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1. INTRODUCTION

There are many routes towards quantum mechanics. Here, we present a short historical
introduction focussing on black-body radiation. We follow a recent article by Domenico Giulini
und Norbert Straumann 1

1.1 The Radiation Laws and the Birth of Quantum Mechanics

Quantum mechanics was born on the 14th December 1900 when Max Planck explained the
derivation of his radiation law at a meeting of the German Physical Society in Berlin. It was
a desperate attempt to explain findings by Lummer, Pringsheim, Kurlbaum, Paschen, and
Rubens who had performed precise experiments on thermal radiation of certain objects called
‘black body radiators’.

The black body radiator was a concept from the middle of the 19th century, introduced
by Kirchhoff in 1859. Kirchhoff discussed the thermal equilibrium between the radiation
(heat) within an arbitrarily shaped container and the walls of the container (black bodies)
that completely absorb all incident radiation. The walls also emit radiation since otherwise
there would be no radiation within the container at all (which contradicts experiments). The
radiation inside such a cavity is called black body radiation.

From thermodynamics (second law) one can show that the spectral energy density u of
black body radiation, i.e. the radiation energy per volume and per frequency interval, is only
a function of the frequency ν and the temperature T of the walls, and does not depend, e.g.,
on the shape of the container:

u = u(ν, T ) universal. (1.1)

Note:
∫ ν2

ν1
dνu = u(ν, T ) is the radiation energy within the frequency interval [ν1, ν2].

Kirchhoff had already pointed out the importance of determining the explicit form function
u(ν, T ). Its importance should lie in the fact that it was universal, i.e. independent of any
details of the geometry of the container. Such a universal function could be expected to
contain deep physical insights about thermodynamics and radiation.

In fact, it took 40 years and the efforts of many physicists to finally find the explicit form
of u(ν, T ). After Kirchhoff’s introduction of the ‘black body’, people where wondering how
to realise this theoretical concept experimentally. They first tried to blacken metallic (plat-
inum) plates without much success. The success came by Otto Lummer and Wilhelm Wien
(‘Physikalisch–Technische–Reichsanstalt’, the PTR in Berlin, a precessor of the nowadays
PTB, the German national Bureau of standards). They went back to the original definition
(thermal equilibrium with the walls of the container) of the black body and argued that one
should use a cavity with a small hole inside to get the black body radiation out of it, without
disturbing it too much.

1 Domenico Giulini und Norbert Straumann [in German] ’Ich dachte mir nicht viel dabei”: Plancks Weg
zur Strahlungsformel, Phys. Bl. 12/2000, p. 37.
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Fig. 1.1: Lummer and Kurlbaum’s black-body experiment from 1898: platinum cylinder sheet
within a ceramic tube [Phys. Bl. 12/2000, p. 43].

At that time, there was already the theoretical prediction by Wien who had found in 1893
a scaling law for u(ν, T ), stating

u(ν, T ) = ν3f(ν/T ) (1.2)

with an (unknown) ‘scaling function’ f of only one variable, i.e. the ratio ν/T . In particular,
this scaling law immediately explained the Stefan–Boltzmann–law

U(T ) :=

∫ ∞

0

dνu(ν, T ) = σT 4, σ = const. (1.3)

Wien even made a suggestion for the explicit form of f in analogy to Maxwell’s velocity
distribution in a gas (Wien’s law),

u(ν, T ) =
4ν3

c3
b exp

(

−aν
T

)

, a, b = const, (1.4)

(valid for large frequencies and small temperatures: quantum limit !)

where c is the speed of light. Wien’s law was compatibel with the experimental results until
the middle of the year 1900. Lummer and his coworker Kurlbaum had developed a very
precise bolometer, based on the bolometer by Samuel P. Langley used in astrophysics from
1880. Furthermore, Lummer and his coworker Pringsheim developed black body radiators
that could operate in a very large temperature range between -188oC and 1200oC, later up to
temperatures of 1600oC.

It turned out that Wien’s law (1.4) was quite a good description of the experimental
data but there were small deviations at large temperatures. Lummer and Pringsheim again
improved their experiment into the range of up to wavelengths λ = c/ν of λ = 8.3µm and
T = 1650K, and the deviations became even stronger. The story became even more confusing
in the autumn of 1900 when Friedrich Paschen in Hannover claimed good agreement of his
data with (1.4), and Max Planck also had ‘proven’ it by thermodynamic considerations.

The bomb came with new measurements by a guest scientist at the PTR (Heinrich Rubens)
which extended up to λ = 50µm. The deviations from Wien’s law could not discussed away
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any longer. Rather, in the extreme long wave-length limit, Rubens found good agreement with
another radiation law that had previously set up by Lord Rayleigh (Rayleigh-Jeans-law),

u(ν, T ) = ρ(ν)Ē(ν) =
8πν2

c3
kBT, (1.5)

(valid for small frequencies and large temperatures: classical limit !)

where kB is the Boltzmann constant. Rayleigh’s law followed from the density of states
ρ(ν) = 8πν2/c3 (density of electromagnetic eigenmodes per volume, polarization direction
and frequency) of the electromagnetic field in a cavity, and the theorem of thermodynamics
that gives each degree of freedom of an oscillation in thermal equilibrium an average energy
Ē(ν) = kBT (1/2kBT for kinetic and potential energy each), independent of the frequency ν.

Rubens told Planck of his observations over afternoon tea, and the same evening Planck,
in a desperate attempt to ‘improve’ Wien’s law, suggested an interpolation formula between
(1.4) and (1.5), Planck’s law

u(ν, T ) =
8πν2

c3
hν

exp
(

hν
kBT

)

− 1
, (1.6)

where the new constant h is the Planck constant

h = 6.626× 10−34Js. (1.7)

Planck’s law turned out to give excellent agreement with all the experimental data. He solved
this puzzle by the hypothesis Planck’s hypothesis, that oscillators change their energies
E(ν) only in integer multiples of a fundamental energy unit ε. He didn’t explicitely assume
E(ν) = nε at that time, but he showed that ε must be proportional to the frequency ν, i.e.
ε = hν.

1.1.1 Remarks

1. Note that ironically, quantum mechanics was discovered via the classical limit of a radiation
law! In fact, the Rayleigh-Jeans-law contains no Planck constant h, whereas the parameters
a and b in the 19th-century ‘thermodynamic’ Wien law contain h and kB, both fundamental
constants in microscopic theories (although at that time, the deep physical meaning of a and
b was of course not understood).
2. Nowadays, instead of h one often uses ~ = h/2π. Instead of the frequency ν one often uses
the angular frequency ω = 2πν. If ω is used instead of ν, the spectral energy density w(ω, T )
is defined as w(ω, T )dω = u(ν, T )dν. Since dω = 2πdν, this gives w(ω, T ) = ω2/(π2c3) ×
~ω/(exp(~ω/kT )− 1). Therefore, be careful when comparing different definitions and doing
calculations because a wrong factor 2π gives a result that is wrong by nearly one order of
magnitude!
3. Cosmic black body radiation is a consequence of the ‘Big Bang Model’. Measurements of
the cosmic background radiation corresponding to a temperature T ≈ 2.7K were performed
by R. H. Dicke and co–workers.

1.1.2 * Math: Density of states

A math theorem tells that for a function f(x),

lim
L→∞

1

L

∞
∑

n=0

f(n/L) =

∫ ∞

0

f(x)dx. (1.8)
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Assume standing waves in a box of size L3 with wave vectors

k = (πnx/L, πny/L, πnz/L).

Assume we wish to calculate a function f(k) = f(k) that only depends on the modulus of k.
We use

lim
L→∞

1

L3

∞
∑

nx,ny,nz=0

f (πnx/L, πny/L, πnz/L)) =
1

π3

∫ ∞

0

f(k)dkxdkydkz, (1.9)

i.e.

lim
L→∞

1

L3

∑

kx,ky,kz>0

f(k) =
1

π3

∫ ∞

0

f(k)dkxdkydkz =
1

π323

∫ ∞

−∞
f(k)dkxdkydkz

=
1

(2π)3

∫ ∞

0

dk4πk2f(k) =

∫ ∞

0

dk
k2

2π2
f(k)

=

∫ ∞

0

dω
ω2

2π2c3
f(ω) =:

∫ ∞

0

dωρ(ω)f(ω)

ρ(ω) :=
ω2

2π2c3
. (1.10)

Here, ρ(ω) is the density of states if there was only one polarization direction per possible
‘state’ (wave vector k). If there are two polarization directions, like for unpolarized light, the
density of states is twice as large, i.e. ρ(ω) := ω2

π2c3
.

1.2 Waves, particles, and wave packets

1.2.1 Introduction

After our relatively detailed historic introduction above, we only shortly touch the important
other findings that lead to quantum mechanics. The first is the photoelectric effect, discov-
ered by Hertz in 1887 in tin plates that got positively charged when irradiated with UV light.
Electrons are emitted from a metal surface only if the frequency is above a certain limit. Also,
experiments by Philipp Lenard 2 showed that the kinetic energy (1/2)mv2 is independent of
the intensity of the radiation. Einstein explained this effect in 1905 by introducing discrete
quanta of light, i.e. photons, with energy

E = hν, (1.11)

which are absorbed in order to kick an electron out of the metal. Energy conservation requires
E = Ekin + W , where W the ‘work function’, i.e. the energy to get the electrons out of the
metal, and Ekin = 1

2
mev

2 is the additional kinetic energy of the electron (mass me) when it
has a finite velocity v. On the other hand, the general expression for the total energy of a
particle is

E2 = (mc2)2 + p2c2, (1.12)

2 Philipp Lenard won the Nobel prize in 1905 but later became an enemy of Einstein and a strong anti–
Semite Nazi supporter. He published a four–volume physics text book with the title ‘German Physics’.
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and for photons that move with the velocity of light c the mass (rest mass) m must be zero.
This yields

pc = hν  p = h/λ. (1.13)

Introducing the wave vector k with |k| = 2π/λ, pointing in the same direction as p, this
establishes the relation between momentum and wave vector,

p = ~k for photons. (1.14)

In particular, the photoelectric effect showed that light has a particle aspect. On the other
hand, it was known that interference etc. were consequences of the wave properties of light.

In 1923, this particle–wave duality was extended to matter, i.e. massive objects, by de
Broglie. Wave properties of matter had already been discussed in the 19th century by Hamil-
ton. It was known that geometrical optics could be derived from the wave theory of light
(Eikonal equation). In a similar way, there was an Eikonal equation in a branch of theoret-
ical mechanics called Hamilton–Jacobi theory. By this one could speculate that classical
mechanics had to be a limiting case of some more complete theory (quantum mechanics), in
the same spirit as geometrical optics is the limiting case of wave theory.

A non–relativistic, freely moving particle of mass m and momentum p has a kinetic energy
E = p2/2m. If the particle–wave duality can be extended from photons to massive objects,
this particle also can be considered as a wave, and one could postulate the same relation
between momentum and wave vector as for photons,

p = ~k for massive particles. (1.15)

Further experimental hints stem from experiments where electrons are scattered at crystal
surfaces and behave like waves (Davisson, Germer).

The de–Broglie relation means that a particle can be described as a wave with wave vector
k and angular frequency ω. The simplest form of such a wave is a plane wave

Ψ(x, t) = Aei(kx−ωt), (1.16)

but how should this quantity (which is a complex and not a real number)describe a particle?
One could form real superpositions into sin and cos, but even then this ‘particle’ would be
extended from minus to plus infinity which seems absolutely awkward. Intuition tells one
that a particle should be localized in space; at any fixed time t0 it should be at some point
x0 somewhere in space. Still, going ahead with the wave concept of matter, one can form
superpositions of plane waves.

1.2.2 The wave packet

Let us come back to de Broglie’s idea to describe a particle as a wave or better as a super-
position of waves. We assume that a particle with energy E = p2/2m can be described by a
function that is a superposition of plane waves,

Ψ(x, t) =

∫ ∞

−∞
dka(k)ei(kx−ω(k)t), ~ω(k) = E = ~

2k2/(2m). (1.17)

We have used the relation between momentum and wave vector, p = ~k, and the relation
between energy and angular frequency, E = ~ω. As with waves, the angular frequency ω in
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general depends on the wave length and therefore ω = ω(k). For simplicity, we adopted a
one–dimensional version. Note that the time evolution of a single plane wave ei(kx−ωt) goes
with the minus sign. We would like to know the time evolution of the function Ψ(x, t), i.e.
to find its equation of motion. Equations of motion often represent fundamental laws in
physics, like Newton’s F = ma, which is a second order differential equation ẍ = (1/m)F (x).
We therefore differentiate (1.17) with respect to time (we write ∂t for ∂/∂t etc.

i~∂tΨ(x, t) =

∫

dka(k)~ω(k)ei(kx−ω(k)t) =

∫

dka(k)E(k)ei(kx−ω(k)t) =

=

∫

dka(k)
~

2k2

2m
ei(kx−ω(k)t) = −~

2∂2
x

2m

∫

dka(k)ei(kx−ω(k)t) =

= −~
2∂2

x

2m
Ψ(x, t). (1.18)

So far we have only considered a particle that only has kinetic energy E = p2/2m = E(k) =
(~k)2/2m. In general, a particle can have both kinetic energy and potential energy V (x).
Example: A harmonic oscillator with angular frequency ω and mass m in one dimension has
the potential energy V (x) = (1/2)mω2x2.

We now postulate that the above equation for a free particle (zero potential energy),

i~∂tΨ(x, t) =

∫

dka(k)E(k)ei(kx−ω(k)t),

has to be generalized by replacing E(k) with the total energy E(k) + V (x) for a particle in a
non–zero potential. Then, the equation of motion becomes

i~∂tΨ(x, t) =

∫

dka(k)[E(k) + V (x)]ei(kx−ω(k)t) =

= [−~
2∂2

x

2m
+ V (x)]Ψ(x, t). (1.19)

The equation

i~
∂

∂t
Ψ(x, t) =

[

−~
2∂2

x

2m
+ V (x)

]

Ψ(x, t) (1.20)

is called Schrödinger equation and is one of the most important equations of physics at
all. We only have given the one–dimensional version of it so far, the generalization to two or
three dimensions is not difficult: the variables x and k become vectors x and k. Instead of the
differential operator ∂2

x, one has ∂2
x + ∂2

y in two or ∂2
x + ∂2

y + ∂2
z in three dimensions. This

is nothing else but the Laplace operator ∆ = ∂2
x + ∂2

y + .... The Schrödinger equation reads

i~
∂

∂t
Ψ(x, t) =

[

−~
2∆

2m
+ V (x)

]

Ψ(x, t). (1.21)

1.3 Interpretation of the Wave Function

1.3.1 Interference experiments

Davisson and Germer performed experiments where electrons were scattered at the surface
of a crystal. They observed interference, similar to the scattering of light, e.g. X-rays. In
particular, destructive interference cannot be explained in a corpuscular picture.
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After Schrödinger had set up his equation for the wave function Ψ(x, t), it was not clear
at all how to interpret this object. We have seen that as a superposition of plane waves, Ψ(x, t)
obviously must have wave properties. On the other hand, the photo effect and other effects
like the Compton effect showed that electrons act as particles as well.

It became clear that a statistical interpretation of Ψ(x, t) was a consistent way to com-
bine both wave and particle aspects within one picture. In fact, in the experiments where
interference was observed, always many particles were involved. This does not mean that
the interaction between the particles is required to lead to interference. Even at very low
intensities of particle beams, where in the extreme case only one electron at a time scatters
from the surface of the crystal, in the end an interference pattern is observed on a screen (or
when plotting a histogram of the electrons counted by different detectors). This suggested
that the physical content of the wave function is related to a probability. It is clear, on the
other hand, that a probability must be positive. One could imagine this probability as a kind
of intensity which for waves Ψ is given by |Ψ|2. This is only a heuristic argument, one could
argue that also |Ψ|4 could do it. We therefore have another look at the Schrödinger equation.

1.3.2 First Axiom

Axiom 1: The wave function Ψ(x, t) for a particle with mass m moving in a potential V (x)
obeys the Schrödinger equation

i~
∂

∂t
Ψ(x, t) =

[

−~
2∆

2m
+ V (x)

]

Ψ(x, t). (1.22)

|Ψ(x, t)|2d3x is the probability for the particle to be in the (infinitesimal small) volume d3x
around x at time t. The probability P (Ω) for the particle to be in a finite volume Ω of space
is given by the integral over this volume:

P (Ω) =

∫

Ω

d3x|Ψ(x, t)|2. (1.23)

The probability to find the particle somewhere in space must be one and hence

∫

R3

d3x|Ψ(x, t)|2 = 1. (1.24)

Remarks:
1. In formulating this axiom, we already made an abstract assumption of one and only one
particle that can be somewhere in space. Only the interaction with the potential V (x) is
included, which is assumed to be a given function of x. This potential can be created by,
e.g., electric fields and therewith indirectly by the interactions with other particles which are,
however, are not included explicitly.
2. There are no relativistic effects included here.
3. The normalization condition (1.24) is necessary for an interpretation of |Ψ|2 as a probability
density. Ψ must be square integrable. Functions Ψ that are square integrable belong to an
infinite dimensional vector space of functions, the Hilbert space L2(R3). The Hilbert space
is a central object in the mathematical theory of quantum mechanics. Basically, it replaces
the phase space of points (x, p) from classical mechanics.
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Fig. 1.2: In this example, the random variable x is the distance x = r to the center.

1.3.3 Probability densities

In the following, we will introduce some basic mathematical concepts that are required to
formulate the probabilistic aspect of the wave function.

Let x ∈ [−∞,∞] be a random variable, e.g. the outcome of a measurement. The prob-
ability density ρ(x) of x is defined in the following way: ρ(x)dx is the probability that x
lies in [x, x+ dx]. Clearly, ρ(x) has to be normalized, i.e.

∫ ∞
−∞ dxρ(x) = 1. Alternatively, one

often uses the following

Definition 1 (Probability Density). Let P (a ≤ x ≤ b) be the probablity for the random
variable x to be in the interval [a, b]. We define the probability density ρ(x) by

P (a ≤ x ≤ b) =

∫ b

a

dxρ(x). (1.25)

Remarks:

• ρ(x) ≥ 0.

•
∫ ∞
∞ dxρ(x) ≡ P (−∞ ≤ x ≤ ∞) = 1.

• P (−∞ ≤ x′ ≤ x) is called distribution function.

1.3.4 Example: Gauss distribution

Definition 2 (Gauss Distribution). The function

ρ(x) ≡ 1√
2πσ2

exp

(

−(x− x0)
2

2σ2

)

(1.26)

is the probability density of the Gauss distribution with parameters x0 and σ > 0.

We have the following important integral (Gauss integral):

∫ ∞

−∞
dxe−ax2+bx =

√

π

a
exp

(

b2

4a

)

. (1.27)
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Proof: First consider b = 0, a = 1. Calculate

[
∫ ∞

−∞
dxe−x2

]

=

∫ ∫

dxdye−(x2+y2) =

∫ 2π

0

∫ ∞

0

drre−r2

= 2π

∫ ∞

0

dx

2
e−x = π (1.28)

and take the square-root of this equation. Then do the case with general a and b by completing
the square in the exponential and substitution (exercise!).

