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1. MASTER EQUATION METHODS

1.1 Introduction

1.1.1 Motivation

The goal of dissipative quantum mechanics or ‘quantum dissipation theory’ is to
formulate microscopic theories of irreversible behaviour of quantum systems. Sim-
ply speaking, one would like to understand processes like, e.g., friction or ‘damp-
ing’ on a microscopic level. This requires at least two things: ‘friction’ means that
physical objects interact with each other, i.e., we need to talk about interactions.
Furthermore, this occurs as a function of time for systems which are usually out
of equilibrium, i.e., we need to talk about dynamics.

A further, more ambitious goal is to better understand the relation between mi-
croscopic and macroscopic theories, e.g., the relation between mechanics (classical
or quantum) and statistical mechanics (again classical or quantum).

Already in classical (Newtonian) mechanics, the description of irreversible
behaviour is a non-trivial problem. One can often introduce dissipation into
microscopic equations by adding phenomenological terms, such as the velocity-
dependent damping term γẋ(t) (γ > 0) in the damped (forced) harmonic oscilla-
tor,

ẍ(t) + γẋ(t) + ω2x(t) = f(t). (1.1.1)

In this example, one of the goals would be to derive this equation and to actually
calculate γ from an underlying microscopic theory.

Other examples (some of these are very tough, some not so tough problems):

• What is the spontaneous photon emission rate of an atom in vacuum?

• What is the electrical resistance of a (small or large) piece of metal at very
low temperatures?

• How does a Laser work?

• What is the typical time after which a given realisation of a qubit (a quan-
tum two-level system as realised in, e.g., a linear ion trap, the charge or
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magnetic flux in superconducting junctions, the electron charge or spin in
semiconductor quantum dots, the nuclear spin etc.) fails to operate in the
desired manner?

1.1.2 Origin of Dissipation, System-Bath Theories

The most successful approach to quantum dissipation has been the use of System-
Bath Theories, which will be the main topic of this chapter. The main idea is the
following:

STEP 1: we divide the ‘world’ into two parts: a) the part we are really in-
terested in (for example, all the conduction band electrons in a piece of metal),
and b) the part we are not so much interested in (for example, all the rest of
the metal). This splitting obviously is a choice that depends on what we want to
describe/calculate

STEP 2: Call these two parts ‘system’ and ‘reservoir’, identify the interaction
between system and reservoir, and then derive an effective theory for the system
only.

1.1.2.1 Example

Single oscillator (‘system’) with angular frequency ω0, mass M , position x, coupled
to N ≫ 1 oscillators (‘reservoir’) i = 1, ..., N with angular frequencies ωi, masses
mi, position xi, coupling of the form cixix via position coordinates.
Exercise: derive and solve the equations of motion a) for the total system (system
plus reservoir) and b) for the system only.

The coupling leads to an effective dynamics of the system oscillator governed
by the sum of many eigenmodes with eigenfrequencies. This sum is determined by
the coupling constants ci. For finite N , this is just a problem of coupled oscillators,
and the motion of the system oscillator must therefore be periodic with a (large)
period T . The time T after which the entire system returns back to its initial
starting point is called Poincaré time.

The key point now is: 1. For times t ≪ T , the effective dynamics of the
system (x and p of the system oscillator) very much resembles the dynamics we
would expect from a damped system: a sum of many oscillatory terms with ‘nearly
random’ coefficients decays as a function of time t≪ T . 2. In most known cases,
T is very, very large (‘larger than the age of the universe’). This means that one
can savely neglect the periodic ‘Poincaré return’ of the system.

1.1.2.2 Formal Splitting

The basic idea in microscopic theories of dissipation is a decomposition of a total
system into a system S and a reservoir part R or B, ‘bath’. The (Hamiltonian)
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dynamics of the total system is reversible, but the dynamics of the system S is
effectively not reversible for times t≪ T .

In this lecture, we formulate these ideas for quantum systems. The Hilbert
space of the total system is defined by the tensor product

Htotal = HS ⊗HB. (1.1.2)

The Hamiltonian of the total system is defined as

Htotal ≡ H ≡ HS +HSB +HB (1.1.3)

Here and in the following, we will mostly discuss time-independent Hamiltonians.
Time-dependent Hamiltonians H = H(t) can be treated as well but require ad-
ditional techniques (e.g., Floquet theory for period time-dependence; adiabatic
theorems for slow time-dependence).

