next up previous contents
Next: First Axiom: States as Up: Math: Examples of Hilbert Previous: The -dimensional Hilbert space   Contents

The Hilbert space $ {\cal H}= {\cal H}_{\rm well}$

This is the space of of square integrable wave functions $ \psi(x)$ of the infinite potential well, section 2.2, defined on the interval $ [0,L]$, with $ \psi(x)=\psi(L)=0$. Each function $ \psi$ is considered as a vector, the linear structure of a vector space comes from the fact the $ \psi \in {\cal H},\phi \in {\cal H} \leadsto
\psi + \phi, c\psi \in {\cal H}$. The scalar product is given by an integral
$\displaystyle \langle \psi \vert \phi \rangle := \int_0^Ldx \psi^*(x)\phi(x).$     (170)

You can check that this is a scalar product indeed. The eigenvectors of the Hamiltonian $ \hat{H}$, i.e. the functions $ \phi_n(x)$ with energy $ E_n$,
$\displaystyle \psi_n(x)$ $\displaystyle =$ $\displaystyle \sqrt{\frac{2}{L}}\sin \left(\frac{n\pi x}{L}\right ),\quad
E_n= \frac{n^2 \hbar^2 \pi^2}{2mL^2},\quad n=1,2,3,...$ (171)

form an orthonormal basis of $ {\cal H}$
$\displaystyle \langle \psi_n \vert \psi_m \rangle =\delta_{nm}.$     (172)

Any wave function $ f \in {\cal H}$ can be expanded into a linear combination of basis vectors, i.e. eigenfunctions $ \psi_n$,
$\displaystyle f=\sum_{n=1}^{\infty}\langle \psi_n \vert f \rangle \psi_n.$     (173)

We summarize the above two examples in the following table:


example $ R^d$ $ {\cal H}_{\rm well}$
vector x wave function $ \psi$
scalar product $ \langle {\bf x} \vert {\bf y} \rangle = \sum_{n=1}^d x_n^*y_n$ $ \langle \psi \vert \phi \rangle := \int_0^Ldx \psi^*(x)\phi(x)$
orthonormal basis $ \langle {\bf e}_n \vert {\bf e}_m \rangle=\delta_{nm}$ $ \langle \psi_n \vert \psi_m \rangle =\delta_{nm}$
completeness $ {\bf x}=\sum_{n=1}^d\langle {\bf e}_n\vert{\bf x} \rangle{\bf e}_n$ $ \psi =\sum_{n=1}^{\infty}\langle \psi_n \vert \psi \rangle \psi_n$
components $ {\bf x} = (\langle {\bf e}_1\vert{\bf x} \rangle,...,\langle {\bf e}_d\vert{\bf x} \rangle)$ $ \psi = (\langle \psi_1 \vert \psi \rangle, \langle \psi_2 \vert \psi \rangle,...)$

If you understand this table, you are already halfway in completely understanding the math underlying quantum mechanics.


next up previous contents
Next: First Axiom: States as Up: Math: Examples of Hilbert Previous: The -dimensional Hilbert space   Contents
Tobias Brandes 2004-02-04