1.3.5 Example: χ2 distribution

Definition 3 (χ2 Distribution). The function

ρ(x) ≡ 1

2n/2Γ(n/2)
xn/2−1e−x/2θ(x) (1.29)

is the probability density of the χ2 distribution with n degrees of freedom. Here,

Γ(z) ≡
∫ ∞

0

dxxz−1e−x (1.30)

is the Gamma function and

θ(x) =

{

0, x < 0
1, x ≥ 0

(1.31)

is the unit-step (Heavyside) function.

1.3.6 Expectation value (mean value), mean square deviation

Definition 4 (Expectation value). Let x be a random variable with probablity density ρ(x).
Then,

x̄ ≡ 〈x〉 ≡
∫ ∞

−∞
dxρ(x)x (1.32)

is called expectation value (mean value) of x.

Example: Gauss distribution

ρ(x) =
1√

2πσ2
e−

(x−x0)2

2σ2
 〈x〉 =

∫ ∞

−∞
dxρ(x)x = x0. (1.33)

If f(x) is a function of the random variable x (example: x is the value of a position measure-
ment, f(x) = V (x) is the value of an external, fixed electric potential at x; x random  f(x)
random as well), we define the

Definition 5 (Expectation value of a function). : The expectation value of a function
f(x) is defined as

〈f〉 :=

∫ ∞

−∞
dxρ(x)f(x). (1.34)
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Note that (1.33) is a special case of (1.34) with f(x) = x. An important special case of
(1.33) is the

Definition 6 (Mean-square deviation). The mean-square deviation of x is defined as

〈∆x2〉 ≡ 〈(x− 〈x〉)2〉. (1.35)

Its value indicated how broadly scattered the individual realisations of x around its mean
value x̄ are. Example: Gauss distribution

ρ(x) =
1√

2πσ2
e−

x2

2σ2
 〈∆x2〉 =

∫ ∞

−∞
dxρ(x)x2 = σ2. (1.36)

In this example, we have used the trick of differentiation with respect to a parameter in order
to calculate the integral

∫ ∞

−∞
dxx2e−ax2

= − ∂

∂a

∫ ∞

−∞
dxe−ax2

= − ∂

∂a

√
πa−1/2 =

1

2

√

π

a3
. (1.37)

1.3.7 The continuity equation

We generate one equation by multiplying the Schrödinger equation with Ψ∗(x, t), where ∗

means conjugate complex. We generate another equation by multiplying the (Schrödinger
equation)∗ with −Ψ(x, t) and add both equations. The result is

i~(Ψ∗∂tΨ + Ψ∂tΨ
∗) = − ~

2

2m

[

Ψ∗∂2
xΨ− Ψ∂2

xΨ
∗]

i~∂t(ΨΨ∗) = − ~
2

2m
∂x [Ψ∗∂xΨ− Ψ∂xΨ

∗] . (1.38)

This can be written in the form of a continuity equation:

∂
∂t
ρ(x, t) + ∂

∂x
j(x, t) = 0

ρ(x, t) ≡ Ψ(x, t)Ψ∗(x, t)
j(x, t) ≡ − i

�

2m

[

Ψ(x, t)∗ ∂
∂x

Ψ(x, t)−Ψ(x, t) ∂
∂x

Ψ∗(x, t)
]

.
(1.39)

You should check that beside the probability density ρ(x, t) also the probability current
density j(x, t) both are real quantities. Eq. (1.39) in fact is the one–dimensional version of
a continuity equation

∂tρ(x, t) + divj(x, t) = 0 (1.40)

that appears in different areas of physics such as fluid dynamics or wave theory. We note
that for simplicity up to here we have only dealt with the one–dimensional version of the
Schrödinger equation which yields the one–dimensional version of the continuity equation.
We integrate Eq. (1.39) from x = −∞ to x =∞ and assume that Ψ vanishes at infinity which
is plausible: if Ψ is related to a probability, this probability should be zero at points of space
that are inaccessible to the particles, i.e. at infinity. We obtain

∂t

∫ ∞

−∞
dxρ(x, t) = 0 

∫ ∞

−∞
dxρ(x, t) = const. (1.41)

The statistical interpretation of Ψ(x, t) is one of the central axioms of quantum mechanics.
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1.4 Fourier Transforms and the Solution of the Schrödinger Equation

We had arrived at the Schrödinger equation starting from the wave packet

Ψ(x, t) =

∫ ∞

−∞
dka(k)ei(kx−ω(k)t), ~ω(k) = E = ~

2k2/(2m). (1.42)

In the following, we formalize such superpositions of plane plane waves by introducing the
concept of Fourier integrals and the Fourier transform of a function. The Fourier transform is
a powerful tool to solve linear partial differential equations such as the Schrödinger equation
for a free particle (potential V (x) = 0).

1.4.1 Math: Fourier Integral

We define the decomposition into plane waves of a function f(x) of one variable x by its
Fourier transform f̃(k),

f̃(k) :=

∫ ∞

−∞
dxf(x)e−ikx, f(x) =

1

2π

∫ ∞

−∞
dkf̃(k)eikx. (1.43)

Remarks:
1. In this lecture, we define the Fourier transform with the factor 1/2π as in (1.43). Some
people define it symmetrically, i.e. 1/

√
2π in front of f(x) and f̃(k).

2. Remember the Minus signs in the exp functions.
We often use the Fourier transform f̃(k) in d dimensions for a function f(x), x = (x1, ..., xd),

f̃(k) :=

∫ ∞

−∞
dxf(x)e−ikx, f(x) =

1

(2π)d

∫ ∞

−∞
dkf̃(k)eikx. (1.44)

1.4.2 Math: Gauss function

The Gauss function

g(x) :=
1√

2πσ2
e−

x2

2σ2 (1.45)

is a convenient example to discuss properties of the Fourier transform. It can be decomposed
into plane waves by

g̃(k) =

∫ ∞

−∞
dxg(x)e−ikx = e−

1
2
σ2k2

g(x) =
1

2π

∫ ∞

−∞
dke−

1
2
σ2k2

eikx (1.46)

An important integral in this context is

∫ ∞

−∞
dxe−ax2+bx =

√

π

a
e

b2

4a . (1.47)

A very broad Gauss function g(x) with large σ is the result of a superposition of plane waves

eikx in a very small range of k–values around k = 0: if σ is very large, the weights e−
1
2
σ2k2

in
the Fourier decomposition become very small for large |k|. Discuss the opposite case of small
σ!
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1.4.3 The Delta Functional (‘Delta Function’)

The parameter σ in the Gauss function determines its width. A broad wave packet in coordi-
nate (x) space corresponds to a narrow distribution of wave vectors k. What happens in the
limit σ → 0 ? In coordinate space, this would correspond to an extremely sharp wave packet
around x = 0 that could serve as a model for a particle localized at x = 0. We define

δ(x) ≡ lim
σ→0

1√
2πσ2

e−
x2

2σ2 . (1.48)

As an ordinary function, this is a somewhat strange mathematical object because it is zero for
all x 6= 0, but infinite for x = 0. However, it has the useful property that for any (reasonably
well–behaving) function f(x)

∫ ∞

−∞
dx′δ(x− x′)f(x′) = lim

σ→0

∫ ∞

−∞
dx′f(x′)

1√
2πσ2

e−
(x−x′)2

2σ2 = f(x). (1.49)

For example, multiplication of f(x′) with δ(x′) and integration over the whole x′-axis gives
the value of f at x = 0. Such an operation is called a functional, that is a mapping

δ : f → f(0) (1.50)

that puts a whole function f to a (complex or real) number. Nevertheless, for historical reasons
physicists call this object a delta-function. Remember that δ(x) is only defined as in (1.49),
that is by integration over a function (‘test–function’) f(x).

Another very useful property is the Fourier transform of the Delta–function: We recall our
definition

f(x) =
1

2π

∫ ∞

−∞
dkf̃(k)eikx, f̃(k) :=

∫ ∞

−∞
dx′f(x′)e−ikx′

 f(x) =
1

2π

∫ ∞

−∞
dk

∫ ∞

−∞
dx′f(x′)e−ikx′

eikx =

∫ ∞

−∞
dx′

∫ ∞

−∞

dk

2π
eik(x−x′)f(x′). (1.51)

Now, comparing with the definition of the Delta function, Eq.(1.49), we recognise

δ(x− x′) =

∫ ∞

−∞

dk

2π
eik(x−x′). (1.52)

The delta function is thus a superposition of all plane waves; the corresponding distribution
of k–values in k–space is ‘extremely broad’, that is uniform from k = −∞ to k = +∞. Note
that we can also obtain the result δ̃(k) = 1 from the Fourier transform g̃(k) of the Gauss
function g(x), Eq. (1.46), in the limit σ → 0.

1.4.4 * Partial Differential Equations and Fourier Transform

The Schrödinger equation for a free particle,

i~
∂

∂t
Ψ(x, t) = −~

2∂2
x

2m
Ψ(x, t), Ψ(x, t = 0) = Ψ0(x) (1.53)
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can be solved by Fourier transformation:

i~
∂

∂t

∫ ∞

−∞

dk

2π
eikxΨ̃(k, t) = −~

2∂2
x

2m

∫ ∞

−∞

dk

2π
eikxΨ̃(k, t) =

~
2

2m

∫ ∞

−∞

dk

2π
k2eikxΨ̃(k, t)

 0 =

∫ ∞

−∞

dk

2π
eikx

[

i~
∂

∂t
Ψ̃(k, t)− ~

2k2

2m
Ψ̃(k, t)

]

 0 = i~
∂

∂t
Ψ̃(k, t)− ~

2k2

2m
Ψ̃(k, t). (1.54)

The last equation is an ordinary differential equation in t that can be solved easily:

0 = i~
∂

∂t
Ψ̃(k, t)− ~

2k2

2m
Ψ̃(k, t)

 Ψ̃(k, t) = Ψ̃(k, t = 0)e−iω(k)t, ω(k) :=
~k2

2m
. (1.55)

Here, the initial value Ψ̃(k, t = 0) appears; it is given by our definition for the Fourier
transform

Ψ̃(k, t = 0) =

∫ ∞

−∞
dxΨ(x, t = 0)e−ikx =

∫ ∞

−∞
dxΨ0(x)e

−ikx = Ψ̃0(k) (1.56)

Therefore, if we know the initial wave function Ψ0(x), we know its Fourier transform Ψ̃(k, t =
0) and can calculate the solution Ψ(x, t) at a later time t > 0 by Fourier back transformation,

Ψ(x, t) =
1

2π

∫ ∞

−∞
dkΨ̃(k, t)eikx =

1

2π

∫ ∞

−∞
dkeikxe−i

�
k2t
2m Ψ̃0(k)

=
1

2π

∫ ∞

−∞
dkeikxe−iω(k)t

∫ ∞

−∞
dx′Ψ(x′, t = 0)e−ikx′

=

∫ ∞

−∞
dx′

1

2π

∫ ∞

−∞
dkeik(x−x′)−iω(k)tΨ(x′, t = 0)

=

∫ ∞

−∞
dx′G(x, x′; t, t = 0)Ψ(x′, t = 0), (1.57)

where we defined the propagator of the particle which propagates the wave function from its
initial form at t = 0 to its form at a later time t > 0.

1.5 Position and Momentum in Quantum Mechanics

1.5.1 Expectation values in quantum mechanics

We had seen that the square of the wave function, |Ψ(x, t)|2, describing a particle in a potential
V (x), is a probability density to find the particle at x at time t. The result of a single mea-
surement of x can only be predicted to have a certain probability, but if many measurements
of the position x under identical conditions are repeated, the average value (expectation value)
of x is

〈x〉t =

∫

dx|Ψ(x, t)|2x. (1.58)
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We have again adopted a one–dimensional version for simplicity, in three dimensions the
expectation value is completely analogous,

〈x〉t =

∫

d3x|Ψ(x, t)|2x. (1.59)

Note that the expectation value is now a three–dimensional vector which is a function of time
t. We have indicated the time–dependence by the notation 〈...〉t.

Next, we would like to know the expectation value of the momentum p of the particle. To
determine x and p for a given massive object (like a planet revolving around the sun) at time t
is one of the aims of classical mechanics. In quantum mechanics, we only have the probability
density |Ψ(x, t)|2, but we can calculate expectation values: We define the expectation value
for the momentum p (one–dimensional version) as

〈p〉t ≡ m
d

dt
〈x〉t. (1.60)

This seems plausible because in classical mechanics p = mẋ. Later we will see that an
equivalent definition is also possible, using the de Broglie relation p = ~k. We write

〈p〉t = m
d

dt
〈x〉t = m

∫

dx
d

dt
|Ψ(x, t)|2x = −m

∫

dx
∂

∂x
j(x, t)x. (1.61)

Now, we re-call the definition of the current-density and the continuity equation, Eq.(1.39),

∂
∂t
ρ(x, t) + ∂

∂x
j(x, t) = 0

ρ(x, t) ≡ Ψ(x, t)Ψ∗(x, t)
j(x, t) ≡ − i

�

2m

[

Ψ(x, t)∗ ∂
∂x

Ψ(x, t)−Ψ(x, t) ∂
∂x

Ψ∗(x, t)
]

.

We therefore find

〈p〉t = [partial integration] = m

∫

dxj(x, t) = [definition of j]

= − i~
2

∫

dx[Ψ∗(x, t)∂xΨ(x, t)−Ψ(x, t)∂xΨ
∗(x, t)] = [partial integration]

= − i~
2

∫

dx[Ψ∗(x, t)∂xΨ(x, t) + ∂xΨ(x, t)Ψ∗(x, t)]

=

∫

dx[Ψ∗(x, t)
~∂x

i
Ψ(x, t)]. (1.62)

We compare

〈x〉t =

∫

dxΨ∗(x, t)xΨ(x, t), 〈p〉t =

∫

dxΨ∗(x, t)
~∂x

i
Ψ(x, t) (1.63)

and recognize that the position x corresponds to the (somewhat trivial) operator ‘multipli-
cation with x’. On the other hand, the momentum corresponds to the completely non–trivial
operator −i~∂x. A similar calculation leads to

〈x2〉t =

∫

dxΨ∗(x, t)x2Ψ(x, t), 〈p2〉t =

∫

dxΨ∗(x, t)

[

~∂x

i

]2

Ψ(x, t). (1.64)
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Again, the above can easily be generalized to three dimensions when x → x and ∂x →
(∂x, ∂y, ∂z) = ∇ (gradient or Nabla–operator).
Axiom 2: Expectation values of functions F (x) of the position or G(p) of the momentum
for a quantum mechanical system described by a wave function Ψ(x, t) are calculated as

〈F (x)〉t =

∫

d3xΨ∗(x, t)F (x)Ψ(x, t)

〈G(p)〉t =

∫

d3xΨ∗(x, t)G

(

~∇
i

)

Ψ(x, t). (1.65)

The position x corresponds to the operator ‘multiplication with x’, the momentum p to the
operator −i~∇, applied to the wave function as in (1.63),(1.64),(1.65).

This correspondence in particular holds for the total energy, which in classical mechanics
for a conservative system (energy is conserved) is given by a Hamilton function

H(p,x) =
p2

2m
+ V (x). (1.66)

The correspondence principle from axiom 2 tells us that this Hamilton function in quantum
mechanics has to be replaced by a Hamilton operator (Hamiltonian) Ĥ

Ĥ = −~
2∆

2m
+ V (x̂). (1.67)

Here, we have used the definition of the Laplace operator ∆ = ∇·∇. In Cartesian coordinates,
it is ∆ = ∂2

x + ∂2
y + ∂2

z . The Hamilton operator represents the total energy of the particle with
mass m in the potential V (x). We have introduced the hat as a notation for operators, but
often the hat is omitted for simplicity. We make the important observation that Ĥ is exactly
the expression that appears on the right hand side of the Schrödinger equation (1.21). This
means we can write the Schrödinger equation as

i~
∂

∂t
Ψ(x, t) = ĤΨ(x, t). (1.68)

This is the most general form of the Schrödinger equation in quantum mechanics. The re-
placement of x and p in quantum mechanics is
Axiom 3: The position x and momentum p are operators acting on wave functions,

x→ x̂, p→ ~

i
∇. (1.69)

1.5.2 Example: Wave packet

We consider the wave function (wave packet, see above)

Ψ(x) =
1

√√
πa2

exp

(

− x2

2a2

)

. (1.70)

1. We calculate

〈x〉 =

∫ ∞

−∞
dxΨ∗(x, t)xΨ(x, t) = 0, 〈p〉 =

∫ ∞

−∞
dxΨ∗(x, t)

~∂x

i
Ψ(x, t) = 0. (1.71)

2. We calculate (see problem sheet 1)

〈p2〉 =
~

2

2a2
, 〈x2〉 =

a2

2
. (1.72)
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By this we obtain for the mean square deviations of the position x and the momentum p,

∆p2 = 〈p2〉 − 〈p〉2 = 〈p2〉 = ~
2

2a2
, ∆x2 = 〈x2〉 − 〈x〉2 = 〈x2〉 =

a2

2
.

The product of the two is just

∆x2 ·∆p2 =
~

2

4
.

The particular case of our wave packet fulfills the Heisenberg uncertainty relation

∆x2 ·∆p2 ≥ ~
2

4
. (1.73)

with the =–sign. We will later prove that there are Heisenberg uncertainty relations for arbitrary
pairs of operators and not only for x and p.

1.5.3 The commutator [x, p]

Position x and momentum p are operators in quantum mechanics. Acting on wave functions,
the operator product xp has the property

x̂p̂Ψ(x) =
~

i
x
∂

∂x
Ψ(x) =

~

i
xΨ′(x)

p̂x̂Ψ(x) =
~

i

∂

∂x
xΨ(x) =

~

i
(Ψ(x) + xΨ′(x)) (1.74)

The result depends on the order of x̂ and p̂: both operators do not commute. One has

(x̂p̂− p̂x̂)Ψ(x) = i~Ψ(x) (1.75)

Comparing both sides, we have the commutation relation

[x̂, p̂] := x̂p̂− p̂x̂ = i~. (1.76)

Here, we have defined the commutator [A,B] := AB − BA of two operators A and B.
Generalized to three dimensions with the three components x̂k of x̂ and p̂k of p̂, k = 1, 2, 3,
one has the canonical commutation relations

[x̂k, p̂l] = i~δkl

δkl := 1, k = l, and 0 else. (1.77)



2. WAVE MECHANICS

2.1 The Stationary Schrödinger Equation

Much of what we will be concerned with in this lecture are the solutions of the Schrödinger
equation for a particle of mass m in a potential V (x),

i~
∂

∂t
Ψ(x, t) =

[

−~
2∆

2m
+ V (x)

]

Ψ(x, t) ≡ ĤΨ(x, t). (2.1)

Like Newton’s laws in classical mechanics, the Schrödinger equation is so important that
generation of physicists have worked out how to solve it for physically interesting cases. Un-
fortunately, in general (i.e. for a general form of the potential V (x)) the Schrödinger equation
is not exactly soluble, and one has to retreat to approximate methods. There are, however,
important classes of solutions that can be obtained exactly, most of which were ‘milestones’ in
the development of the theory. Among them are the hydrogen atom, the harmonic oscillator,
or one–dimensional problems which we will discuss in this chapter.