1.1.3 Overview

1. ‘Simple’ Systems with few degrees of freedom: typically quantum optics systems,
atoms, few-level systems, cavity modes.

• Weak coupling approximation: Master Equation (Born and Markov Approx-
imation)

• Damped harmonic oscillator.

• Solution methods: phase-space methods (P -representation etc.).

• Solution methods: quantum trajectories.

• Correlation Functions, Quantum Regression Theorem.

• Beyond weak coupling approximation: Feynman-Vernon influence functional
(path integral) theories; R. P. Feynman, F. L. Vernon, Ann. Phys. (N.Y.)
24, 118 (1963). Non-exponential decay laws at low temperatures.

• Exact solution of damped harmonic oscillator.

• Spin-Boson Problem, Two-Level System.

• Non-Markovian versus Markovian, Lindblad versus non-Lindblad.

• ‘Non-standard’ methods.

2. Systems with many degrees of freedom: typically condensed matter systems,
electrons + phonons (particle statistics).
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• Quasiclassical kinetic theories, Boltzmann equation.

• Quantum Many-Body Non-Equilibrium Methods. (Keldysh) Greens Func-
tion Methods, quantum Boltzmann equation.

In this chapter, we will concentrate on 1. (‘Simple’ Systems with few degrees of
freedom). Also, not discussed in detail in this lecture are

• Nakajima-Zwanzig theories, Mori projection operator theories. These give a
more formal approach towards system-bath theories.

• ‘Early approaches’ such as Wigner-Weisskopf theory of spontaneous emission.

• ...

Generally speaking, quantum dissipation can be regarded as a subfield of non-
equilibrium quantum statistics/ non-equilibrium many-body theory.

1.1.4 Literature

Quite a few text books are available:
H. Carmichael, ‘An Open System Approach to Quantum Optics’, Springer

Lecture Notes in Physics m 18, (Berlin, Heidelberg, 1993): good introduction into
Master equations, quantum trajectories, quantum optics.

D. F. Walls and G. J. Milburn, ‘Quantum Optics’, Springer (Berlin) 1994:
quantum optics book; good reference book but very condensed.

U. Weiss, ‘Quantum Dissipative Systems’, World Scientific (Singapore) (1993):
advanced methods (path integral) beyond Master equation approach.

H. Haug and A.-P. Jauho, ‘Quantum Kinetics in Transport and Optics of Semi-
conductors’, Springer 1996: non-equilibrium (Keldysh) Green’s function approach.

F. Haake, ‘Quantum Signatures of Chaos’, Springer (Berlin, Heidelberg) 2001:
good chapter on dissipation.

A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W.
Zwerger, Rev. Mod. Phys. 59, 1 (1987): famous review of dissipative two-level
system.

1.2 Master Equation I: Derivation

1.2.1 Interaction Picture

We define an interaction picture by writing

H ≡ H0 + V, H0 ≡ HS +HB, V ≡ HSB (1.2.1)
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with the Hamiltonian H0 describing the time evolution of the uncoupled system
and bath, and the perturbation V describing the interaction HSB.

We define χ(t) as the total density matrix (system + bath) which obeys the
Liouville-von-Neumann equation ,

d

dt
χ(t) = −i[H,χ(t)] χ(t) = e−iHtχ(t = 0)eiHt, (1.2.2)

where we start with the initial condition χ(t = 0) at time t = 0. In the interaction
picture,

χ̃(t) ≡ eiH0tχ(t)e−iH0t (1.2.3)

Ã(t) ≡ eiH0tAe−iH0t. (1.2.4)

The equation of motion for the density operator in the interaction picture becomes

d

dt
χ̃(t) = i[H0, χ̃(t)] + eiH0t d

dt
χ(t)e−iH0t

= i[H0, χ̃(t)]− ieiH0t[H,χ(t)]e−iH0t

= i[H0, χ̃(t)]− ieiH0t[H0 + V, χ(t)]e−iH0t

= i[H0, χ̃(t)]− i[H0 + Ṽ (t), χ̃(t)]

= −i[Ṽ (t), χ̃(t)]. (1.2.5)

In integral form, this can be written as

χ̃(t) = χ(t = 0)− i
∫ t

0

dt′[Ṽ (t′), χ̃(t′)] (1.2.6)

which we insert into Eq. (1.2.5) to obtain

d

dt
χ̃(t) = −i[Ṽ (t), χ(t = 0)]−

∫ t

0
dt′[Ṽ (t), [Ṽ (t′), χ̃(t′)]]. (1.2.7)

Up to here, everything is still exact.

