

−∞

dxψ∗
n(x)ψm(x) = δn,m. (4.105)

1. Consider the state

|φ〉 = a|1〉+ b|3〉, a, b,∈ C. (4.106)

Which condition must the coefficients a,b fulfill in order that |φ〉 is normalized? Write the
normalization condition in the ‘abstract, elegant form’, using

〈φ| = a∗〈1|+ b∗〈3|, (4.107)

as 1 = 〈φ|φ〉 = ...
2. What is the probability to find the energy values E1 and E3 in an energy measurement of
a system in the state |ψ〉 ?
3. Calculate the expectation value of the energy in the state |φ〉 for general a and b and for
a = b = 1/

√
2.

SOLUTION:
1.

|a|2 + |b|2 = 1. (4.108)

2.

prob(E1) = |a|2, prob(E3) = |b|2. (4.109)

3.

〈φ|Ĥ|φ〉 = a〈φ|Ĥ|1〉+ b〈φ|Ĥ|3〉 = aE1〈φ|1〉+ bE3〈φ|3〉
= aE1(a

∗〈1|1〉+ b∗〈3|1〉) + bE3(a
∗〈1|3〉+ b∗〈3|3〉

= |a|2E1 + |b|2E3

= ~ω

(

|a|2 3

2
+ |b|2 5

2

)

a = b =
1√
2
 〈φ|Ĥ|φ〉 = ~ω

(

3

4
+

5

4

)

= 2~ω. (4.110)

4.16 The Harmonic Oscillator II

4.16.1 ** Generating Function (5-30 min)

We define the generating function of the Hermite polynomials as

e2tx−t2 =
∞

∑

n=0

Hn(x)

n!
tn, −∞ < x, t <∞....... (4.111)
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Prove the formula of Rodrigues,

Hn(x) = (−1)nex2 dn

dxn
(e−x2

).

Hint: Differentiate with respect to t.
SOLUTION:

Hn(x) =
∂n

∂tn
e2tx−t2

∣

∣

∣

t=0
=

∂n

∂tn
ex2−(t−x)2

∣

∣

∣

t=0

= ex2 ∂n

∂tn
e−(t−x)2

∣

∣

∣

t=0
= ex2 ∂n

∂(−x)n
e−(t−x)2

∣

∣

∣

t=0
= (−1)nex2 ∂n

∂xn
e−x2

4.17 Ladder Operators and Phonons

4.17.1 Commutator (5 min)

Define

a :=

√

mω

2~
x̂ +

i√
2m~ω

p̂, a+ :=

√

mω

2~
x̂− i√

2m~ω
p̂. (4.112)

and show that

[a, a+] = 1. (4.113)

SOLUTION:
Use the commutator [x, p].

4.17.2 Hamiltonian (10 min)

Prove that the Hamiltonian of the one–dimensional harmonic oscillator can be rewritten with
the help of ladder operators as

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 = ~ω

(

a+a+
1

2

)

, (4.114)

SOLUTION:
Use the commutator [a, a+].

4.17.3 Ladder Operator (5 min)

Prove the equation

N̂a+ = a+(N̂ + 1), N̂ := a+a. (4.115)

Hint: Use the commutator [a, a+].

4.17.4 Ladder Operator (15 min)

Use the above equation to show that a+|n〉 is an eigenstate of the number operator N̂ . Show
that

a+|n〉 =
√
n + 1|n + 1〉. (4.116)

(The |n〉 are normalized).
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4.17.5 Ground state (20 min)

Use the operator a to calculate the ground state wave function ψ0(x) explicitely. Start from
the operation

a|0〉 = 0 aψ0(x) = 0, (4.117)

and use the definition of a to derive an ordinary differential equation for ψ0(x) that you can
solve.

SOLUTION:
Write a in terms of x and p and solve the resulting differential equation:

√

mω

2~
x̂ +

~√
2m~ω

ψ′
0(x) = 0

mω

~
x + ψ′

0(x) = 0 ψ0(x) ∝ exp
(

−mωx2/2~
)

. (4.118)

4.18 Central Potentials in Three Dimensions

4.18.1 Separations of Variables (20 min)

Show by using the definition of the Laplace operator in polar coordinates and the definition
of the angular momentum square,

L̂2 = −~
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2

]

(4.119)

that the stationary Schrödinger equation for energy E for the motion of a particle with mass
m in a central potential U(r) can be separated with the Ansatz for the wave function

Ψ(r, θ, φ) = R(r)Ylm(θ, φ). (4.120)

In order to do so, define the radial function χ(r) := rR(r) and show

d2χ(r)

dr2
+

[

2m

~2
(E − U(r))− l(l + 1)

r2

]

χ(r) = 0. (4.121)

Which values are possible for l (without proof)?
SOLUTION: See lecture notes chapter 4.4 and 4.5.

4.18.2 * Behavior for r → 0 und r →∞ (10-20 min)

Verify that functions χ(r) with the following properties

limr→0 χ(r) ∝ rl+1, lim
r→∞

χ(r) ∝ e−r
√

−2mE/
�
2

, E < 0 (4.122)

fulfill the radial part of the Schrödinger equation for ‘reasonable’ potentials U(r).