2.1.1 Stationary states

The Schrödinger equation is a partial differential equation: we have one partial derivative with
respect of time t and the Laplace operator ∆ which is a differential operator, ∆ = ∂2

x +∂2
y +∂2

z

in three dimensions and rectangular coordinates.
Step 1: To solve (2.1), we make the separation ansatz

Ψ(x, t) = ψ(x)f(t). (2.2)

Inserting into (2.1) we have

i~∂tf(t)

f(t)
=
Ĥψ(x)

ψ(x)
= E, (2.3)

where we have separated the t– and the x–dependence. Both sides of (2.3) depend on t resp.
x independently and therefore must be constant = E. Solving the equation for f(t) yields
f(t) = exp[−iEt/~] and therefore

Ψ(x, t) = ψ(x)e−iEt/
�

. (2.4)

We recognize: the time evolution of the wave function Ψ(x, t) is solely determined by the
factor exp[−iEt/~]. Furthermore, the constant E must be an energy (dimension!).
Step 2: To determine ψ(x), we have to solve the stationary Schrödinger equation

Ĥψ(x) = Eψ(x)←→
[

−~
2∆

2m
+ V (x)

]

ψ(x) = Eψ(x). (2.5)
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Mathematically, the equation Ĥψ = Eψ with the operator Ĥ is an eigenvalue equation.
We know eigenvalue equations from linear algebra where Ĥ is a matrix and ψ is a vector. The
time–independent wave functions ψ(x) are called stationary wave functions or stationary
states. We will see in the following that in general, solutions of the stationary Schrödinger
equation do not exist for arbitrary E. Rather, many potentials V (x) give rise to solutions
only for certain discrete values of E, the eigenvalues of the stationary Schrödinger equation,
and the possible energy values become quantized.

2.1.2 Math Revision: Eigenvalues of a Two-by-Two-Matrix

An example we will need later is a 2 by 2 matrix eigenvalue problem

Âφ = λφ, Â =

(

a b
b∗ c

)

. (2.6)

The eigenvalues are obtained from

(Â− λ1̂)φ = 0 det(Â− λ1̂) = 0

 

∣

∣

∣

∣

a− 1 b
b∗ c− 1

∣

∣

∣

∣

= 0 (a− λ)(c− λ)− |b|2 = 0

 λ2 − (a + c)λ+ ac− |b|2 = 0

λ± =
a + c

2
±

√

(a− c)2

4
+ |b|2. (2.7)

Revision: Check how to calculate the corresponding eigenvectors!

2.1.3 Stationary States in One Dimension

In this section, we study the stationary Schrödinger equation for an important class of poten-
tials V (x) = V (x) that only depend on one spatial coordinate x and are independent of y and
z. Such potentials could be generated, for example, by electric fields that only vary in one
direction x of space and are constant in the other directions.

We make a separation ansatz for ψ(x),

ψ(x) = φ(x)ei(kyy+kzz). (2.8)

Inserting into the stationary Schrödinger equation yields

[

−~
2∆

2m
+ V (x)

]

ψ(x) = Eψ(x)

[

−~
2∂2

x

2m
+

~
2

2m
(k2

y + k2
z) + V (x)

]

φ(x)ei(kyy+kzz) = Eφ(x)ei(kyy+kzz)

[

−~
2∂2

x

2m
+ V (x)

]

φ(x) = Ẽφ(x) (2.9)

Ẽ := E − ~
2

2m
(k2

y + k2
z).

The general solution therefore can be written as the product of two plane waves running
in the y − z–plane, and a wave function φ(x) which is the solution of (2.9). This means we
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have just to solve the one–dimensional stationary Schrödinger equation, with the energy E
replaced by E − ~

2/2m(k2
y + k2

z) which is the energy for the one–dimensional motion in the
x–direction. Together with ~

2/2m(k2
y +k2

z), the kinetic energy of the motion in the y–z–plane,
this is just the total energy E. With the potential V (x) = V (x), the particle sees no potential
change when moving in only y– or z–direction: there is no force acting on the particle in this
direction which is why its free motion turns out to be described by plane waves in the y– and
z–direction.

In the following, we will therefore only consider the rest of the problem, i.e. the motion in
x–direction.

2.1.4 Piecewise Constant one–Dimensional Potentials

We consider the one–dimensional stationary Schrödinger equation
[

− ~
2

2m

d2

dx2
+ V (x)

]

ψ(x) = Eψ(x), (2.10)

where for the sake of a nicer notation we again write E instead of Ẽ and ψ(x) instead of φ(x).
Furthermore, there is only one variable x so that the partial derivative ∂x = d/dx.

In the following, we will concentrate on the important case where V (x) is piecewise con-
stant, i.e.

V (x) =























V1, −∞ < x ≤ x1

V2, x1 < x ≤ x2

... ...
VN xN−1 < x ≤ xN

VN+1 xN < x <∞

(2.11)

Let us look at (2.10) on an interval where V (x) is constant, say [x1, x2] with V = V2. The
Schrödinger equation

[

− ~
2

2m

d2

dx2
+ V

]

ψ(x) = Eψ(x) (2.12)

on this interval is a second order ordinary differential equation with constant coefficients.
There are two independent solutions

ψ+(x) = eikx, ψ−(x) = e−ikx, k :=

√

2m

~2
(E − V ). (2.13)

1. If E > V , the wave vector k is a real quantity and the two solutions ψ±(x) are plane
waves running in the positive and the negative x–direction. Such solutions are called oscillatory
solutions.
2. If E < V , k becomes imaginary and we write

k = iκ := i

√

2m

~2
(V − E) (2.14)

with the real quantity κ. The two independent solutions then become exponential functions
e±κx. Such solutions are called exponential solutions.

For fixed energy E, the general solution ψ(x) will be a superposition, that is a linear
combination

ψ(x) = aeikx + be−ikx (2.15)
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with k either real or imaginary, k = iκ. Since the wave function in general is a complex
function, the coefficients a, b can be complex numbers. Note that we can not have linear
combinations with one real and one imaginary term in the exponential like aeikx +be−κx, a, b 6=
0.

The solution of our Schrödinger equation with the piece–wise constant potential (2.11)
must fulfill it everywhere on the x–axis. Therefore, it can be written as

ψ(x) =























a1e
ik1x + b1e

−ik1x, −∞ < x ≤ x1

a2e
ik2x + b2e

−ik2x, x1 < x ≤ x2

... ...
aNe

ikNx + bNe
−ikN x, xN−1 < x ≤ xN

aN+1e
ikN+1x + bN+1e

−ikN+1x, xN < x <∞

(2.16)

with complex constants aj, bj and kj =
√

(2m/~2) (E − Vj) either real or complex.

2.2 The Infinite Potential Well

2.2.1 Wave functions and eigenenergies

We first study the case where the motion of the particle is restricted within the interval
[x1, x2] = [0, L], L > 0 between the infinitely high walls of the potential

V (x) =







∞, −∞ < x ≤ 0
0, 0 < x ≤ L
∞ L < x <∞

(2.17)

Outside the interval [0, L] the particle can not exist and its wave function must be zero, i.e.

ψ(x) =







0, −∞ < x ≤ 0
aeikx + be−ikx, 0 < x ≤ L

0, L < x <∞
(2.18)

1. We demand that the wave function vanishes at x = 0 and x = L so that it is continuous a
these points. Clearly, this makes physically sense because at x = 0, L the potential is infinitely
high and the probability density |ψ(x)|2 to find the particle there should be zero. We obtain

ψ(0) = 0 0 = a+ b ψ(x) = c sin(kx), 0 ≤ x ≤ L, c = const.

ψ(L) = 0 sin(kL) = 0. (2.19)

The first condition tells us that the wave function must be a sine–function. The second
condition is more interesting: it sets a condition for the possible values kn that k can have,

kL = nπ  k ≡ kn =
nπ

L
, n = 1, 2, 3, ... (2.20)

The second boundary condition at x = L restricts the possible values of the energy E,
because k :=

√

(2m/~2) (E − V ) =
√

(2m/~2)E. Therefore, the energy can only acquire
values

En =
~

2k2
n

2m
=
n2

~
2π2

2mL2
, n = 1, 2, 3, ... (2.21)
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This is the first case where we encounter a quantisation of energy. The reason for the
quantization here is obvious: the wave functions ψ(x) have to ‘fit’ into the well, similar to
classical waves in a resonator which only allows waves with certain wave lengths . The allowed
wave vectors kn then are related to the energy by the de Broglie relation p = ~k  pn = ~kn,
and the energy within the well is just the kinetic energy E = p2/2m (since the potential is
zero there) whence (2.21) follows.
2. The potential well gives only rise to discrete values of the energy. One says that the
spectrum of energies is discrete. If we did not have the confinement potential, the wave
functions would just be plane waves e±ikx with arbitrary values k and therefore arbitrary,
continues values for the energies E = ~

2k2/2m. In such a case the the spectrum is called a
continuous spectrum.
3. In order to interpret the absolute square wave of the wave functions ψn(x) = c sin(knx) as
a probability density, we have to demand

1 =

∫ L

0

dx|ψn(x)|2 =

∫ L

0

dx|c|2 sin2(nπx/L)

=
1

2

∫ L

0

dx|c|2[1− cos(n2πx/L)] =
|c|2L

2

|c|2 =
2

L
 c =

√

2

L
eiφ
 ψn(x) =

√

2

L
sin(nπx/L)eiϕ, (2.22)

where ϕ ∈ R is a (real) phase factor. This normalization condition determines the wave
functions ψn(x) uniquely only up to a phase factor: if Ψ is a normalized solution of the
Schrödinger equation, so is Ψeiϕ, i.e. the same wave function multiplied with a constant
overall phase factor. Usually, we do not distinguish between such wave functions since they
describe the same state of the particle, and one says that the state is only determined ‘up
to a phase’ which is irrelevant when calculating, for example, the probability density |Ψ|2 or
expectation values.

This is different, however, for superpositions of two different wave functions, where the
relative phase difference is important and leads, for example, to interference.

2.2.2 The Hilbert space H of wave functions

We have seen that the wave functions with fixed energy E of a particle of mass m in an
infinitely high potential well of width L are given by

ψn(x) =

√

2

L
sin

(nπx

L

)

, E = En =
n2

~
2π2

2mL2
, n = 1, 2, 3, ... (2.23)

1. We have omitted the arbitrary phase factor eiϕ here as discussed above.
2. The index n is called quantum number, it labels the possible solutions of the stationary
Schrödinger equation

Ĥψn(x) = Enψn(x). (2.24)

As in linear algebra, the En are called eigenvalues (eigenvalues of the energy) and the ψn(x)
are called eigenvectors (eigenfunctions) of the Hamiltonian Ĥ.
3. We only have positive integers n: negative integers −|n| would lead to solutions ψ−|n|(x) =
−ψn(x) which are just the negative of the wave functions with positive n. They describe the
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same state of the particle which is unique up to a phase eiϕ (for example eiϕ = −1) anyway.
ψ−|n|(x) is linear dependent on ψn(x).

4. The eigenvectors of Ĥ, i.e. the functions ψn(x), form the basis of a linear vector space
H of functions f(x) defined on the interval [0, L] with f(0) = f(L) = 0. The ψn(x) form an
orthonormal basis:

∫ L

0

dx|ψn(x)|2 = 1,

∫ L

0

dxψ∗
n(x)ψm(x) = δnm. (2.25)

(We can omit the ∗ here because the ψn are real). Note that the orthonormal basis is of
infinite dimension because there are infinitely many n. The infinite dimension of the vector
space (function space) H is the main difference to ordinary, finite dimensional vector spaces
like the R3.
5. Any wave function ψ(x) ∈ H (like any arbitrary vector in, e.g., the vector space R3) can
be expanded into a linear combination of basis ‘vectors’, i.e. eigenfunctions ψn(x):

ψ(x) =
∞

∑

n=1

cnψn(x), cn =

∫ L

0

dxψ(x)ψn(x). (2.26)

A vector space with these properties is called a Hilbert space. The Hilbert space is the
central mathematical object of quantum theory.

Example vectors and matrices Particle in Quantum Well
vector x wave function ψ(x)
space vector space Hilbert space

linear operator matrix A =

(

0 1
1 0

)

Hamiltonian Hwell

eigenvalue problem Ax = λx Hwellψn = Enψn

eigenvalue λ1 = 1, λ2 = −1 En = n2π2 � 2

2mL
, n = 1, 2, 3...

eigenvector x1,2 = 1√
2

(

1
±1

)

wave function ψn(x) =
√

2
L

sin
(

nπx
L

)

scalar product 〈x|y〉 ≡
∑2

n=1 x
∗
nyn 〈ψ|φ〉 ≡

∫ L

0
dxψ∗(x)φ(x)

orthogonal basis 〈en|em〉 = δnm 〈ψn|ψm〉 = δnm

dimension 2 ∞
completeness x =

∑2
n=1〈en|x〉en ψ =

∑∞
n=1〈ψn|ψ〉ψn

vector components x = (〈e1|x〉, 〈e2|x〉) ψ = (〈ψ1|ψ〉, 〈ψ2|ψ〉, ...)

We will explain this table in greater detail in the next chapter where we turn to the
foundations of quantum mechanics.

2.3 The Potential Well

2.3.1 Wave functions and energy eigenvalues for E < 0

Our second one–dimensional problem is the motion of a particle in a potential well of finite
depth V and width 2a > 0, i.e. a potential

V (x) =







0, −∞ < x ≤ −a
−V < 0, −a < x ≤ a

0 a < x <∞
(2.27)
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According to our general equation, the wave functions for energies −|V | < E = −|E| < 0
must have the form

ψ(x) =







a1e
κx + b1e

−κx, −∞ < x ≤ −a
a2e

ikx + b2e
−ikx, −a < x ≤ a

a3e
κx + b3e

−κx, a < x <∞
(2.28)

where

k =
√

(2m/~2) (−|E|+ V ), κ =
√

(2m/~2)|E|. (2.29)

The wave function has to vanish for x→ ±∞ which can only be fulfilled if b1 = a3 = 0.

2.3.2 The parity

For symmetric potentials V (x) = V (−x), the Schrödinger equation has an important
property: If ψ(x) is a solution of Ĥψ(x) = Eψ(x), then also ψ(−x) is a solution with the
same E, i.e. Ĥψ(−x) = Eψ(−x) (replace −x→ x and note that ∂2

x = ∂2
−x. Since Ĥ is linear,

also linear combinations of solutions with the same eigenvalue E are solutions with eigenvalue
E, in particular the symmetric (even) and anti symmetric (odd) linear combinations

ψe(x) :=
1√
2
[ψ(x) + ψ(−x)], ψo(x) :=

1√
2
[ψ(x)− ψ(−x)]. (2.30)

These are the solutions with even (e) and odd (o) parity, respectively.

2.3.3 Even and odd solutions for the potential well

Applied to our potential well, we can classify the solutions into even and odd,

ψe(x) =







a1e
κx,

a2 cos(kx),
a1e

−κx,
ψo(x) =







−A1e
κx, −∞ < x ≤ −a

A2 sin(kx), −a < x ≤ a
A1e

−κx, a < x <∞
(2.31)

The wave function ψ(x) and its derivative ψ′(x) have to be continuous at x = ±a. Therefore,
also the logarithmic derivative

ψ′(x)

ψ(x)
=

d

dx
logψ(x) (2.32)

has to be continuous. This is a convenient way to obtain an equation that relates k and κ and
determines the possible energy values: we calculate the logarithmic derivative for x = a ± ε,
ε→ 0 which yields

−κ = −k tan(ka), even solution

−κ = k cot(ka), odd solution

k =
√

(2m/~2) (−|E|+ V ), κ =
√

(2m/~2)|E|. (2.33)

These are transcendent equations for the energy E: we introduce auxiliary dimensionless
variables

x ≡ ka, y = κa x2 + y2 = r2 ≡ 2ma2V

~2
, V > 0. (2.34)
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Fig. 2.1: Graphical solution of (2.35) for r = 10 (left) and r = 2 (right).

The equations

y = x tanx, x2 + y2 = r2 even solution

y = −x cot x, x2 + y2 = r2 odd solution (2.35)

describe two curves in the x–y–plane, i.e. the circle x2 + y2 = r2, with

r ≡
√

2m

~2
a2V , (2.36)

and the curve y = x tan(x) (y = −x cot(x) for the odd solution), whose intersections determine
a fixed number of points (xn, yn) in the quadrant of positive x and y. These determine the
energy eigenvalues En via the definition of k and κ. Of course, the En depend on the value of
the parameter r which in turn is determined by the depth of the potential well V , its width a
and the particle mass m.

To obtain precise values for the possible energy eigenvalue En, one has to numerically solve
(2.35). A convenient method to obtain a qualitative picture, however, is the graphical solution
of the transcendent equations as shown in Fig. (2.1). The intersections yn, n = 1, 2, ... of the
x tan(x)– or −x cot(x)–curves with the circle of radius r determine En via En = −(~2/2ma2)y2

n

(remember that we have required En < 0)
1. There are only a finite number N of solutions for the energies E1 < E2 < ... < EN

depending on the value of the parameter r.
2. The wave function corresponding to the lowest eigenvalue E1 is even. Even and odd
solutions alternate when ‘climbing up’ the ladder of possible eigenvalues En.

2.4 Scattering states in one dimension

In the above discussion of the finite depth potential well, we had so far only considered wave
functions with energy E < 0. They gave rise to a discrete spectrum of energies with
states that are localized within the potential well, that is outside the well the wave functions
decay exponentially. This means that the probability to find the particle outside the well
is exponentially small, i.e. the particle is bound to the potential well. The corresponding
wave functions are therefore called bound states. Also in the example of the infinitely high
potential well, we only had bound states because the particle was restricted within the well.
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What about wave functions of the finite depth potential well with positive energies E?
The discussion of these states leads us to the concept of scattering states with continuous
arbitrary energies E (continuous spectrum). Furthermore, we will find the tunnel effect
which is an important quantum mechanical phenomenon. We discuss it first again within our
general scheme of piecewise constant potentials.

2.4.1 Plane waves

The simplest case is the one where the potential V (x) is zero throughout: the two independent
solutions of the Schrödinger equation then are plane waves

−~
2∂2

x

2m
ψ(x) = Eψ(x) ψ+(x) = eikx, ψ−(x) = e−ikx, k =

√

(2m/~2)E (2.37)

with positive energy E > 0. We denote both solutions as ψk(x) = eikx with k either positive
or negative. They are plane waves with fixed wave vector k and therefore fixed momentum
p = ~k. We can have no physically meaningful solutions with negative energy E < 0 because
in this case the wave function would become infinite either for x→∞ or x→ −∞.

A problem arises, however, because ψk(x) can not be normalized over the whole x–axis
according to

∫ ∞

−∞
dx|ψk(x)|2 = 1, (2.38)

because this integral is infinite: the probability density, i.e. the square |ψk(x)|2 is constant,
i.e. 1 everywhere.

In particular, we have for the mean square deviation of the momentum and the position

〈∆p2〉 = lim
L→∞





[
∫ L/2
−L/2 |a|2e−ikx(−i~∂x)2eikx]

∫ L/2
−L/2 dx|a|2

−





∫ L/2
−L/2 |a|2e−ikx(−i~∂x)eikx

∫ L/2
−L/2 dx|a|2





2



= ~
2k2 − ~

2k2 = 0

〈∆x2〉 = lim
L→∞





[
∫ L/2
−L/2 |a|2e−ikxx2eikx]

∫ L/2
−L/2 dx|a|2

−





∫ L/2
−L/2 |a|2e−ikxxeikx

∫ L/2
−L/2 dx|a|2





2



= ∞. (2.39)

There is no uncertainty in the momentum of the particle, but there is maximum uncertainty in
its position: the wave function ψk(x) describes a particle with fixed momentum p = ~k which is
completely delocalized (spread) over the x–axis.