1.2.2 Perturbation Theory in the System-Bath Coupling

1.2.2.1 Effective Density Matrix of the System

We wish to obtain an equation of motion for the effective density matrix of the
system at time t > 0,

ρ(t) ≡ TrB[χ(t)]. (1.2.8)
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This object is sufficient to calculate expectation values of system operators AS:

〈AS〉t ≡ Trtotal[χ(t)AS ]

= TrS [TrBχ(t)]AS = TrS [ρ(t)AS ] . (1.2.9)

Now use

TrB[χ̃(t)] = TrBe
iH0tχ(t)e−iH0t

= eiHSt
(

TrBe
iHBtχ(t)e−iHBt

)

e−iHSt = eiHStρ(t)e−iHSt

≡ ρ̃(t). (1.2.10)

Note that the interaction picture ρ(t)↔ ρ̃(t) involves only the free System Hamil-
tonian HS and not H0,

ρ̃(t) ≡ eiHStρ(t)e−iHSt. (1.2.11)

Using

ÃS(t) ≡ eiH0tASe
−iH0t = eiHStASe

−iHSt (1.2.12)

for system operators, one has

〈AS〉t = TrS

[

ρ̃(t)ÃS(t)
]

= TrS [ρ(t)AS(t)] . (1.2.13)

1.2.2.2 Equation of Motion for ρ̃(t)

This follows from Eq.(1.2.8) and (1.2.7) by taking the trace over the bath,

d

dt
ρ̃(t) = −iTrB[Ṽ (t), χ(t = 0)] −

∫ t

0
dt′TrB[Ṽ (t), [Ṽ (t′), χ̃(t′)]]. (1.2.14)

1.2.2.3 Assumption (factorising initial condition):

χ(t = 0) = R0 ⊗ ρ(t = 0) (1.2.15)

R0 ≡ TrS[χ(t = 0)], ρ(t = 0) ≡ TrB[χ(t = 0)].

This factorisation assumption is key to most of the results that follow. Its validity
has been discussed and criticised in the past (see Weiss book for further references).
Some of the issues are:

• Does the factorisation assumption only affect transient or also the long-time
behaviour of the density matrix?
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• Are there exactly solvable models where these issues can be clarified?

A theoretical formulation of time-evolution for arbitrary initial condition is some-
times possible: ‘preparation function’ (exact solution of dissipative quantum os-
cillator; Grabert, Ingold et al); generalisation of many-body Keldysh GF (three-
by-three matrix instead of two-by-two matrix, M. Wagner).

1.2.2.4 Born Approximation

In the interaction picture,

χ̃(t′) = R0 ⊗ ρ̃(t = 0) to zeroth order in V . (1.2.16)

The Born approximation in the equation of motion Eq.(1.2.14) consists in

χ̃(t′) ≈ R0 ⊗ ρ̃(t′) Born approximation. (1.2.17)

This means one assumes that for all times t′ > 0, the total density matrix remains
a product of the initial bath density matrix R0 and the system density matrix
ρ̃(t′). Intuitively, one argues that this is justified when the bath is ‘very large’ and
the coupling HSB ‘weak’, so that the back-action of the system onto the bath can
be neglected. In practice, one usually assumes a thermal equilibrium for the bath,

R0 =
e−βHB

Tre−βHB
, thermal equilibrium bath, (1.2.18)

where β = 1/kBT with T the bath equilibrium temperature.
Remark: A more detailed analysis of the Born approximation and alterna-

tive approximations can be done within the framework of the Projection Operator
formalism.

Within the Born approximation, with Eq. (1.2.17), (1.2.15), and (1.2.14), one
obtains a closed integro-differential equation for the reduced density operator ρ̃(t)
of the system in the interaction picture,

d

dt
ρ̃(t) = −iTrB[Ṽ (t), R0 ⊗ ρ̃(t = 0)]

−
∫ t

0
dt′TrB[Ṽ (t), [Ṽ (t′), R0 ⊗ ρ̃(t′)]].

