next up previous contents
Next: Case Up: A more complicated case Previous: Case of no potential   Contents

Tunnel barrier potential within well

For a rectangular tunnel barrier of width $ a$ and height $ V$, that is $ V(x)=V\theta(a/2-\vert x\vert)$, we have calculated the transfer matrix $ M$ before (note that now the width is $ a$ and not $ 2a$, $ \sin(ix)=i\sinh(x)$, and $ \cos(ix)=\cosh(x)$:
$\displaystyle M_{11}$ $\displaystyle =$ $\displaystyle e^{ika}\left[\cosh (\kappa a) +i\frac{\varepsilon_-}{2}\sinh (\kappa a)\right ]$  
$\displaystyle M_{12}$ $\displaystyle =$ $\displaystyle i\frac{\varepsilon_+}{2}\sinh (\kappa a)$  
$\displaystyle \varepsilon_{\pm}$ $\displaystyle :=$ $\displaystyle \frac{\kappa}{k}\pm \frac{k}{\kappa},\quad k = \sqrt{(2m/\hbar^2)E},
\quad \kappa = \sqrt{(2m/\hbar^2)(V-E)}.$ (154)

From this and Eq. (2.76), we obtain
$\displaystyle \pm 1$ $\displaystyle =$ $\displaystyle -e^{ik(a-L)}\left[\cosh (\kappa a) +i\frac{\varepsilon_-}{2}\sinh (\kappa a)\right ]
+ i\frac{\varepsilon_+}{2}\sinh (\kappa a)$ (155)

We multiply this equation by $ e^{-ik(a-L)/2}$ and take the real part to obtain two equations for the even and the odd case. We can check that taking the imaginary part leads to the same result. Using
$\displaystyle \coth (x/2) = \frac{\sinh x}{\cosh x -1} = \frac{\cosh x +1}{\sinh x},$     (156)

we obtain
$\displaystyle 1$ $\displaystyle =$ $\displaystyle \frac{\kappa}{k}\tan \left(k\frac{a-L}{2}\right)\tanh \left(\frac{\kappa a}{2}\right),$   even '+'  
$\displaystyle 1$ $\displaystyle =$ $\displaystyle \frac{\kappa}{k}\tan \left(k\frac{a-L}{2}\right)\coth \left(\frac{\kappa a}{2}\right),$   odd '-'$\displaystyle .$ (157)



Subsections
next up previous contents
Next: Case Up: A more complicated case Previous: Case of no potential   Contents
Tobias Brandes 2004-02-04