A practical solution is to consider a large, but finite interval [−L/2, L/2] instead of the
total x–axis, and to normalize the wave functions according to

ψk =
1√
L
eikx,

∫ L/2

−L/2

dx|ψk(x)|2 = 1. (2.40)

Then, the boundary conditions at x = ±L/2 have to be specified. Again, a convenient (but
not necessary the only) choice are periodic boundary conditions: we bend the interval
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[L/2, L/2] into a ring such that the points ±L/2 coincide. Demanding continuity of ψk, i.e.
ψk(L/2) = ψk(−L/2), we obtain a quantization condition for the possible k–values,

1 = eikL
 kn =

2πn

L
, n = 0,±1,±2, ..., (2.41)

i.e. a discrete set of possible k values and therewith discrete energies E(k) = ~
2k2/2m. To

each energy E = En > 0 there are two linearly independent plane waves with wave vectors
2πn/L and −2πn/L. One says the energy value En is two–fold degenerate. If L is very
large, the possible values for k are still discrete but subsequent k–values get very close to each
other.

2.4.2 Potential scattering

We now consider a piecewise constant potential V (x) with the corresponding wave function
given by

V (x) =































V1,
V2,
V3,
... ...
VN

VN+1

ψ(x) =































a1e
ik1x + b1e

−ik1x, −∞ < x ≤ x1

a2e
ik2x + b2e

−ik2x, x1 < x ≤ x2

a3e
ik3x + b3e

−ik3x, x2 < x ≤ x3

... ...
aNe

ikNx + bNe
−ikN x, xN−1 < x ≤ xN

aN+1e
ikN+1x + bN+1e

−ikN+1x, xN < x <∞

(2.42)

kj =
√

(2m/~2) (E − Vj).
We first consider the case E > V1, VN+1 such that k1 and kN+1 are real wave vectors

and ψ(x) describes running waves outside the ‘scattering region’ [x1, xN ]. Our aim now is
the following: we would like to determine solutions of the Schrödinger equation, i.e. wave
functions ψ(x), under the scattering condition bN+1 = 0, i.e. we seek solutions that have
only waves aN+1e

ikN+1x traveling to the right (away from the scattering zone) on the right side
of the potential. On the left side, we have the wave a1e

ik1x + b1e
−ik1x, i.e. a superposition of a

right–going (incoming) and a left–going (outgoing) wave. We would like to know how much of
an incoming wave gets reflected on the left side (coefficient b1) and how much gets transmitted
on the right side (aN+1).
Step 1: we demand that ψ(x) and its derivative ψ′(x) are continuous at x = x1. This gives
two equations

a1e
ik1x1 + b1e

−ik1x1 = a2e
ik2x1 + b2e

−ik2x1

a1e
ik1x1 − b1e−ik1x1 = (k2/k1)(a2e

ik2x1 − b2e−ik2x1) (2.43)

or

a1 =
1

2

(

k2

k1
+ 1

)

ei(k2−k1)x1a2 +
1

2

(

1− k2

k1

)

e−i(k2+k1)x1b2

b1 =
1

2

(

1− k2

k1

)

ei(k2+k1)x1a2 +
1

2

(

1 +
k2

k1

)

e−i(k2−k1)x1b2 (2.44)

which can be written in a matrix form

u1 = T 1u2, ui =

(

ai

bi

)

, i = 1, 2, (2.45)
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with

T 1 =
1

2k1

(

(k1 + k2)e
i(k2−k1)x1 (k1 − k2)e

−i(k1+k2)x1

(k1 − k2)e
i(k2+k1)x1 (k1 + k2)e

−i(k2−k1)x1

)

. (2.46)

Step 2: In completely the same manner, we obtain the transfer matrix T 2 at the ‘slice’
x = x2 and

u2 = T 2u3  u1 = T 1u2 = T 1T 2u3. (2.47)

Doing this for all the slices x1, ..., xN , we obtain the complete transfer matrix M that connects
the wave function on the left side of the potential with the one on the right side,

u1 = MuN+1, M = T 1T 2...TN . (2.48)

Step 3: We use the continuity equation

∂tρ(x, t) + ∂xj(x, t) = 0 (2.49)

ρ(x, t) := ψ(x, t)ψ∗(x, t)

j(x, t) := − i~

2m
[ψ(x, t)∗∂xψ(x, t)− ψ(x, t)∂xψ

∗(x, t)]

ψ(x, t) = ψ(x)e−iEt/
�

. (2.50)

The current density is time–independent and can be written as

j(x) := − i~

2m
[ψ(x)∗∂xψ(x)− ψ(x)∂xψ

∗(x)] =
~

m
Im [ψ∗(x)ψ′(x)] . (2.51)

The current density on the right and left side of the potential is

j(x > xN ) =
~

m
Im(ikN+1|aN+1|2) = |aN+1|2

~kN+1

m

j(x < x1) =
~

m
Im

[

(a∗1e
−ik1x + b∗1e

ik1x)ik1(a1e
ik1x − b1e−ik1x)

]

=
~k1

m
[|a1|2 − |b1|2]. (2.52)

The current density j(x > xN ) describes a particle flow to the right of the potential, ‘out-
flowing’ to x → ∞. On the other hand, the current density j(x < x1) is the difference of an
in-flowing positive current density and an out-flowing negative current density. The former
describes an incoming particle, the latter a particle that is reflected back from the potential
and returning back to x = −∞.
Step 4: We define the transmission coefficient T as the ratio of the right out-flowing current
density to the left in-flowing current density,

T :=
kN+1

k1

∣

∣

∣

∣

aN+1

a1

∣

∣

∣

∣

2

. (2.53)

From
(

a1

b1

)

=

(

M11 M12

M21 M22

) (

aN+1

bN+1

)

(2.54)

and the scattering condition bN+1 = 0 it follows

T =
kN+1

k1

1

|M11|2
. (2.55)
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Fig. 2.2: Reflection and Transmission

To calculate the transmission coefficient through a piecewise constant one–dimensional po-
tential, it is therefore sufficient to know the total transfer matrix M . The fact that
M = T 1T 2...TN is just the product of the individual two–by two transfer matrices makes
it a very convenient tool for computations.
Step 5: In completely the same manner, we define the reflection coefficient R as the ratio
of the out-flowing current density on the left and the in-flowing (reflected) current density on
the left, i.e.

R :=

∣

∣

∣

∣

b1
a1

∣

∣

∣

∣

2

=

∣

∣

∣

∣

M21

M11

∣

∣

∣

∣

2

. (2.56)

The last equality is left as an exercise.
For eigenstates of energy E we have from the continuity equation

∂tρ(x, t) ≡ ∂tρ(x) = 0 ∂xj(x) = 0 j(x) = const. (2.57)

Using Eq. (2.52) and the definition of T and R, this leads to

T +R = 1. (2.58)

2.5 The Tunnel Effect and Scattering Resonances

In the following, we apply our theory to compute the transmission coefficient T , Eq.(2.55),
to important examples of one–dimensional potentials. Before discussing the tunnel effect and
scattering resonances, we consider the simpler case of a potential step.

2.5.1 Potential step

We consider a potential step at x1 = 0 with N = 1, V1 = 0 and V2 = V > 0 in (2.42).
a) For E > V , we have k1 =

√

(2m/~2)E and k2 =
√

(2m/~2)(E − V ) such that from the
transfer matrix T1 = M , Eq. (2.46), we obtain

M11 = (T1)11 =
1

2

(

1 +
k2

k1

)

ei(k2−k1)x1 =
1

2

(

1 +
k2

k1

)

. (2.59)
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This yields the transmission and reflection coefficients

T =
k2

k1

1

|M11|2
=
k2

k1

4k2
1

(k1 + k2)2
=
k2

k1

4

(1 + k2/k1)2
=

=

[

k2

k1
=

√

1− V/E
]

=
4
√

1− (V/E)

(1 +
√

1− (V/E))2

R =

∣

∣

∣

∣

M21

M11

∣

∣

∣

∣

2

=

∣

∣

∣

∣

k1 − k2

k1 + k2

∣

∣

∣

∣

2

=
(1−

√

1− (V/E))2

(1 +
√

1− (V/E))2
, (2.60)

and we recognize that

T +R = 1. (2.61)

Compare this result to the case of a classical particle running from the bottom to the top of
a (soft) step: if its energy E is sufficient (E > V ), it overcomes the barrier and continues to
run on the top of the step, if its energy is too small, is rolls back and is reflected. In quantum
mechanics, for E > V there is a finite probability for the particle being reflected!

b) For E < V we see that k2 becomes imaginary and there are no longer running waves
for x > 0: the particle then is in the classically forbidden zone. With k2 = iκ2, κ2 =
√

(2m/~2)|E − V |, the wave function on the right is ψ(x > 0) = a2e
−κ2x + b2e

κ2x = a2e
−κ2x

because we had set b2 anyway. We therefore can still apply our scattering formalism to obtain
the reflection coefficient

R =

∣

∣

∣

∣

k1 − k2

k1 + k2

∣

∣

∣

∣

2

=

∣

∣

∣

∣

k1 − iκ2

k1 + iκ2

∣

∣

∣

∣

2

= 1. (2.62)

On the right side x > 0, we don’t have running waves any longer for E < V and therefore
cannot apply (2.55) for the transmission coefficient. The particle current density (2.51) j(x >
0) = 0, however, which means T = 0. Again, we have T +R = 1.

Compare this case to total reflection of waves in optics!

2.5.2 The Tunnel Barrier: Transmission Coefficient

Next, we consider a potential that has the form of a rectangular barrier. In (2.42), we set
N = 2, x2 = −x1 = a, V1 = V3 = 0, and V2 = V > 0. Let us recall the matrices T1 and T2 for
‘step-up’ and ‘step-down’,

T1 =
1

2

(

(1 + r)e−iδ−a (1− r)eiδ+a

(1− r)e−iδ+a (1 + r)eiδ−a

)

(2.63)

T2 =
1

2

(

(1 + 1/r)e−iδ−a (1− 1/r)e−iδ+a

(1− 1/r)eiδ+a (1 + r)eiδ−a

)

, δ± ≡ k2 ± k1, r ≡ k2

k1
.

(2.64)
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We multiply the matrices T1 and T2 in order to obtain M = T1T2,

M =

(

M11 M12

M21 M22

)

M11 =
1

4

[

(1 + r)2

r
e−2iδ−a − (1− r)2

r
e2iδ+a

]

=
1

4
e2ik1a

[

(k2
1 + k2

2)
2

k1k2
e−2ik2a − (k2

1 − k2
2)

2

k1k2
e2ik2a

]

= e2ik1a

[

k2
1 + k2

2

2k1k2

i sin(−2k2a) + cos(2k2a)

]

= M∗
22

M12 =
k2

1 − k2
2

4k1k2
2i sin(2k2a) = −M21. (2.65)

Use (k2
1 + k2

2)
2 = (k2

1 − k2
2)

2 + 4k2
1k

2
2 to find

|M11|2 = 1 +
(k2

1 − k2
2)

2

4k2
1k

2
2

sin2(2k2a). (2.66)

CASE 1: E > V .
In this case, both k1 and k2 are real, and we find

T =
1

(k2
1−k2

2)2

4k2
1k2

2
sin2(2k2a) + 1

=
1

1 +
sin2(2α

√
E/V −1)

4(E/V )(E/V −1)

, α =

√

2mV a2

~2
. (2.67)

CASE 2: E < V .
In this case, k2 = iκ2 := i

√

(2m/~2)(V − E) is complex, and we find

T =
1

(k2
1+κ2

2)2

4k2
1κ2

2
sinh2(2κ2a) + 1

=
1

1 +
sinh2(2α

√
1−E/V )

4(E/V )(1−E/V )

, α =

√

2mV a2

~2
, (2.68)

where we used

sin ix =
1

2i

(

eiix − e−iix
)

= i sinh x. (2.69)

2.5.3 The tunnel barrier: Discussion

For energies of the particle E < V , we have a finite transmission coefficient T that increases
with E. In particular, the wave function below the barrier, i.e. in the interval [−a, a], is non
zero which means that there is a finite probability to find the particle below the barrier. This
is a very important quantum mechanical phenomenon called the tunnel effect. Classically,
a particle can not be in areas where the potential energy V is larger than its total energy E.

For energies of the particle E > V , the transmission coefficient oscillated as a function of
energy E. At particular values of E, the sin(2k2a) in (2.67) vanishes, and T exactly becomes
unity. These peaks in T are called transmission resonances. The condition for the resonance
energies is

sin(2k2a) = 0 2k2a = nπ  k2 =
nπ

2a
, En =

n2π2
~

2

2m(2a)2
+ V. (2.70)

We recognize that the energies En are just the energy eigenvalues of the infinite potential well
of width 2a, shifted by the height V of the potential!
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2.6 A more complicated case

We consider a particle of mass m confined in a one–dimensional potential well with infinitely
high walls at x = ±L/2. Within the well, i.e. within the interval [−a/2, a/2], a < L, there is
a symmetric potential V (x) = V (−x) > 0, see Fig. 2.3. We wish to determine the stationary

L/2-L/2 -a/2 a/2

V(x)

L/2-L/2 -a/2 a/2

V

V(x)

Fig. 2.3: Left: Symmetric potential V (x) within a one–dimensional potential well. Right: special
case of a rectangular potential.

bound states with energy E and the possible energy eigenvalues E for this potential. Because
the potential is symmetric around the origin, the eigenstate wave functions must have even
or odd parity ψ±(x) = ±ψ(−x). For |x| > a/2, the wave function must be a superposition of
plane waves that has to vanish at the boundaries ±L/2. Therefore, we can set

ψ±(x) =







A sin k(x+ L/2) = a1e
ikx + b1e

−ikx −L/2 < x < −a/2
φ±(x) −a/2 < x < a/2

±A sin k(L/2− x) = a3e
ikx + b3e

−ikx a/2 < x < L/2
, (2.71)

where A is a complex constant, k =
√

(2m/~2)E and φ±(x) the wave function within the
potential region |x| < a/2. It is convenient to write the even (+) and odd (−) wave functions
within one line, using the definitions

ψ±(x) = ψL(x) + φ±(x)± ψR(x),

ψL(x) :=

{

A sin k(x + L/2) = −L/2 < x < −a/2
0 else

ψR(x) :=

{

A sin k(L/2− x) = a/2 < x < L/2
0 else

(2.72)

Here, ψL(x) is localized only in the left part x < −a/2 and ψR(x) is localized only in the right
part x > a/2 of the well.

We now use our transfer matrix formalism to obtain the equation that determines the
possible energy values E: The solution on the left of the potential V (x) is connected to the
solution on the right, cf. eq. (2.54),

(

a1

b1

)

=

(

M11 M12

M21 M22

) (

a3

b3

)

 

(

eikL/2

−e−ikL/2

)

=

(

M11 M12

M21 M22

) (

∓e−ikL/2

±eikL/2

)

.

Using

sin k(L/2 + x) =
1

2i

(

eik(L/2+x) − e−ik(L/2+x)
)

sin k(L/2− x) =
1

2i

(

eik(L/2−x) − e−ik(L/2−x)
)

, (2.73)
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we identify

a1 =
A

2i
eikL/2, b1 = −A

2i
e−ikL/2

a3 = ∓A
2i
e−ikL/2, b3 = ±A

2i
eikL/2, (2.74)

which yields two linear equations

eikL/2 = ∓M11e
−ikL/2 ±M12e

ikL/2

−e−ikL/2 = ∓M∗
12e

−ikL/2 ±M22e
ikL/2. (2.75)

Here, the upper sign always holds for the even solution ψ+(x) while the lower sign holds for
the odd solution ψ−(x). In fact, for a symmetric potential V (x) = V (−x), M ∗

22 = M11 and
M21 = M12 such that the second of the above equations is just the conjugate complex of the
first. The condition that determines the possible wave vectors k and therewith the energies
E = ~

2k2/2m is

±1 = −M11(k)e
−ikL +M12(k), (2.76)

where we explicitly indicated the k–dependence of the transfer matrix elements.

2.6.1 Case of no potential V (x) = 0

In this case,
(

M11 M12

M21 M22

)

=

(

1 0
0 1

)

 ±1 = −e−ikL
 kL =

{

π, 3π, 5π, ... (+)even
2π, 4π, 6π, ... (−)odd

(2.77)

Exercise: Check that these yield the solutions known from the infinite quantum well.

2.6.2 Tunnel barrier potential within well

For a rectangular tunnel barrier of width a and height V , that is V (x) = V θ(a/2 − |x|),
we have calculated the transfer matrix M before (note that now the width is a and not 2a,
sin(ix) = i sinh(x), and cos(ix) = cosh(x):

M11 = eika
[

cosh(κa) + i
ε−
2

sinh(κa)
]

M12 = i
ε+

2
sinh(κa)

ε± :=
κ

k
± k

κ
, k =

√

(2m/~2)E, κ =
√

(2m/~2)(V − E). (2.78)

From this and Eq. (2.76), we obtain

±1 = −eik(a−L)
[

cosh(κa) + i
ε−
2

sinh(κa)
]

+ i
ε+

2
sinh(κa) (2.79)

We multiply this equation by e−ik(a−L)/2 and take the real part to obtain two equations for
the even and the odd case. We can check that taking the imaginary part leads to the same
result. Using

coth(x/2) =
sinh x

cosh x− 1
=

cosh x+ 1

sinh x
, (2.80)
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we obtain

1 =
κ

k
tan

(

k
a− L

2

)

tanh
(κa

2

)

, even ’+’

1 =
κ

k
tan

(

k
a− L

2

)

coth
(κa

2

)

, odd ’-’. (2.81)

Case V →∞
In this case, κ→∞ and

0 = tan

(

k
a− L

2

)

 k
L− a

2
= nπ, n = 1, 2, 3, ..., (2.82)

where (L− a)/2 is the length of the two infinite potential wells that are completely separated
by the infinitely high barrier. The wave functions in the two wells and the energies are just
the ones that we have calculated for an infinite potential well.