(1.2.19)

Remark: Eq.(1.2.19) is exact up to second order in the perturbation V : set
ρ̃(t′) = ρ(0) on the r.h.s. of Eq.(1.2.19). Since ρ̃(t′) in the double commutator on
the r.h.s. of Eq.(1.2.19) depends on V , Eq.(1.2.19) is to infinite order in V though
not exact. Diagrammatically this corresponds to a summation of an infinite series
of diagrams. It is non-trivial to make this statement more precise, but roughly
speaking these diagrams contain certain vertex corrections as can be seen from the
fact that ρ(t) is a density matrix and not a wave function.
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1.2.3 Explicit Form of Master Equation

The equation of motion Eq.(1.2.17) is pretty useless unless one specifies at least
some more details for the interaction Hamiltonian V ≡ HSB. Denoting system
operators by S ′

j and bath operators by Bk, the most general form of V is

V =
∑

jk

cjkS
′
j ⊗ Bk ≡

∑

k

Sk ⊗Bk, (1.2.20)

where we have re-defined the sum over j as a new system operator (→ similarity
to Schmid-decomposition).
Remark: Note that Sk and Bk need not necessarily be hermitian. Inserting
Eq.(1.2.20) into Eq.(1.2.19), we have

d

dt
ρ̃(t) = −i

∑

k

TrB[S̃k(t)B̃k(t), R0ρ(t = 0)]

−
∫ t

0

dt′
∑

kl

TrB[S̃k(t)B̃k(t), [S̃l(t
′)B̃l(t

′), R0ρ̃(t
′)]].

To simplify things, we will assume

TrBB̃k(t)R0 = 0 (1.2.21)

from now on. This is no serious restriction. We furthermore introduce the bath
correlation functions

Ckl(t, t
′) ≡ TrB

[

B̃k(t)B̃l(t
′)R0

]

. (1.2.22)

Assumption 1:

[R0, HB] = 0 bath in equilibrium. (1.2.23)

This means

Ckl(t, t
′) ≡ Ckl(t− t′). (1.2.24)

We then have

d

dt
ρ̃(t) = −

∫ t

0

dt′
∑

kl

[

Ckl(t− t′)
{

S̃k(t)S̃l(t
′)ρ̃(t′)− S̃l(t

′)ρ̃(t′)S̃k(t)
}

+ Clk(t
′ − t)

{

ρ̃(t′)S̃l(t
′)S̃k(t)− S̃k(t)ρ̃(t

′)S̃l(t
′)
}]

. (1.2.25)
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Assumption 2a (Markov approximation): the bath correlation function Ckl(τ)
is strongly peaked around τ ≡ t− t′ = 0 with a peak width δτ ≪ γ−1, where γ is
a ‘typical rate of change of ρ̃(t′).’ Note that the condition δτ ≪ γ−1 can only be
checked after the equation of motion for ρ̃(t) has been solved. In the interaction
picture, one then replaces ρ̃(t′)→ ρ̃(t) under the integral to obtain

d

dt
ρ̃(t) = −

∫ t

0

dt′
∑

kl

[

Ckl(t− t′)
{

S̃k(t)S̃l(t
′)ρ̃(t)− S̃l(t

′)ρ̃(t)S̃k(t)
}

+ Clk(t
′ − t)

{

ρ̃(t)S̃l(t
′)S̃k(t)− S̃k(t)ρ̃(t)S̃l(t

′)
}]

. (1.2.26)

The important fact is that this approximation is carried out in the interaction (and
not in the original Schrödinger) picture: in the interaction picture, the only rele-
vant time-scale the change of the density matrix is γ−1 and not (the usually much
faster) timescales from the free evolution with HS. In fact, one now transforms
back into the Schrödinger picture, using Eq.(1.2.11),

d

dt
ρ̃(t) = i[HS, ρ̃(t)] + eiHSt d

dt
ρ(t)e−iHSt

 
d

dt
ρ(t) = −i[HS , ρ(t)] + e−iHSt d

dt
ρ̃(t)eiHSt (1.2.27)

which leads to

 
d

dt
ρ(t) = −i[HS, ρ(t)]

−
∫ t

0

dt′
∑

kl

[

Ckl(t− t′)
{

e−iHStS̃k(t)S̃l(t
′)ρ̃(t)− S̃l(t

′)ρ̃(t)S̃k(t)
}

eiHSt

+ Clk(t
′ − t)

{

e−iHStρ̃(t)S̃l(t
′)S̃k(t)− S̃k(t)ρ̃(t)S̃l(t

′)
}

eiHSt
]

= −i[HS, ρ(t)]

−
∫ t

0

dt′
∑

kl

[

Ckl(t− t′)
{

SkS̃l(t
′ − t)ρ(t)− S̃l(t

′ − t)ρ(t)Sk

}

+ Clk(t
′ − t)

{

ρ(t)S̃l(t
′ − t)Sk − Skρ(t)S̃l(t

′ − t)
}]

. (1.2.28)

Assumption 2b (Markov approximation): the integral over t′ can be carried
out to t =∞. This in fact is completely consistent with assumption 2a (see above).
Defining

Dk ≡ lim
t→∞

∫ t

0

dτ
∑

l

Ckl(τ)S̃l(−τ), Ek ≡ lim
t→∞

∫ t

0

dτ
∑

l

Clk(−τ)S̃l(−τ),(1.2.29)
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we can write

d

dt
ρ(t) = −i[HS , ρ(t)]

−
∑

k

[

SkDkρ(t)−Dkρ(t)Sk + ρ(t)EkSk − Skρ(t)Ek

]

.
(1.2.30)

1.3 Master Equation II: the Damped Harmonic Oscillator

1.3.1 Introduction

In the following, we will discuss two models for damped harmonic oscillators and
derive the explicit forms for the corresponding Master equations.

1.3.1.1 Non-RWA Model

Htotal ≡ HS +HSB +HB

= Ωa†a+
∑

Q

γQ(aQ + a†Q)(a+ a†) +
∑

Q

ωQa
†
QaQ. (1.3.1)

Here, V ≡ HSB = S ⊗ B with S = a+ a† and B =
∑

Q γQ(aQ + a†Q). The indices
k and l play no role here.

1.3.1.2 RWA-Model

Htotal ≡ HS +HSB +HB

= Ωa†a+
∑

Q

γQ(aQa
† + a†Qa) +

∑

Q

ωQa
†
QaQ. (1.3.2)

Here, V ≡ HSB =
∑

i=1,2 Si ⊗ Bi with S1 = a†, S2 = a, an B1 =
∑

Q γQaQ,

B2 =
∑

Q γQa
†
Q). The indices k and l now do play a role.

1.3.2 Master Equation (RWA)

We first derive the master equation for the RWA model.
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1.3.2.1 Thermal Bath Correlation Functions (RWA)

The bath correlation functions simply are

C12(t) ≡ TrB

[

B̃1(t)B2R0

]

= TrB

[

∑

QQ′

γQγQ′aQe
−iωQta†Q′R0

]

=
∑

Q

γ2
Qe

−iωQt(1 + nB(ωQ)) =

∫ ∞

0

dωρ(ω)e−iωt(1 + nB(ω))

C21(t) ≡ TrB

[

B̃2(t)B1R0

]

= TrB

[

∑

QQ′

γQγQ′a†Qe
iωQtaQ′R0

]

=
∑

Q

γ2
Qe

iωQtnB(ωQ) =

∫ ∞

0

dωρ(ω)eiωtnB(ω)

C11(t) = C22(t) = 0, (1.3.3)

where all the information on the microscopic coupling to the bath in now comprised
within one single function, the bath spectral density ρ(ω)

ρ(ω) ≡ ∑

Q γ
2
Qδ(ωQ − ω). (1.3.4)

Using S̃1(t) = a†eiΩt, S̃2(t) = ae−iΩt, we have

D1 ≡
∫ ∞

0

dτC12(τ)S̃2(−τ) =

∫ ∞

0

dτC12(τ)ae
iΩt = Ĉ12(−iΩ)a (1.3.5)

D2 ≡
∫ ∞

0

dτC21(τ)S̃1(−τ) =

∫ ∞

0

dτC21(τ)a
†e−iΩt = Ĉ21(iΩ)a†

E1 ≡
∫ ∞

0

dτC∗
21(τ)S̃2(−τ) =

∫ ∞

0

dτC∗
21(τ)ae

iΩt = [Ĉ21(iΩ)]∗a = D†
2

E2 ≡
∫ ∞

0

dτC∗
12(τ)S̃1(−τ) =

∫ ∞

0

dτC∗
12(τ)a

†e−iΩt = [Ĉ12(−iΩ)]∗a† = D†
1

Here, we defined the Laplace transformation of a function f(t),

f̂(z) =

∫ ∞

0

dte−ztf(t). (1.3.6)
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The Master equation therefore is

d

dt
ρ(t) = −i[Ωa†a, ρ(t)]

−
∑

{

SkDkρ(t)−Dkρ(t)Sk + ρ(t)EkSk − Skρ(t)Ek

}

(1.3.7)

= −i[Ωa†a, ρ(t)]
−

{[

Ĉ12(−iΩ)a†a + Ĉ21(iΩ)aa†
]

ρ(t) + ρ(t)
[

[Ĉ21(iΩ)]∗aa† + [Ĉ12(−iΩ)]∗a†a
]

− Ĉ12(−iΩ)aρ(t)a† − Ĉ21(iΩ)a†ρ(t)a− [Ĉ21(iΩ)]∗a†ρ(t)a− [Ĉ12(−iΩ)]∗aρ(t)a†
}

.