Case V <∞ large, L = 2a

We wish to see how the energies and wave functions change if we lower the central barrier
from its infinite value to finite V . We already expect that due to the tunnel effect, the left and
the right well, which for V → ∞ were completely separated from each other, must become
coupled now. We already know the limiting cases

k
a

2
= nπ, n = 1, 2, 3, ..., V →∞

k2a = nπ, n = 1, 2, 3, ..., V = 0

k = ?, 0 < V <∞. (2.83)

Introducing dimensionless variables

x = ka/2, α :=
√

ma2V/2~2, (2.84)

we have

κ2 =
2m

~2
V − k2,

κa

2
=
√
α2 − x2 (2.85)

and since L = 2a, tan(k a−L
2

) = − tan ka/2 = − tanx such that the transcendent equations
(2.81) become

−1 =

√
α2 − x2

x
tan(x)[tanh(

√
α2 − x2)]±1. (2.86)

We expand this for large α � 1 around the lowest energy solution for the case V →∞, that
is around x1 = π by setting x = x1 + y, y � 1. This yields

−1 ≈ α

x1 + y
tan(x1 + y)[tanhα]±1 ≈ α

π
y[tanhα]±1

 y ≈ −π
α

[tanhα]∓1
 x ≈ π

(

1− 1

α
[tanh(α)]∓1

)

. (2.87)
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The corresponding wave vectors for the lowest energy solution therefore are

k+ ≈ 2π

a

(

1− 1

α tanh(α)

)

, k− ≈
2π

a

(

1− tanh(α)

α

)

. (2.88)

Since tanhα < 1, we recognize k+ < k−. Compared with the case V →∞ where the lowest k
was k = 2π/a, we now have a splitting into two different k’s. The lowest symmetric (even)
wave function has an energy E+ = ~

2k2
+/2m that is lower than the energy E− = ~

2k2
−/2m of

the lowest odd wave function. This level splitting is an important general feature appearing
when two regions in space become coupled by the tunnel effect.

For very large V , the wave functions that belong to k± below the barrier must be very
small: we see that as α→∞, Ψ±(x = ±a/2)→ 0 whence by continuity also the central part
of the wave function φ±(x) must become very small. Then, we can approximate the wave
functions for the two lowest energies E± as

ψ±(x) = ψL(x)± ψR(x), (2.89)

where in the definition of the left and right part wave functions ψL/R(x) we have to use k+

for the even and k− for the odd solution. In fact, for large V , Eq. (2.88) tells us that the k±
are very close to the wave vector k = 2π/a of the infinite–barrier limit, cf. Eq. (2.83), and
therefore the ψL/R(x) are very close to the lowest sin–wave functions of the left and right well.



3. THE STRUCTURE OF QUANTUM
MECHANICS

3.1 Axioms of Quantum Mechanics and the Hilbert Space

In this and the following sections, we summarize the main assumptions underlying quantum
mechanics and clarify its mathematical structure. We will discuss the concept of the Hilbert
space of quantum states, orthogonality and superposition of wave functions, and the represen-
tation of physical variables like the momentum or the energy as operators. This slightly more
abstract point of view will help us enormously to extend the theory to many other physical
systems, and to find a clear language for describing them.

In the preceding section we have already introduced all the required components we need
to construct the main theory.

3.1.1 Recalling our axioms

In classical mechanics, as described by Newton’s equations, a central mathematical object is
the phase space, that is the space of all coordinates and momenta (xi, pi) of the particles to
be described.

Example: A harmonic oscillator of mass m and angular frequency ω has the energy H = E =
p2/2m + (1/2)m2ω2x2. For constant energy E, its phase space is therefore an ellipse in the p − x–
plane.

On the other hand, according to Planck, the possible energies of an oscillator are quantized,
E = n~ω. In the early days of quantum mechanics, people tried to go on with the concept
of the phase space, particle trajectories, and to combine it with quantization rules. However,
it became obvious very soon that a more powerful and fundamental theory was needed to
explain the spectral lines of atoms. Werner Heisenberg was the one who finally made the
breakthrough in 1925 when he stayed a few weeks on the small island of Helgoland in order
to cure an attack of hay fever. At that time, he tried to solve a slightly more difficult, non–
linear version of the harmonic oscillator. He came up with the idea that instead of trying to
find all the trajectories of, for example, electrons in an atom, one should rather consider the
entirety of all the frequencies of the spectral lines and their intensities to replace the concept of
‘trajectories’. This in any case should be more natural since it is the frequencies and intensities
which can be observed, not the trajectories of the electrons.

This meant in particular that the concept of the phase space no longer holds in a quantum
theory. We already know what one has instead: it is the entity of wave functions that are
solutions of the Schrödinger equation. Its stationary solutions at certain energy eigenvalues
form the basis of this linear space of wave functions, the Hilbert space H. We had already
discussed an example of a Hilbert space for the solutions of the infinitely high potential well.
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If you get lost in the following, always have this example in mind:

Example: The solutions of the stationary Schrödinger equation for the infinite potential well

ψn(x) =

√

2

L
sin

(nπx

L

)

, E = En =
n2

~
2π2

2mL2
, n = 1, 2, 3, ...

We have learned how to work with wave functions, to calculate probabilities, transmission
and reflection coefficients, possible energy values etc. In the following two or three more
abstract sections, the wave functions are regarded as vectors, i.e. elements of a vector space.

You certainly know what a vector space is; always have in mind the three–dimensional real
vector space R3 where one can add and subtract vectors x, and multiply vectors with real
numbers. The vector spaces of quantum mechanics in general are complex (i.e. you multiply
vectors with complex numbers) and, in contrast to R3, often of infinite dimension. But this is
not very astonishing to us as we already know by heart our example wave functions ψn of the
potential well, which form an infinitely dimensional basis.

For convenience, we recall the table we used earlier:

Example vectors and matrices Particle in Quantum Well
vector x wave function ψ(x)
space vector space Hilbert space

linear operator matrix A =

(

0 1
1 0

)

Hamiltonian Hwell

eigenvalue problem Ax = λx Hwellψn = Enψn

eigenvalue λ1 = 1, λ2 = −1 En = n2π2 � 2

2mL
, n = 1, 2, 3...

eigenvector x1,2 = 1√
2

(

1
±1

)

wave function ψn(x) =
√

2
L

sin
(

nπx
L

)

scalar product 〈x|y〉 ≡
∑2

n=1 x
∗
nyn 〈ψ|φ〉 ≡

∫ L

0
dxψ∗(x)φ(x)

orthogonal basis 〈en|em〉 = δnm 〈ψn|ψm〉 = δnm

dimension 2 ∞
completeness x =

∑2
n=1〈en|x〉en ψ =

∑∞
n=1〈ψn|ψ〉ψn

vector components x = (〈e1|x〉, 〈e2|x〉) ψ = (〈ψ1|ψ〉, 〈ψ2|ψ〉, ...)

3.1.2 Math: The Hilbert Space

We start with a few mathematical terms that are necessary for the definition of a Hilbert
space.

Def.: A norm ‖..‖ is a mapping of a complex vector space V into the real numbers R+,
such that for elements ψ, φ ∈ V

‖ψ‖ ≥ 0, ‖ψ‖ = 0↔ ψ = 0

‖cψ‖ = |c|‖ψ‖, c ∈ C
‖ψ + φ‖ ≤ ‖ψ‖+ ‖φ‖ (3.1)
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Def.: A scalar product is a mapping of a pair of vectors ψ, φ to a complex number 〈ψ|φ〉
such that for arbitrary ψ, φ, χ ∈ V

〈ψ|ψ〉 ≥ 0

〈ψ|cφ〉 = c〈ψ|φ〉, c ∈ C
〈ψ + φ|χ〉 = 〈ψ|χ〉+ 〈φ|χ〉

〈ψ|φ〉 = 〈φ|ψ〉∗ =: 〈φ|ψ〉 (3.2)

Def.: A vector space with scalar product and norm ‖ψ‖ =
√

〈ψ|ψ〉 is called unitary space.
Def.: A sequence {ψn} in a unitary space is called Cauchy sequence, if with all real

number ε > 0 there is an integer N(ε) such that for all n,m > N(ε), 〈ψn|ψm〉 < ε) holds.
Def.: A unitary space X is called complete, if each Cauchy sequence in X converges to a

vector ψ ∈ X.
Def.: A Hilbert space is a complete unitary space.

3.1.3 Math: Examples of Hilbert spaces

The d–dimensional Hilbert space H = Rd

This vector space has a basis of unit vectors en,

e1 =









1
0
..
0









, ... , ed =









0
0
..
1









. (3.3)

Vectors are columns and in printed text written as the transposed (symbolized by T that
is sometimes omitted) of lines x = (x1, ..., xd)

T . The scalar product of two vectors x =
(x1, ..., xd)

T ,y = (y1, ..., yd)
T , is 〈x|y〉 =

∑d
n=1 xnyn. Each vector x = (x1, ...xd)

T ∈ Rd can be
decomposed into

x =

d
∑

n=1

〈en|x〉en. (3.4)

The Hilbert space H = Hwell

This is the space of of square integrable wave functions ψ(x) of the infinite potential well,
section 2.2, defined on the interval [0, L], with ψ(x) = ψ(L) = 0. Each function ψ is considered
as a vector, the linear structure of a vector space comes from the fact the ψ ∈ H, φ ∈ H  
ψ + φ, cψ ∈ H. The scalar product is given by an integral

〈ψ|φ〉 :=

∫ L

0

dxψ∗(x)φ(x). (3.5)

You can check that this is a scalar product indeed. The eigenvectors of the Hamiltonian Ĥ,
i.e. the functions φn(x) with energy En,

ψn(x) =

√

2

L
sin

(nπx

L

)

, En =
n2

~
2π2

2mL2
, n = 1, 2, 3, ... (3.6)

form an orthonormal basis of H

〈ψn|ψm〉 = δnm. (3.7)
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Any wave function f ∈ H can be expanded into a linear combination of basis vectors, i.e.
eigenfunctions ψn,

f =

∞
∑

n=1

〈ψn|f〉ψn. (3.8)

We summarize the above two examples in the following table:

example Rd Hwell

vector x wave function ψ

scalar product 〈x|y〉 =
∑d

n=1 x
∗
nyn 〈ψ|φ〉 :=

∫ L

0
dxψ∗(x)φ(x)

orthonormal basis 〈en|em〉 = δnm 〈ψn|ψm〉 = δnm

completeness x =
∑d

n=1〈en|x〉en ψ =
∑∞

n=1〈ψn|ψ〉ψn

components x = (〈e1|x〉, ..., 〈ed|x〉) ψ = (〈ψ1|ψ〉, 〈ψ2|ψ〉, ...)

If you understand this table, you are already halfway in completely understanding the
math underlying quantum mechanics.

3.1.4 First Axiom: States as Hilbert Space Vectors

To conclude, we formulate our first axiom of quantum mechanics:

Axiom 1: A quantum mechanical system is described by a vector |Ψ(t)〉 ≡ Ψ(t) of a Hilbert
space H. The time evolution of Ψ(t) is determined by the Schrödinger equation

i~
∂

∂t
Ψ(t) = ĤΨ(t) (3.9)

The Hamilton operator Ĥ is an operator corresponding to the total energy of the system.
In the case of a single particle with mass m moving in the configuration space Rd under a
potential V (x), the wave function Ψ(x, t) ∈ H = L2(Rd) (square integrable functions) obeys

i~
∂

∂t
Ψ(x, t) =

[

−~
2∆

2m
+ V (x)

]

Ψ(x, t). (3.10)

|Ψ(x, t)|2ddx is the probability for the particle to be in the (infinitesimal small) volume ddx
around x at time t. The solutions of the stationary Schrödinger equation at fixed energy,

Ĥφ = Eφ (3.11)

are called stationary states, the possible energies E eigenenergies.

Note that the form of the Hamilton operator not necessarily has to be as in (3.10), the
Hamiltonian for a single particle defined over the space Rd. We will later encounter, for
example, Hamiltonians that describe the sites of a finite lattice and have the form of a n× n
matrix.
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3.1.5 Math: Completeness, Dirac notation

Def.: An orthonormal basis {ψn}, 〈ψn|ψm〉 = δnm, of a Hilbert space is called complete if no
vector φ (except the zero vector) is orthogonal to all ψn.

In the following, we will mostly deal with Hilbert spaces that have a complete orthonormal
basis, which guarantees the expansion of any wave function into a linear combination of basis
vectors. In most cases, the orthonormal basis consists of the eigenfunctions (eigenvectors) of
the Hamilton operator Ĥ.

In quantum mechanics it has become common to use the symbol (‘ket’) |ψ〉 for a wave
function (Hilbert space vector) instead of ψ. The expansion of an arbitrary ket |ψ〉 into the
orthonormal basis {|ψn〉;n = 0, 1, 2, 3, ...} then can be written as

|ψ〉 =

∞
∑

n=0

|ψn〉〈ψn|ψ〉. (3.12)

Here, the scalar product, that is the ‘bracket’ 〈ψn|ψ〉, gives rise to define the bra vector (from
‘bra -cket’) 〈ψn| as the state with wave function ψ∗

n(x). This means that

〈ψ| =
∞

∑

n=0

〈ψn|〈ψ|ψn〉. (3.13)

A very convenient way to memorize and use the completeness property is the ‘insertion of
the 1’,

1 =

∞
∑

n=0

|ψn〉〈ψn| |ψ〉 = 1|ψ〉 =

∞
∑

n=0

|ψn〉〈ψn|ψ〉. (3.14)

3.2 Operators and The Two-Level-System I

3.2.1 Operators

Quantum mechanics is a theory of probabilities and expectation values for the outcomes of
experiments. We have already learned how to use the wave function to calculate expectation
values of the position x, the momentum p, or any function of these, cf. Eq. (1.64).

We now slightly generalize our axiom 2:

Axiom 2a: In quantum mechanics, physical quantities like position, momentum, angular
momentum, kinetic energy, total energy etc. correspond to linear operators A that act
on Hilbert space vectors. The position x corresponds to the operator ‘multiplication with
x̂’, the momentum p to the operator −i~∇. Any other quantity depending on x and p
becomes an operator Ô(x̂, p̂) by this correspondence principle x → x̂ and p → −i~∇.
The commutation relation

[x̂k, p̂l] = i~δkl

δkl := 1, k = l, and 0 else (3.15)

holds.
Expectation values at time t of any operator A for a quantum mechanical system described

by a vector |ψ(t)〉 in a Hilbert space (for example, a wave function Ψ(x, t)), are defined by
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applying A on |Ψ(t)〉 and calculating the Hilbert space scalar product

〈A〉t :=
〈Ψ(t)|A|Ψ(t)〉t
〈Ψ(t)|Ψ(t)〉 . (3.16)

3.2.2 Examples for Expectation Values

For a quantum mechanical system described by a normalized wave function Ψ(x, t), the ex-
pectation value of an operator Ô(x̂, p̂) is

〈O(x̂, p̂)〉t =

∫

ddxΨ∗(x, t)O(x̂, p̂)Ψ(x, t). (3.17)

Here, d denotes the dimension of the configuration space. For example, in d = 1 dimension
we have

〈x〉t =

∫

dxΨ∗(x, t)xΨ(x, t), position

〈p〉t =

∫

dxΨ∗(x, t)
~

i

∂

∂x
Ψ(x, t), position (3.18)

3.2.3 Matrix Operators and The Two–Level System

We have already seen how confinement of particles leads to discrete energies En and wave
functions localized to certain regions of space. Furthermore, we have learned that the coupling
of two separated quantum systems (like the potential wells in section 2.6) leads to the splitting
of energy levels. The tunnel effect couples the left and the right well and leads to new states
that are superpositions, cf. (2.89),

ψ±(x) = ψL(x)± ψR(x). (3.19)

We had seen furthermore that the derivation of this result, starting from the one–dimensional
Schrödinger equation, is quite lengthy, because transcendental equations for the possible en-
ergies have to be solved at least approximatively. We therefore would like to find a simpler,
slightly more abstract model, that describes the main physics of the level splitting and the
tunnel effect, leading to eigenstates like the ψ± above.

We consider again a system were a particle is moving in a potential that has the form of
a double well like the one in section 2.6. We are interested in the case where the barrier
between the two wells is very high. Let us concentrate on the wave functions with the lowest
energies. We know already that we can express them approximately by the linear combinations
ψ± of the two lowest states ψL(x) and ψR(x) of the left and the right well.

We now perform the 5 steps that establish a simple model of what is going on when the
two wells become coupled by the barrier:
STEP 1: starting from two isolated wells, we completely neglect all states apart from the two
ground states in the two wells, ψL(x) and ψR(x). We are only interested in the ‘low–energy’
sector. If both wells have a small width, we know that the next eigenvalue of the energy is far
above the ground state energy so that all other states are energetically far away from the two
ground states ψL(x) and ψR(x).
STEP 2: we now define these two ground states as the two basis vectors of a complex two–
dimensional Hilbert space H = C2. We try to discuss all the following quantum mechanical
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Fig. 3.1: Double well potential (left) and its two lowest states.

L







=

0

1
L

R







=

1

0
R

Fig. 3.2: Vector representation of left and right lowest states of double well potential.

features within this ‘small’ Hilbert space which shall be our approximation of what ‘really is
going on’.
STEP 3: we call the basis vectors |L〉 (corresponding to the wave function ψL(x)) and |R〉
(corresponding to the wave function ψR(x)). We consider |R〉 and |L〉 just as basis vectors of
C2. The particular form of the corresponding wave functions does not interest us. We rather
introduce the notation for basis vectors known from linear algebra, that is

|L〉 =

(

1
0

)

, |R〉 =

(

0
1

)

. (3.20)

The scalar product in H = C2 is the standard scalar product for vectors: although the basis
vectors |L〉 and |R〉 correspond to the two wave functions in the left and right well, here they
are really vectors. In our abstract model we don’t care a hell about what |L〉 and |R〉 stand
for.
STEP 4: We associate a Hamiltonian Ĥ0 with the two isolated wells: trivially, the particle is
either in the left or in the right well. A measurement of the energy (the observable belonging
to Ĥ0) yields one of the eigenvalues of Ĥ0, i.e EL (the energy of the lowest state left) or ER

(the energy of the lowest state right). In fact, in section 2.6 we always had EL = ER but let
us be a bit more general here and allow different ground state energies in both isolated wells.
The Hamiltonian is a two–by–two matrix,

Ĥ0 =

(

EL 0
0 ER

)

(3.21)

because with this form

Ĥ0|L〉 = EL|L〉, Ĥ0|R〉 = ER|R〉, (3.22)
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that is |L〉 is eigenvector with eigenvalue EL and |R〉 is eigenvector with eigenvalue ER.
STEP 5 (this is the most abstract step): we now want to incorporate the tunnel effect when
the two wells become coupled by a barrier of finite height. What is the total Hamiltonian
Ĥ of the system then? A particle initially localized in the left well can now tunnel into the
right well and vice versa. The time–evolution of the wave function is determined by the total
Hamiltonian (remember the time–dependent Schrödinger equation!) which therefore must
contain a term like

T̂ :=

(

0 T
T ∗ 0

)

 T̂ |L〉 = T ∗|R〉, T̂ |R〉 = T |L〉. (3.23)

The operator T̂ changes |L〉 into |R〉 and |R〉 into |L〉, i.e. it puts the particle from the left
to the right and from the right to the left which mimics the tunnel process. The strength of
this process is proportional to T which is a free complex parameter in this model.

Furthermore, the energies EL and ER are changed: we therefore write the total Hamiltonian
as a sum of three terms,

Ĥ =

(

EL 0
0 ER

)

+

(

δεL 0
0 δεR

)

+

(

0 T
T ∗ 0

)

=:

(

εL T
T ∗ εR

)

. (3.24)

We check first that Ĥ is hermitian as it must be: this is the reason why we have T ∗ as Ĥ21.
The two–by–two matrix Hamiltonian Ĥ, (3.24), is called the Hamiltonian of the two–

level system. It describes the simplest possible quantum mechanical system in terms of the
three parameters εL, εR, and T . In spite of its simplicity, this model is the basis for a lot
of phenomena in different fields of physics, such as the dynamics of emission and absorption
of light from atoms, the nuclear magnetic resonance (NMR), the spin 1/2 of particles, the
physics of semiconductors with two bands (valence and conduction band), and many others.

3.3 Operators and Measurements

We start with some general definitions.

3.3.1 Math: Linear Operators

Def.: A linear Operator A acting on vectors |ψ〉, |φ〉 of a Hilbert space H has the property

A[|ψ〉+ c|φ〉] = A|ψ〉+ cA|φ〉, c ∈ C. (3.25)

Examples for linear operators: 1. (n × n)–matrices A, acting on vectors x → A(x) (linear
mappings)
2. The momentum operator p̂, acting on a Hilbert space of differentiable functions as

p̂ : f → p̂f, p̂f(x) =
~

i
∇f(x)

Example for a nonlinear operator: the operator that squares a function f , A : f → f 2.
Expectation values of observables A in particular should be real numbers because they

represent the outcome of an average over many measurements. We have to introduce one
additional definition to clarify this concept:
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Def.: The adjoint operator A† of a linear operator A acting on a Hilbert space H is defined
by

〈ψ|Aφ〉 = 〈A†ψ|φ〉, ∀φ, ψ ∈ H. (3.26)

Def.: A linear operator A on the Hilbert space H is called hermitian, if the following
relation holds:

〈Aψ|φ〉 = 〈ψ|Aφ〉, ∀φ, ψ ∈ H. (3.27)

Examples:
1. For complex two–by– two matrices

A =

(

a b
c d

)

 A† =

(

a∗ c∗

b∗ d∗

)

.

This means that the adjoint matrix A† of a given matrix A is given by the transposed conjugate
complex of A, i.e. A† = (A∗)T .
2. For complex two–by–two matrices

A =

(

a b
c d

)

= A†
 a = a∗, d = d∗, b∗ = c.

3. The momentum operator p̂ in one dimension, acting on wave functions ψ(x), φ(x), x ∈ R that
vanish at x→ ±∞, is hermitian:

〈ψ|p̂φ〉 = −i~
∫

dxψ∗(x)[φ(x)]′ ==

∫

dx[−i~ψ′(x)]∗φ(x) = 〈p̂ψ|φ〉.

The expectation values of hermitian operators A in any Hilbert space state vector ψ are
real indeed because

〈A〉 = 〈ψ|Aψ〉 = 〈Aψ|ψ〉 = 〈ψ|Aψ〉∗ = 〈A〉∗. (3.28)

This gives rise to the second part of axiom 2:

Axiom 2b: Physical observable quantities correspond to hermitian linear operators A
acting on Hilbert space vectors.

Furthermore, the following theorem holds:
Theorem: The eigenvalues of hermitian operators A are real. This is because

A|ψ〉 = λ|ψ〉 λ =
〈ψ|A|ψ〉
〈ψ|ψ〉 ∈ R. (3.29)

This leads us to the most central part of ours axioms:

3.3.2 Eigenvalues and Measurement

We now arrive at one of the most important concepts of quantum mechanics: the possible
outcomes of a measurement of a quantity corresponding to A are only the eigenvalues of
A. After the measurement the system is in an eigenstate of A with a predictable probablity
depending on A and its state just before the measurement.
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These two statements belong to the Kopenhagen interpretation of quantum mechanics
and are widely accepted and experimentally confirmed by now. They belong to the axioms of
quantum mechanics and can be motivated as follows:
Consider a quantum mechanical system in a normalized state |ψ〉. We wish to perform a
measurement of a quantity (for example the energy) that is represented by a hermitian operator
A (for example the Hamiltonian Ĥ).
CASE 1: Assume that |ψ〉 = |φ〉 is an eigenstate of A, A|φ〉 = λ|φ〉 with eigenvalue λ.
Repeating this measurement at many systems that are prepared in the same way, or at the
same system that is always prepared in the same state |φ〉, the expectation value of A is
〈A〉 = λ.
CASE 2: Assume that |ψ〉 is not an eigenstate of A. After a measurement with outcome a
assume the system is in another state |φ〉. Assume immediately after the first measurement,
a second measurement with outcome b is performed. We now assume that this second mea-
surement should give the same outcome as the first measurement, i.e. a = b. This thought
experiment is repeated many times at identically prepared systems. Always b = a should come
out such that the square deviation of A for the state |φ〉 is zero:

〈[A− 〈A〉]2〉 =
〈φ[A− a]2|φ〉
〈φ|φ〉 = 0 (A− a)|φ〉 = 0.

This tells us that after the first measurement, the system is in an eigenstate |φ〉 of A, and the
outcome of this measurement is an eigenvalue a of A. The second measurement then is as in
case 1 and yields a with the system remaining in the eigenstate |φ〉.

Axiom 2c: The possible outcomes of measurements of an observable corresponding to the
hermitian linear operators A are the eigenvalues of A. Immediately after the measurement,
the quantum system is in the eigenstate of A corresponding to the eigenvalue that is measured.

This axiom is the most radical break with classical physics: it postulates an abrupt collapse
of the wave function (‘reduction of the wave packet’) into one of the eigenstates of A, if a
measurement is performed. Before the measurement is actually done, one can not predict its
outcome, that is which eigenvalue is measured. Only probabilities for the possible outcomes
can be predicted:

Axiom 2d: Let A have a complete system of eigenvectors {|φn〉} with eigenvalues an. The
normalized state |ψ〉 before the measurement of A can be expanded into

|ψ〉 =

∞
∑

n=0

cn|φn〉, cn = 〈φn|ψ〉 ∈ C. (3.30)

Then, the expectation value of A in |ψ〉 is

〈|ψ|A|ψ〉 =
∞

∑

n=0

an|cn|2 =:

∞
∑

n=0

anpn, (3.31)

and the probability pn to find the system in the eigenstate |φn〉 after the measurement is given
by the amplitude square pn = |cn|2 = |〈φn|ψ〉|2.
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3.3.3 Example: Position Measurement in the Two-Level system

We have seen above that a particle in the a double well potential can be described by a vector
|ψ〉 in the Hilbert space H = C2,

|ψ〉 = c0|L〉+ c1|R〉 = c0

(

1
0

)

+ c1

(

0
1

)

, c0, c1 ∈ C, |c0|2 + |c1|2 = 1. (3.32)

The last condition |c0|2 + |c1|2 = 1 means that the state |ψ〉 is normalized. What is the
meaning of the coefficients c0 and c1?
CASE 1: c0 = 1, c1 = 0: The particle is in the state |ψ〉= |L〉, which means it is in the left
well.
CASE 2: c0 = 0, c1 = 1: The particle is in the state |ψ〉= |R〉, which means it is in the right
well.
We define the operator (two–by–two matrix)

A :=

(

1 0
0 −1

)

. (3.33)

Its eigenvectors are the two basis vector |L〉 and |R〉:

A|L〉 ≡
(

1 0
0 −1

) (

1
0

)

= 1 ·
(

1
0

)

A|R〉 ≡
(

1 0
0 −1

) (

0
1

)

= −1 ·
(

0
1

)

. (3.34)

The operator A thus corresponds to the measurement ‘where is the particle, in the left or
in the right well’. This is the simplest version of a position measurement, where we are not
interested in the precise position, but only measure in which well the particle is. For example,
if the particle is charged with the elementary charge −e, we could measure the charge in the
left well. If the particle is in there, we find −e, if it is in the right well, we find 0.

We now apply our axiom 2d to this ‘position measurement’: we cite it here in the form
that exactly matches our two–level system:

Axiom 2d: Let A have a complete system of eigenvectors {|φ0〉 = |L〉, |φ1〉 = |R〉} with eigenvalues
a0 = 1, a1 = −1. The normalized state |ψ〉 before the measurement of A can be expanded into

|ψ〉 =

1
∑

n=0

cn|φn〉 = c0|L〉+ c1|R〉. (3.35)

Then, the expectation value of A in |ψ〉 is

〈ψ|A|ψ〉 =

1
∑

n=0

an|cn|2 =

1
∑

n=0

anpn, (3.36)

and the probability pn to find the system in the eigenstate |φn〉 after the measurement

is given by the amplitude square pn = |cn|2.

We therefore recognize:

|c0|2 = p0 = the probability to find the particle in the left well

|c1|2 = p1 = the probability to find the particle in the right well. (3.37)
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Fig. 3.3: New hybridized basis states of the double well potential.

In particular, the probability to find the particle in either the left or the right well is p0 +p1 =
|c0|2 + |c1|2 = 1 as it must be. For example, if we perform the measurement by measuring
an extra charge in the left well, we find −e with probability |c0|2, and after the measurement
the particle is in the left well, that is in the state |L〉. If, on the other hand, we find an extra
charge 0 in the left well, the particle must be in the right well, that is in the state |R〉. The
probability for this is 1− |c0|2 = |c1|2.

3.4 Energy Measurements

3.4.1 Eigenstates of the Two-Level System

In the previous section we had seen that the total energy of the two tunnel–coupled wells is
represented by the total Hamiltonian Ĥ,

Ĥ =

(

εL T
T ∗ εR

)

. (3.38)

If we measure the energy, the possible outcomes are the eigenvalues of the corresponding
observable, that is the total Hamiltonian Ĥ. We therefore have to find the two eigenvectors
|i〉 and eigenvalues εi of Ĥ, that is the solutions of

Ĥ|i〉 = εi|i〉, i = 1, 2. (3.39)

The result is

|1〉 =
1

N1
[−2T |L〉+ (∆ + ε)|R〉] , ε1 =

1

2
(εL + εR −∆)

|2〉 =
1

N2
[ 2T |L〉+ (∆− ε)|R〉] , ε2 =

1

2
(εL + εR + ∆)

ε := εL − εR, ∆ := ε2 − ε1 =
√

ε2 + 4|T |2
N1,2 :=

√

4|T |2 + (∆± ε)2. (3.40)

Discussion:
1. The eigenvectors |1〉 and |2〉 form a new orthonormal basis of the Hilbert space H = C2

(the N1,2 are normalization factors).
2. The level splitting ∆ gives the energy difference between the new eigenenergies. It
increases with increasing |T |.



3. The Structure of Quantum Mechanics 47

3. For ε = 0, we find

|1〉 =
1√
2

[−(T/|T |)|L〉+ |R〉]

|2〉 =
1√
2

[(T/|T |)|L〉+ |R〉] . (3.41)

Remember that T is a complex quantity. If we chose T real and negative, i.e. T = −|T |,
we find

εL = εR =: ε0, T = −|T | |1〉 =
1√
2

[|L〉+ |R〉] , ε1 = ε0 − |T |

|2〉 =
1√
2

[−|L〉+ |R〉] , ε2 = ε0 + |T |. (3.42)

In particular, the symmetric linear combination |1〉 now has a lower energy than the anti-
symmetric combination |2〉: this is what we had found in the original double quantum well
problem.

3.4.2 Energy Measurement in the Two-Level System

The measurement of the total energy is a bit more complicated to do in practice than the
position measurement. For example, one can irradiate the system with light and measure an
absorption peak when the photon energy hν matches the energy difference ∆ of the two levels.
After the absorption, the particle is in the excited state |2〉 with energy ε2, before it was in
its ground state |1〉 with energy ε1. The particle can go back into its ground state by, for
example, spontaneous emission of another photon of energy ∆.

What we would like to find out now is the following: where is the particle, if it is in
its ground state |1〉 or its excited state |2〉? For example, after we perform the absorption
experiment and know that the particle is in its excited state, we would like to find out if it is in
the left or in the right well. This means, we again perform a ‘position’ measurement, and we
can apply exactly the same argument as before. The state before the position measurement
is now the excited state

|2〉 =
1

N2

[ 2T |L〉+ (∆− ε)|R〉] , ε := εL − εR, ∆ :=
√

ε2 + 4|T |2

N2 :=
√

4|T |2 + (∆− ε)2. (3.43)

Comparing the coefficients in front of the basis vectors |L〉 and |R〉, we recognize:

|c0|2 = p0 =
4|T |2

4|T |2 + (∆− ε)2
=

the probability to find the particle in the
left well after it was in the energy eigen-
state |2〉.

|c1|2 = p1 =
(∆− ε)2

4|T |2 + (∆− ε)2
=

the probability to find the particle in the
right well after it was in the energy eigen-
state |2〉.

Again, p0 + p1 = |c0|2 + |c1|2 = 1 as it must be. This means: we can calculate in advance the
probability to find the particle in the left well after the absorption measurement, but we can’t
tell where it is. If we know that the particle is in its excited state |2〉, but we haven’t done the
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Fig. 3.4: Left: Schematic diagram of a ‘double gate single electron transistor’ (double quantum dot)
by Fujisawa and Tarucha (1997). The 2DEG is located 100 nm below the surface of an AlGaAs/GaAs
modulation–doped heterostructure with mobility 8 ·105 cm2 (Vs)−1 and carrier concentration 3 ·1011

cm−2 at 1.6 K in the dark and ungated. Ga focused ion beam implanted in–plane gates and Schottky
gates define the dot system. A double dot is formed by applying negative gate voltages to the gates
GL, GC, and GR. The structure can also be used for single–dot experiments, where negative voltages
are applied to GL and GC only.
Right: Top view of the double quantum dot. Transport of electrons is through the narrow channel
that connects source and drain. The gates themselves have widths of 40 nm. The two quantum dots
contain approximately 15 (Left, L) and 25 (Right, R) electrons. The charging energies are 4 meV
(L) and 1 meV (R), the energy spacing for single particle states in both dots is approximately 0.5
meV (L) and 0.25 meV (R).

position measurement yet, we still don’t know if the particle is in the right or in the left well.
Its state |2〉 has components both in the left and the right well. For example, if ε = 0, we find

ε = 0 p0 = p1 =
1

2
. (3.44)

In this case ‘it is completely unclear’ where the particle is. Only the subsequent position
measurement can give us the answer: right with probability p1 = 1/2, and left with probability
p0 = 1/2. On the other hand, if the coupling between the two wells is zero (in the case of an
infinitely high barrier), we have T = 0. Then,

T = 0 p0 = 0, p1 = 1, (3.45)

which means that the particle is with certainty in the right well. This is obvious because for
T = 0, the energy eigenstate |2〉 = |R〉 is simply the basis vector |R〉 corresponding to the
particle in the right well with probability one.

3.4.3 *Experiments in Double Quantum Dots

We now shortly describe of a recent experimental realization of a two–level system in a semi-
conductor structure. This experiment has been performed in coupled artificial atoms, that
is coupled quantum dots, by Fujisawa and co–workers at the Technical University of Delft
(Netherlands) in 1998.

The double quantum dot is realized in a 2DEG AlGaAs–GaAs semiconductor heterostruc-
ture, see Fig.(3.4). Focused ion beam implanted in–plane gates define a narrow channel of
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Fig. 3.5: Left: Current at temperature T = 23mK as a function of the energy difference ε = εL−εR
in the experiment by Fujisawa and co–workers. The total measured current is decomposed into an
elastic and an inelastic component. If the difference ε between left and right dot energies εL and εR
is larger than the source–drain–voltage, tunneling is no longer possible and the current drops to zero.
The red circle marks the region of spontaneous emission of phonons. Phonons are the quanta of the
lattice vibrations of the substrate (the whole semiconductor structure), in the same way as photons
are the quanta of the electromagnetic (light) field. The spontaneous emission is characterized by the
large ‘shoulder’ for ε > 0 with an oscillation–like structure on top of it.
Right: The curves for the current for different values of the coupling Tc between the dots and the
rate ΓR for tunneling out into the drain region. The dotted curves are the negative derivatives of the
currents with respect to energy ε to enhance the structure on the emission side of the current. B

shows curves (i) and (ii) from A in a double–logarithmic plot, where the dashed lines are Lorentzian
fits.

tunable width which connects source and drain (left and right electron reservoir). On top of it,
three Schottky gates define tunable tunnel barriers for electrons moving through the channel.
By applying negative voltages to the left, central, and right Schottky gate, two quantum dots
(left L and right R) are defined which are coupled to each other and to the source and to the
drain. The tunneling of electrons through the structure is large enough to detect current but
small enough to have a well–defined number of electrons (∼ 15 and ∼ 25) on the left and the
right dot, respectively. The Coulomb charging energy (∼ 4 meV and ∼ 1 meV) for putting an
additional electron onto the dots is the largest energy scale, see Fig.(3.4). By tuning simulta-
neously the gate voltages of the left and the right gate while keeping the central gate voltage
constant, the double dot switches between the three states |0〉 = |NL, NR〉, |L〉 = |NL +1, NR〉,
and |R〉 = |NL, NR + 1〉 with only one additional electron either in the left or in the right dot
(see the following section, where the model is explained in detail).

The main experimental trick is to keep the system within these states and to change only
the energy difference ε = εL − εR of the dots without changing too much, e.g., the barrier
transmissions. The measured average spacing between single–particle states (∼ 0.5 and ∼ 0.25
meV) is still a large energy scale compared to the scale on which ε is varied. The largest value
of ε is determined by the source–drain voltage which is around 0.14 meV. The main findings
are the following:

1. At a low temperature of 23 mK, the stationary tunnel current I as a function of ε shows
a peak at ε = 0 with a broad shoulder for ε > 0 that oscillates on a scale of ≈ 20 − 30µeV,
see Fig.(3.5).

2. For larger temperatures T , the current increases stronger on the absorption side ε < 0
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than on the emission side. The data for larger T can be reconstructed from the 23 mK
data by multiplication with Einstein–Bose factors (the Planck radiation law) for emission and
absorption.

3. The energy dependence of the current on the emission side is between 1/ε and 1/ε2.
For larger distance of the left and right barrier (600 nm on a surface gate sample instead of
380 nm for a focused ion beam sample), the period of the oscillations on the emission side
appears to become shorter.

Those who are interested in more details on this fascinating experiment can read the article:
T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado, S. Tarucha,
and L. P. Kouwenhoven, Science 282, 932 (1998).

3.4.4 Energy Measurement in a Quantum Well

Consider the operator Ĥ, the energy operator (Hamiltonian) for the infinite potential well
with the eigenstates ψn, Eq.(3.6),

ψn(x) =

√

2

L
sin

(nπx

L

)

, En =
n2

~
2π2

2mL2
, n = 1, 2, 3, ...

If the state ψ before the measurement is an eigenstate ψ = ψn, measurement of the energy
yields the value En with probability |〈ψ|ψn〉|2, that is with probability 1, and other values Em,
m 6= n, with probability |〈ψ|ψm〉|2 = |〈ψn|ψm〉|2 = 0. If the state ψ before the measurement
is (cp. the problems)

ψ(x) =
√

30/L/L2x(L− x) =

∞
∑

n=1

cnψn, cn = 2
√

60
1− (−1)n

n3π3
,

the probability to obtain the value En when measuring the energy is

prob(En) = |cn|2 =

{

16 · 60/(n6π6) n odd
0 n even

In particular, we easily check (cp. the problems) that

∞
∑

n=0

prob(En) = [n = 2k + 1] =

∞
∑

k=1

16 · 60

(2k + 1)6π6
= 1

as it must be.

3.5 The Two–Level System: Time–Evolution

This section concludes our discussion of the two–level system, the simplest quantum mechani-
cal system. Here, we discuss how the particle in the double well potential behaves as a function
of time. As in the previous section, no new concepts are introduced here. We rather apply our
formalism and our knowledge in order to become familiar with the axioms introduced above
and the interpretation of states etc.
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3.5.1 Time Evolution of States

To start with, we simply recall our first axiom of quantum mechanics here:

Axiom 1: A quantum mechanical system is described by a vector |Ψ(t)〉 ≡ Ψ(t) of a Hilbert space
H. The time evolution of Ψ(t) is determined by the Schrödinger equation

i~
∂

∂t
Ψ(t) = ĤΨ(t) (3.46)

The Hamilton operator Ĥ is an operator corresponding to the total energy of the system. The
solutions of the stationary Schrödinger equation at fixed energy,

Ĥφ = Eφ (3.47)

are called stationary states, the possible energies E eigenenergies.

We now specialize everything to our two–level system:

Hilbert space H = C2 2d complex vector space

Basis vectors |L〉 =

(

1
0

)

, |R〉 =

(

0
1

)

particle left or right

Arbitrary vector |ψ〉 = c0|L〉+ c1|R〉, |c0|2 + |c1|2 = 1 particle in arbitrary state

Hamiltonian Ĥ =

(

εL T
T ∗ εR

)

two–dimensional matrix

Stationary states Ĥ|1〉 = ε1|1〉, Ĥ|2〉 = ε2|2〉 The two energy eigenstates

Time evolution means the following: Suppose the state of the quantum system at time
t = 0 is |Ψ(t = 0)〉 = |Ψ0〉. Then, the solution of the time–dependent Schrödinger equation
i~∂tΨ(t) = ĤΨ(t) gives us the state |Ψ(t)〉 at a later time t > 0.
CASE 1: Time evolution of a stationary state
If the initial state |Ψ0〉 is a stationary state, the time–evolution is simple:

|Ψ(t = 0)〉 = |1〉 |Ψ(t > 0)〉 = |1〉e−iε1t/
�

|Ψ(t = 0)〉 = |2〉 |Ψ(t > 0)〉 = |2〉e−iε2t/
�

(3.48)

because

i~
∂

∂t
|Ψ(t)〉 = i~

∂

∂t
|1〉e−iε1t/

�

= ε1|1〉e−iε1t/
�

= Ĥ|1〉e−iε1t/
�

= Ĥ|Ψ(t)〉. (3.49)

(the same for |Ψ(t = 0)〉 = |2〉). The time–evolution is ‘trivial’ and just given by the phase
factor e−iEt/

�

, where E is the eigenenergy of the stationary state.
CASE 2: Time evolution of a superposition of the two energy eigenstates

|Ψ(t = 0)〉 = α1|1〉+ α2|2〉 |Ψ(t)〉 = α1|1〉e−iε1t/
�

+ α2|2〉e−iε2t/
�

(3.50)

because

i~
∂

∂t
|Ψ(t)〉 = i~

∂

∂t

[

α1|1〉e−iε1t/
�

+ α2|2〉e−iε2t/
�
]

= α1ε1|1〉e−iε1t/
�

+ α2ε2|2〉e−iε2t/
�

= Ĥα1|1〉e−iε1t/
�

+ Ĥα2|2〉e−iε2t/
�

= Ĥ|Ψ(t)〉. (3.51)



3. The Structure of Quantum Mechanics 52

To obtain the time evolution of an arbitrary initial state |Ψ(t = 0)〉, we therefore have to do
the following: decompose |Ψ(t = 0)〉 into a linear combination of energy eigenstates (|1〉 and
|2〉). Then, simply dress the stationary states in this linear combination with the phase factors
e−iε1t/

�

and e−iε2t/
�

. The linearity of the Schrödinger equation makes it that simple: the time
evolution of a sum of stationary states is the sum of the time–evolved linear components of
this sum.

The calculational effort is in the determination of the coefficients α1 and α2: we discuss
this in the special
CASE 3: The initial state is |Ψ(t = 0)〉 = |L〉, describing the particle in the left well. Note
that we don’t have simply a time evolution given by a phase factor:

|Ψ(t = 0)〉 = |L〉 |Ψ(t > 0)〉6=e−iEt/
�

|L〉 for some E.

The state |L〉 is not an eigenstate of the Hamiltonian Ĥ, therefore its time evolution is not
given by a simple phase factor. What we have to do is clear: we have to find the decomposition
of the vector |L〉 into a linear combination of energy eigenstates |1〉 and |2〉,

|Ψ(t = 0)〉 = |L〉 = α1|1〉+ α2|2〉 |Ψ(t)〉 = α1|1〉e−iε1t/
�

+ α2|2〉e−iε2t/
�

. (3.52)

For simplicity, we do this for the special case of negative T and identical energy parameters
εL = εR in the Hamiltonian Ĥ. We had calculated already before in (3.41),

εL = εR =: ε0, T = −|T | |1〉 =
1√
2

[|L〉+ |R〉] , ε1 = ε0 − |T |

|2〉 =
1√
2

[−|L〉+ |R〉] , ε2 = ε0 + |T |. (3.53)

We solve this equation for |L〉,

|L〉 =
1√
2

[|1〉 − |2〉] α1 =
1√
2
, α2 = − 1√

2
. (3.54)

By this we have found our desired result, that is the time evolution of the initial state |L〉,

|Ψ(t = 0)〉 = |L〉  |Ψ(t)〉 =
1√
2

[

|1〉e−iε1t/
�

− |2〉e−iε2t/
�
]

. (3.55)

We have expressed |Ψ(t)〉 in the basis of the energy eigenstates |1〉 and |2〉. We now would like
to express |Ψ(t)〉 in the basis of the left and right states, |L〉 and |R〉: this is simple because
we know

|1〉 =
1√
2

[|L〉+ |R〉] , |2〉 =
1√
2

[−|L〉 + |R〉]

 |Ψ(t)〉 =
1√
2

[

|1〉e−iε1t/
�

− |2〉e−iε2t/
�
]

=

=
1

2

{

[|L〉+ |R〉] e−iε1t/
�

− [−|L〉+ |R〉] e−iε2t/
�
}

=

=
1

2

{

|L〉
[

e−iε1t/
�

+ e−iε2t/
�
]

+ |R〉
[

e−iε1t/
�

− e−iε2t/
�
]}

=: c0(t)|L〉+ c1(t)|R〉

c0(t) :=
1

2

[

e−iε1t/
�

+ e−iε2t/
�
]

, c1(t) :=
1

2

[

e−iε1t/
�

− e−iε2t/
�
]

. (3.56)
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The coefficients c0(t) and c1(t) have a clear physical meaning: let us recall

|c0|2(t) = p0(t) = the probability to find the particle in the left well

|c1|2(t) = p1(t) = the probability to find the particle in the right well. (3.57)

Obviously, these probabilities are a function of time now: |Ψ(t)〉 is not stationary. We
calculate

p0(t) =
1

4

∣

∣e−iε1t/
�

+ e−iε2t/
� ∣
∣

2
=

1

2
{1 + cos[(ε1 − ε2)t/~)]}

= cos2[
(ε1 − ε2)t

2~
]

p1(t) =
1

4

∣

∣e−iε1t/
�

− e−iε2t/
� ∣

∣

2
=

1

2
{1− cos[(ε1 − ε2)t/~)]}

= sin2[
(ε1 − ε2)t

2~
] (3.58)

and therefore

cos2[
(ε1 − ε2)t

2~
] = the probability to find the particle in the left well

sin2[
(ε1 − ε2)t

2~
] = the probability to find the particle in the right well. (3.59)

As a function of time, the probabilities oscillate with an angular frequency that is given by
the energy splitting ∆ = ε2− ε1 = 2|T |, divided by ~. At the initial time t = 0, the particle
is in the left well (the probability p0(0) = 1), but for t > 0 this probability starts to oscillate:
the particle tunnels from the left well into the right well, back into the left well and so forth.



4. IMPORTANT QUANTUM MECHANICAL
MODEL SYSTEMS

4.1 The Harmonic Oscillator I

4.1.1 Model

The one–dimensional harmonic oscillator is defined by a quadratic potential V (x) that for
convenience is chosen to be symmetric to the origin,

V (x) =
1

2
mω2x2. (4.1)

Here, m is the mass of the particle and ω the parameter that determines the shape of the
parabola. We wish to determine the behaviour of a particle of mass m in this potential. In
classical (Newtonian) physics, all one would have to do would be to solve Newton’s equations
for a given initial position x0 and a given initial momentum p0 at time t = 0 to determine x(t)
and p(t) at a later time t > 0. The total energy

E =
p2

2m
+ V (x) =

p2
0

2m
+ V (x0) (4.2)

is constant and determines an ellipse in phase space. The particle starts at the point (x0, p0) on
this ellipse and then moves on this ellipse. Of course, as a function of time t we can easily solve
for x(t) by solving the differential equation (Newton’s law) mẍ = F (x) = −V ′(x) = −mω2x.

In quantum mechanics, we have the total energy replaces by the Hamilton operator (Hamil-
tonian)

Ĥ =
p̂2

2m
+

1

2
mω2x2, (4.3)

and we have to solve the time–dependent Schrödinger equation

i~
∂

∂t
Ψ(x, t) = ĤΨ(x, t) (4.4)

for a given initial wave function Ψ(x, 0). We have learned that this can be achieved by first
solving the stationary Schrödinger equation

Ĥψ = Eψ  

(

− ~
2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ(x) = Eψ(x), (4.5)

which is an equation for the possible energy eigenvalues E and eigenfunctions ψ(x). The
eigenfunctions are useful themselves as they provide inside into the possible states the particle
can be in. We have also learned that the eigenfunctions provide a basis into which the initial
wave function Ψ(x) can be expanded and thus the time–evolution of an arbitrary initial wave
function can be obtained.
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4.1.2 Solution of the Differential Equation

Now we actually want to solve (4.5). We introduce dimensionless quantities

q :=

√

mω

~
x, ε :=

E

~ω
, φ(q) := ψ(x). (4.6)

Then, (4.5) becomes

φ′′(q) + (2ε− q2)φ(q) = 0. (4.7)

For large q → ∞, one can neglect the term ∝ ε. This yields the asymptotic behaviour of
φ(q → ±∞),

φ(q → ±∞) ∝ e±q2/2, (4.8)

which you can check by differentiating

φ′(q → ±∞) ∝ ±qe±q2/2, φ′′(q → ±∞) ∝ ±e±q2/2 + q2e±q2/2 → q2e±q2/2. (4.9)

This roughly is an example of how an asymptotic analysis of a differential equation is
performed; if you are interested for more mathematical details of the interesting theory of
asymptotic analysis have a look at the book by Bender and Orszag.

We obviously have two different solutions: one grows to infinity as q → ±∞, while the
other goes to zero. Wave functions have to be normalized which is impossible for the solution
that grows to infinity. We exclude that solution and write φ(q) as

φ(q) = e−q2/2h(q), (4.10)

which is an ANSATZ with an up to now unknown function h(q) that we wish to determine.
To do so, we plug it into our differential equation (4.7) and use

φ′(q) = −qe−q2/2h(q) + e−q2/2h′(q)

φ′′(q) = −e−q2/2h(q) + q2e−q2/2h(q)− 2qe−q2/2h′(q) + e−q2/2h′′(q), (4.11)

which leads to

h′′(q)− 2qh′(q) + (2ε− 1)h(q) = 0. (4.12)

We try to solve this by a power series

h(q) =
∞

∑

k=0

akq
k, h′(q) =

∞
∑

k=0

kakq
k−1

h′′(q) =

∞
∑

k=2

k(k − 1)akq
k−2 =

∞
∑

k=0

(k + 1)(k + 2)ak+2q
k. (4.13)

We insert these series into (4.12),

∞
∑

k=0

[(k + 1)(k + 2)ak+2 − 2kak + (2ε− 1)ak] q
k = 0. (4.14)
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The left side of the equation must be zero for any value of q which can only be true if all the
coefficients in [...] vanish. The powers qk form an infinite basis q0, q1, q2, q3, ...; if any function
expanded in this basis is zero, all expansion coefficients must be zero. From [...] = 0 in (4.14),
we therefore have

ak+2 =
2k − 2ε+ 1

(k + 1)(k + 2)
ak. (4.15)

This is a recursion relation for the coefficients ak. For large k →∞, one has

ak+2 ≈
2

k
ak, k →∞, (4.16)

unless the ak become zero above some k = n. The infinite power series h(q) becomes asymp-
totical equal to the exponential function eq2

for large q: consider

eq2

=
∑

j

q2j

j!
 [k = 2j even]

ak+2

ak
=

(k/2)!

(k/2 + 1)!
=

1

k/2 + 1
→ 2

k
, k →∞. (4.17)

Now, this is obviously not what we had intended with our Ansatz, because this would
mean that the wave function φ(q) = e−q2/2h(q) → eq2/2 which means that it is no longer
normalizable. The only possibility for a solution φ(q) that vanishes as q → ±∞ therefore is
obtained by demanding that the ak become zero above some n = k whence h(q) becomes a
polynomial of finite degree. For this to be the case, the numerator in (4.15) has to vanish for
some k = n which means

2ε = 2n + 1 ε ≡ εn = n+
1

2
. (4.18)

The possible energy values E are therefore

E ≡ En = ~ω

(

n+
1

2

)

, n = 0, 1, 2, 3, ... (4.19)

This is the famous quantization of the energy of the harmonic oscillator, which Planck had
postulated to explain the blackbody radiation in 1900!

For each non–negative integer n we obtain one energy eigenvalue and the corresponding
eigenfunction φn(q) = hn(q)e−q2/2 from the finite recursion formula (4.15) for the polynomial
hn(q). Here, we already use the index n to denote the n–th solution. The polynomials h(q)
fulfill the differential equation (4.12) with 2ε = n, that is

h′′(q)− 2qh′(q) + 2nh(q) = 0. (4.20)

The polynomials hn(q) that fulfill (4.20) are called Hermite polynomials Hn(q) if they
are normalized such that the wavefunctions ψn(x) = φn(q) are normalized: the result for the
normalized eigenfunctions ψn(x) with eigenenergy En, that is the solutions of (4.5), is

ψn(x) =
(

mω
π

�

)1/4 1√
n!2n

Hn

(√

mω
� x

)

e−
mω
2

� x2

Hn(q) = (−1)neq2 dn

dqn e
−q2

.
(4.21)
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Fig. 4.1: Lowest eigenstate wave functions ψn(x), Eq.(4.21) of the one–dimensional harmonic os-
cillator potential V (x) = (1/2)mω2x2 (black curve). Wave functions are in units (mω/π~)1/4. The
curves have an offset for clarity.

We do not prove the explicit form of the Hermite polynomials here; in the next section we will
learn an alternative method to calculate the En and the ψn(x) anyway. Here, we calculate
Hn(x) for the first n, using (4.21) (denote q by x here)

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12. (4.22)

The lowest eigenfuncions ψn(x) are shown in Fig. (4.1).

4.2 The Harmonic Oscillator II

We discuss our results for the eigenfunctions and energy eigenvalues of the harmonic oscil-
lator,

ψn(x) =
(mω

π~

)1/4 1√
n!2n

Hn

(
√

mω

~
x

)

e−
mω
2

� x2

En = ~ω

(

n+
1

2

)

, n = 0, 1, 2, 3, ... (4.23)
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It is very instructive to compare it with our results for the eigenfunctions and eigenenergies
of the infinite well potential,

φn(x) =

√

2

L
sin

(nπx

L

)

, εn =
n2

~
2π2

2mL2
, n = 1, 2, 3, ... (4.24)

4.2.1 The Hilbert space of wave functions

Infinite Well Hilbert Space

Let us recall what we know from the infinite potential well:
The eigen functions φn(x) of the infinite potential well form the basis of a linear vector
space Hwell of functions f(x) defined on the interval [0, L] with f(0) = f(L) = 0. The φn(x)
form an orthonormal basis:

∫ L

0

dx|φn(x)|2 = 1,

∫ L

0

dxφ∗
n(x)φm(x) = δnm. (4.25)

(We can omit the ∗ here because the φn are real). Note that the orthonormal basis is of
infinite dimension because there are infinitely many n. The infinite dimension of the vector
space (function space) Hwell is the main difference to ordinary, finite dimensional vector spaces
like the R3. Any function f(x) ∈ Hwell (like any arbitrary vector in, e.g., the vector space R3)
can be expanded into a linear combination of basis ‘vectors’, i.e. eigen functions φn(x):

f(x) =
∞

∑

n=1

cnφn(x), cn =

∫ L

0

dxf(x)φn(x). (4.26)

We start to count the eigenstates from n = 1.

Harmonic Oscillator Hilbert Space

For the harmonic oscillator, the situation is completely analogous. The difference now is that
the potential is no longer the infinite well but a harmonic potential. The wave functions are
not defined on the finite interval [0, L] but on the infinite interval [−∞,∞].
The eigen functions ψn(x) of the harmonic oscillator form the basis of a linear vector space
Hosc of functions f(x) defined on the interval [−∞,∞] with f(−∞) = f(∞) = 0. The ψn(x)
form an orthonormal basis:

∫ ∞

−∞
dx|ψn(x)|2 = 1,

∫ ∞

−∞
dxψ∗

n(x)ψm(x) = δnm. (4.27)

(We can omit the ∗ here because the ψn are real). Note that the orthonormal basis is of
infinite dimension because there are infinitely many n. The infinite dimension of the vector
space (function space) Hosc is the main difference to ordinary, finite dimensional vector spaces
like the R3. Any function f(x) ∈ Hosc (like any arbitrary vector in, e.g., the vector space R3)
can be expanded into a linear combination of basis ‘vectors’, i.e. eigen functions ψn(x):

f(x) =

∞
∑

n=0

cnψn(x), cn =

∫ ∞

−∞
dxf(x)ψn(x). (4.28)

We start to count the eigenstates from n = 0 and not n = 1 as for the infinite well. To prove
the orthogonality (4.27) is a bit more difficult for the harmonic oscillator then for the infinite
potential well. It can be done by using the properties of the Hermite polynomials.
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Harmonic Oscillator: Parity

The harmonic oscillator functions have the symmetry property

ψn(x) = (−1)nψn(−x), (4.29)

that is, they are symmetric or antisymmetric with respect to the symmetry point x = 0 of the
potential V (x), in alternating order with the quantum number n. The lowest eigenstate
ψ0(x) is symmetric and has no node, the next eigenstate ψ1(x) is anti–symmetric and has one
node, ψ2(x) is again symmetric and has two zeros, and so on.

Infinite Well: Parity

The wave functions have the symmetry property

φn(x + L/2) = (−1)n−1φn(L/2− x), (4.30)

that is they are symmetric or antisymmetric with respect to the symmetry point x = L/2 of the
infinite well potential V (x), in alternating order with the quantum number n. The lowest
eigenstate φ1(x) is symmetric and has no node, the next eigenstate φ2(x) is anti–symmetric
and has one node, φ3(x) is again symmetric and has two zeros, and so on.

We recognize that conceptually, everything is really completely analogous (the counting
from 0 or 1 is a matter of convention).

4.2.2 Discussion: Energy Eigenvalues

Harmonic Oscillator Energies

The lowest energy eigenvalue of the harmonic oscillator is

E0 =
1

2
~ω > 0. (4.31)

This energy is above the bottom at x = 0 of the potential V (x) = (1/2)mω2x2.

Infinite Well Energies

The lowest energy eigenvalue of the infinite potential well is

ε1 =
~

2π2

2mL2
> 0. (4.32)

This energy is above the bottom at x = 0 of the infinite well potential (which is zero inside
the infinite well).

According to our axiom 2c,

Axiom 2c: The possible outcomes of measurements of the energy corresponding to the hermitian
linear Hamilton operator Ĥ are the eigenvalues of Ĥ. Immediately after the measurement, the
quantum system is in the eigenstate of Ĥ corresponding to the eigenvalue that is measured.

the lowest possible energy value that can be measured is (1/2)~ω for the linear harmonic
oscillator. It is called zero–point energy.
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4.2.3 Harmonic Oscillator: Expectation Values

We calculate the ground state expectation values

〈0|x2|0〉 =

∫ ∞

−∞
dxx2|Ψ0(x)|2 =

√

mω

π~

∫ ∞

−∞
dxx2e−

mω� x2

. (4.33)

This integral is evaluated using

∫ ∞

−∞
dxe−αx2

=

√

π

α
,

∫ ∞

−∞
dxx2e−αx2

=

√

π

α
= − ∂

∂α

√

π

α
=

1

2α

√

π

α
(4.34)

(integration by differentiation). Therefore,

〈0|x2|0〉 =
1

2

~

mω
. (4.35)

Similarily,

〈0|p2|0〉 = −~
2

∫ ∞

−∞
dxe−

mω
2

� x2 ∂2

∂x2
e−

mω
2

� x2

√

mω

π~
= ~mω −m2ω2〈0|x2|0〉 = 1

2
m~ω. (4.36)

Using this, we can calculate the expectation value of the potential and the kinetic energy in
the ground state,

〈0|Ekin|0〉 =
1

2m
〈0|p2|0〉 =

1

4
~ω

〈0|Epot|0〉 =
1

2
mω2〈0|x2|0〉 =

1

4
~ω. (4.37)

Note that we have 〈0|Ekin|0〉 = 〈0|Epot|0〉 (Virial theorem).

4.3 Ladder Operators, Phonons and Photons

In this section, we solve the one–dimensional harmonic oscillator

Ĥ =
p̂2

2m
+

1

2
mω2x̂2, (4.38)

with a powerful operator method that does not rely on complicated differential equation but
on simple algebraic manipulations.

4.3.1 The Ladder Operators a and a†

We define the two operators

a :=

√

mω

2~
x̂+

i√
2m~ω

p̂, a† :=

√

mω

2~
x̂− i√

2m~ω
p̂. (4.39)

You have showed in the problems that if two operators A and B are hermitian, A = A†,
B = B† the linear combination C := A+ iB is not hermitian but C† = A− iB (remember the
analogy to a complex number z = x + iy, z∗ = x− iy). We know that x̂ and p̂ are hermitian,
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therefore a† (‘a dagger’) is the hermitian conjugate of a. From the commutator of x̂ and p̂ we
easily find (see the problems)

[x̂, p̂] = i~ [a, a†] = 1. (4.40)

We define the number operator

N̂ := a†a (4.41)

which is a hermitian operator because N̂ † = (a†a)† = a†(a†)† = N̂ . The eigenvalues of N̂ must
be real therefore. We denote the eigenvalues of N̂ by n and show that the n are non–negative
integers: First, we denote the corresponding (normalized) eigenvectors of N̂ by |n〉,

N̂ |n〉 = n|n〉. (4.42)

STEP 1: We show n ≥ 0: remember the scalar product of two states |ψ〉 and |φ〉 is denoted
as 〈φ|ψ〉.

0 ≤ ||a|n〉||2 = 〈n|a†a|n〉 = 〈n|N̂ |n〉 = n〈n|n〉 = n. (4.43)

STEP 2: We step down the ladder: if |n〉 is an eigenvector of N̂ with eigenvalue n, then a|n〉 is
an eigenvector of N̂ with eigenvalue n− 1, a2|n〉 is an eigenvector of N̂ with eigenvalue n− 2,
a3|n〉 is an eigenvector of N̂ with eigenvalue n− 3,...

N̂a = a†aa =
(

aa† − [a, a†]
)

a =
(

aa† − 1
)

a = a
(

N̂ − 1
)

 N̂a|n〉 = a
(

N̂ − 1
)

|n〉 = (n− 1)a|n〉

 N̂a2|n〉 = (N̂a)a|n〉 = a
(

N̂ − 1
)

a|n〉 = a(n− 1− 1)a|n〉 = (n− 2)a2|n〉
... (4.44)

The state a|n〉 is an eigenstate of N̂ with eigenvalue n− 1 and therefore must be proportional
to |n− 1〉,

a|n〉 = Cn|n− 1〉 n = 〈na†an〉 = |Cn|2〈n− 1|n− 1〉 = |Cn|2

 a|n〉 =
√
n|n− 1〉. (4.45)

The operator a takes us from one eigenstate with eigenvalue n to a lower eigenstate with
eigenvalue n
STEP 3: We show that n must be an integer, and the only possile eigenstates of N̂ are |0〉,
|1〉, |2〉, ...

If we step down the ladder to lower and lower eigenvalues, we eventually would come to
negative eigenvalues which can’t be because all eigenvalues of N̂ must be non–negative! The
lowest possible eigenstate is a|1〉 = |0〉 with eigenvalue 0:

N̂a|n〉 = (n− 1)a|n〉
 N̂a|1〉 = 0 · a|1〉

(4.46)

For any n with 0 < n < 1, the eigenvalue equation N̂a|n〉 = (n − 1)a|n〉 can only be true
if a|n〉 = 0 is the zero–vector. It then becomes the trivial equation 0 = 0 that contains no
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contradictions. But a|n〉 cannot be the zero–vector because the norm of a|n〉 is ‖a|n〉‖ =√
n > 0. Therefore, 0 < n < 1 leads to a contradition. In the same way, there can’t be values

of n with 1 < n < 2 (application of a leads us to the case 0 < n < 1 which is already excluded.
As a result, n is an integer.
Step 4: The normalized state a†|n〉 is (the proof is left for the problems)

a†|n〉 =
√
n+ 1|n+ 1〉. (4.47)

Therefore, a† takes us up the ladder from one eigenstate |n〉 to the next higher |n+1〉. All the
normalized eigenstates |n〉 can be created from the ground state |0〉 by successive application
of the ladder operator a†:

|n〉 =
(a†)n

√
n!
|0〉. (4.48)

4.3.2 The Harmonic Oscillator

The connection of the above algebraic tour de force with the harmonic oscillator is very simple:
The Hamiltonian (4.38) can be written as

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 = ~ω

(

a†a+
1

2

)

= ~ω

(

N̂ +
1

2

)

(4.49)

which you can check by inserting the definitions of a and a†. The eigenvectors of Ĥ are the
eigenvectors of N̂ :

Ĥ|n〉 = ~ω

(

N̂ +
1

2

)

|n〉 = ~ω

(

n+
1

2

)

|n〉, (4.50)

from which we can read off the eigenvalues of the harmonic oscillator, En = ~ω(n+1/2). The
corresponding eigenfunctions are, of course, the eigenfunctions of the harmonic oscillator,

|n〉 ↔ ψn(x) =
(mω

π~

)1/4 1√
n!2n

Hn

(
√

mω

~

)

e−
mω
2

� x2

. (4.51)

This is not so easy to see directly; it is proofed for the ground state |0〉 in the problems.

4.3.3 Phonons and Photons

We call the state |n〉 of the harmonic oscillator with energy ~ω(n+1/2) a state with n quanta
~ω of energy plus the zero point energy ~ω/2. These quanta are called phonons for systems
where massive particles have oscillatory degrees of freedom, the state |n〉 is a n–phonon state.

|n〉 ←→ n–phonon state. (4.52)

The ladder operator a† operates as

a†|n〉 =
√
n+ 1|n+ 1〉 (4.53)

and creates a state with one more phonon which is why it is called a creation operator. In
the same way, the operator a,

a|n〉 =
√
n|n− 1〉 (4.54)
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leads to a state with one phonon less (it destroys one phonon) and is called a annihilation
operator.

In a similar manner, the oscillatory degrees of freedom of the electromagnetic field (light)
lead to a Hamiltonian like the one of the harmonic oscillator. The corresponding states are
called n–photon states. This is one of the topics of Quantum Mechanics II, the theory of light,
and many–body theory. It is there where operators like the a and a+ show their full versatility
and power.

4.4 The Hydrogen Atom

4.4.1 Spherical Symmetric Potentials in 3 Dimensions

The stationary Schrödinger equation in three dimensions
[

−~
2∆

2m
+ V (x)

]

Ψ(x) = EΨ(x) (4.55)

contains the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂z2
+

∂2

∂z2
. (4.56)

For general V (x), it is usually very difficult to solve this equation. There are, however, a few
cases which are physically very important and can be solved exactly.

The Potential

We wish to determine the eigenfunctions Ψ(x) and possible energy eigenvalues E for a spherical
symmetric potential

V (x) = V (r), r = |x|. (4.57)

An example for such a potential is the potential energy of the Coulomb attraction between a
fixed point charge Ze > 0 sitting at the origin x = 0 and a moving particle of mass m and
charge −e at a distance r from the origin,

V (r) = − Ze2

4πε0r
. (4.58)

Polar Coordinates

It is useful to introduce polar coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ (4.59)

and to re–write the Laplacian in polar coordinates,

∆Ψ =
1

r2

∂

∂r

(

r2∂Ψ

∂r

)

+
1

r2

[

1

sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

+
1

sin2 θ

∂2Ψ

∂ϕ2

]

. (4.60)

The wave function Ψ = Ψ(r, θ, ϕ) now depends on polar coordinates. We multiply the
Schrödinger equation with r2,

∂

∂r

(

r2∂Ψ

∂r

)

+
2m

~2
r2[E − V (r)]Ψ +

[

1

sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

+
1

sin2 θ

∂2Ψ

∂ϕ2

]

= 0,
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which can be written with two operators ĥ and Ω̂ as

ĥΨ + Ω̂Ψ = 0

ĥΨ :=
∂

∂r

(

r2∂Ψ

∂r

)

+
2m

~2
r2[E − V (r)]Ψ

Ω̂Ψ :=

[

1

sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

+
1

sin2 θ

∂2Ψ

∂ϕ2

]

.

The separation of r–dependences and angle dependences suggests a separation Ansatz, that
is a wave function of the form

Ψ(r, θ, ϕ) = R(r)Y (θ, ϕ). (4.61)

Then, ĥΨ + Ω̂Ψ = 0 means

ĥR(r)Y (θ, ϕ) + Ω̂R(r)Y (θ, ϕ) = Y (θ, ϕ)ĥR(r) +R(r)Ω̂Y (θ, ϕ) = 0

 

1

R(r)
ĥR(r) = − 1

Y (θ, ϕ)
Ω̂Y (θ, ϕ) =: −c. (4.62)

Here, we have used the fact that ĥ performs a differentiation with respect to r so that Y (θ, ϕ)
can be pulled in front of it. In the same way, Ω̂ performs a differentiation with respect to θ and
ϕ only so that R(r) can be pulled in front of it. We thus have succeeded to completely seperate
the radial part R(r) from the angular part Y (θ, ϕ). The left side in (4.62) depends only
on r, the right side only on θ, ϕ whence both side must be a constant that we have denoted
for convenience as −c here.

We first investigate the angular part as it can be solved exactly. The radial part can not
be solved exactly for an arbitrary potential V (r).

4.4.2 The Angular Part

The angular part of (4.62) in fact is again an eigenvalue problem, because the equation Ω̂Y =
cY is an eigenvalue equation for the eigenvectors (eigenfunctions, remember that a function is
a vector in a Hilbert space) and possible eigenvalues c of the operator Ω̂. Let us write down
again this equation:

[

1

sin θ

∂

∂θ

(

sin θ
∂Y (θ, ϕ)

∂θ

)

+
1

sin2 θ

∂2Y (θ, ϕ)

∂ϕ2

]

= cY (θ, ϕ). (4.63)

We do not explicitely construct the eigenfunctions Y of the operator Ω̂ here but only give the
results. In fact, this operator is closely related to the angular momentum operator which we
will discuss in the next session. Similar to what we have found for the harmonic oscillator, it
turns out that solutions of (4.63) are possible only for c = −l(l + 1), where l = 0, 1, 2, 3, ... is
an integer. All the solutions can be labeled by two quantum numbers l and m, where m is
an integer that can take the values −l,−l + 1, ..., l − 1, l. The solutions are called spherical
harmonics and have the explicit form

Ylm(θ, ϕ) = (−1)(m+|m|)/2il
[

2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2

P
|m|
l (cos θ)eimϕ

P
|m|
l (x) :=

1

2ll!
(1− x2)|m|/2 d

l+|m|

dxl+|m| (x
2 − 1)l

l = 0, 1, 2, 3, ...; m = −l,−l + 1,−l + 2, ..., l − 1, l. (4.64)
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The P
|m|
l are called associated Legendre polynomials. The spherical harmonics are an

orthonormal function system on the surface of the unit sphere |x| = 1. We write the orthonor-
mality relation both in our abstract bra –ket and in explicit form:

|lm〉 ←→ Ylm(θ, ϕ) (4.65)

〈l′m′|lm〉 = δll′δmm′ ←→
∫ 2π

0

∫ π

0

Y ∗
l′m′(θ, ϕ)Ylm(θ, ϕ) sin θdθdϕ = δll′δmm

′.

The spherical harmonics with l = 0, 1, 2, 3, 4, ... are denoted as s–, p–, d–, f–, g–,... functions
which you might know already from chemistry (‘orbitals’). The explicit forms for some of the
first sphericals are

Y00 =
1√
4π
, Y10 = i

√

3

4π
cos θ, Y1±1 = ∓i

√

3

8π
sin θ · e±iϕ. (4.66)

4.4.3 The Radial Part

The radial part of the Schrödinger equation is obtained from (4.62) with c = −l(l + 1),

1

r2

∂

∂r

(

r2∂R(r)

∂r

)

+
2m

~2
[E − V (r)]R(r)− l(l + 1)

r2
R(r) = 0. (4.67)

For the hydrogen atom, the attractive Coulomb potential generated by the proton (charge
+e > 0, Z = 1) is

V (r) = − e2

4πε0r
. (4.68)

Strictly speaking, we are now dealing with a problem where many particles are involved: the
electron and the proton which itself is composed of smaller elementary particles, the quarks.
In such cases our single particle Schrödinger equation is no longer strictly valid. We neglect
the inner structure of the proton and also use the fact that it is much heavier than the electron.
As in the case of other two–body problems one can introduce center–of–mass and relative
coordinates and reduce the problem to a one–particle problem. The mass m is a reduced mass
but it is very close to the electron mass.

Again, we do not explicitely solve for the possible energy eigenvalues E and the radial
eigenfunctions here but present the result: For bound states where the electron is bound to
the attractive potential, the possible eigenvalues E = En are labeled by a quantum number
n,

En = −1

2

e2

4πε0a0

1

n2
, n = 1, 2, 3, ... Lyman Formula

a0 :=
4πε0~

2

me2
Bohr Radius. (4.69)

The radial eigenfunctions for the bound states are

Rnl(r) = − 2

n2

√

(n− l − 1)!

[(n + l)!]3
e−r/na0

(

2r

na0

)l

L2l+1
n+l

(

2r

na0

)

, l = 0, 1, ..., n− 1 (4.70)

Lm
n (x) = (−1)m n!

(n−m)!
exx−m dn−m

dxn−m
e−xxn generalized Laguerre polynomials.
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The wave functions of the bound states of the hydrogen atom (i.e. the attractive Coulomb
potential (4.68)) are therefore given by the product of radial and angular part according to
our separation ansatz (4.61),

Ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ). (4.71)

4.5 The Angular Momentum

Symmetries play an important role in physics. The central potentials V (r) discussed above
have rotational symmetry. From classical mechanics (Noether Theorem) we know that this
implies the existence of a conserved quantity. In the case of rotational symmetry this means
the conservation of angular momentum which is Kepler’s second law.

4.5.1 Definitions

In classical mechanics, the angular momentum of an object with position x and momentum
p is defined as

L = x× p, (4.72)

that is the cross product (vector product) of the position and the momentum. In components,
this is

L =

∣

∣

∣

∣

∣

∣

. . .
x1 x2 x3

p1 p2 p3

∣

∣

∣

∣

∣

∣

= (x2p3 − x3p2, x3p1 − x1p3, x1p2 − x2p1). (4.73)

The corresponding quantum mechanical operator is obtained from the correspondence prin-
ciple that replaces x → x̂, i.e. the position operator, and p → −i~∇, i.e. the momentum
operator. Because we are in three dimensions, the operators are vectors:

x̂ = (x̂1, x̂2, x̂3), p = −i~∇ = −i~(∂x1 , ∂x2 , ∂x3) = (p̂1, p̂2, p̂3). (4.74)

The angular momentum operator therefore becomes

L̂ = −i~x̂×∇ = (x̂2p̂3 − x̂3p̂2, x̂3p̂1 − x̂1p̂3, x̂1p̂2 − x̂2p̂1). (4.75)

In polar coordinates, one has to use the spherical polar expression for the Nabla operator
that you learned in vector analysis. The corresponding expression for the components of the
angular momentum operator become

L̂x = −i~
(

− sinϕ
∂

∂θ
− cosϕ cot θ

∂

∂ϕ

)

L̂y = −i~
(

cosϕ
∂

∂θ
− sinϕ cot θ

∂

∂ϕ

)

L̂z = −i~ ∂

∂ϕ
. (4.76)

Notice that in spherical polar coordinates, the z–axis is the central axis of the coordinate
system with the angle ϕ revolving around it. The angular momentum Lz corresponds to revo-
lutions around the z–axis, its quantum mechanical expression becomes quite simple: basically,
just a differentiation with respect to the angle ϕ ‘around the z axis’.
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Another important observation is that the angular momentum square, that is the
operator L̂2, becomes

L̂2 = −~
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2

]

. (4.77)

We notice that this is just −~
2 times the expression Ω̂, eq. (4.61), for the angular part of the

Laplacian ∆! In particular, the eigenfunctions Ylm of Ω̂ are the eigenfunctions of the angular
momentum square, cf. eq.(4.63) with c = −l(l + 1),

L̂2Ylm(θ, ϕ) = ~
2l(l + 1)Ylm(θ, ϕ), l = 0, 1, 2, 3, ... (4.78)

Furthermore, the dependence of Ylm(θ, ϕ) on the angle ϕ is only through the exponential eimϕ.
We thus have

L̂zYlm(θ, ϕ) = ~mYlm(θ, ϕ), (4.79)

which means that Ylm(θ, ϕ) are eigenfunctions of the z–component of the angular momentum,
too.

The eigenfunctions Ψnlm(r, θ, ϕ) of the Hamiltonian Ĥ for the hydrogen atom therefore are
also eigenfunctions of L̂2 and L̂z. We summarize this in three equations

ĤΨnlm(r, θ, ϕ) = EnΨnlm(r, θ, ϕ)

L̂2Ψnlm(r, θ, ϕ) = ~
2l(l + 1)Ψnlm(r, θ, ϕ)

L̂zΨnlm(r, θ, ϕ) = ~mΨnlm(r, θ, ϕ). (4.80)