1.3.3 Rates and Energy Shift (RWA)

Let us have a closer look at the expressions

Ĉ12(z) =

∫ ∞

0

dωρ(ω)[1 + nB(ω)]

∫ ∞

0

dte−(z+iω)t. (1.3.8)

The Laplace transform exists for Im(z) > 0 to ensure convergence of the integral,
but in the expressions above we need Ĉ12(z = −iΩ) etc., i.e. purely imaginary
arguments! The limit t→∞, if explicitely written, reads

Ĉ12(z = −iΩ) = lim
t→∞

∫ ∞

0

dωρ(ω)[1 + nB(ω)]

∫ t

0

dt′ei(Ω−ω)t′ . (1.3.9)

Now,

lim
t→∞

∫ t

0

dt′eixt′ = lim
t→∞

[

sin xt

x
+ i

1− cosxt

x

]

= πδ(x) + iP

(

1

x

)

, (1.3.10)

where P denotes the principal value.
For the first term, we used a very useful

Theorem:
For any integrable, normalised function f(x) with

∫∞
−∞ dxf(x) = 1,

lim
ε→0

1

ε
f
(x

ε

)

= δ(x). (1.3.11)

Since
∫∞
−∞ dx sin(x)/x = π, this yields the Delta function above.

We split the two bath correlation functions into real and imaginary parts,

Ĉ12(−iΩ) ≡ 1

2
γ+ + i∆+, Ĉ21(iΩ) ≡ 1

2
γ + i∆

γ+ ≡ γ+(Ω) ≡ 2πρ(Ω)[1 + nB(Ω)], γ ≡ γ(Ω) ≡ 2πρ(Ω)nB(Ω)

∆+ ≡ P

∫ ∞

0

dω

2π

γ+(ω)

Ω− ω , ∆ ≡ −P
∫ ∞

0

dω

2π

γ(ω)

Ω− ω . (1.3.12)
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Remarks:

• Real and imaginary parts of the correlation functions are related to each
other: Kramers-Kronig relations.

• Note the minus-sign in the definition of ∆.

1.3.4 Final Form of Master Equation

Using these definitions, we can now write

d

dt
ρ(t) = −i[Ωa†a, ρ(t)]− 1

2

{

[

(γ+ + 2i∆+)a†a+ (γ + 2i∆)aa†
]

ρ(t) (1.3.13)

+ ρ(t)
[

(γ − 2i∆)aa† + (γ+ − 2i∆+)a†a
]

− 2γ+aρ(t)a
† − 2γa†ρ(t)a

}

.

We write 2i∆aa† = 2i∆(a†a+ 1) and obtain

d

dt
ρ(t) = −i[(Ω + ∆+ + ∆)a†a, ρ(t)] (1.3.14)

− 1

2
γ+

{

a†aρ(t) + ρ(t)a†a− 2aρ(t)a†
}

− 1

2
γ
{

aa†ρ(t) + ρ(t)aa† − 2a†ρ(t)a
}

.

This can be further re-arranged into

d

dt
ρ(t) = −iΩ̄[a†a, ρ]− κ

{

a†aρ+ ρa†a− 2aρa†
}

− 2κnB(Ω)
{

a†aρ+ ρaa† − aρa† − a†ρa
}

,
(1.3.15)

where

Ω̄ ≡ Ω + P

∫ ∞

0

dω
ρ(ω)

Ω− ω , κ ≡ πρ(Ω). (1.3.16)

Remarks

• This is the ‘standard’ Master equation for the damped harmonic oscillator,
as discussed in many text books and used for many applications.

• Modifications appear if one uses the non-RWA model Hamiltonian instead
of the RWA Hamiltonian.

• Eq.(1.3.15) is, of course, not exact because we have used 2nd order perturba-
tion theory (in the system-bath coupling γQ), and the Markov approximation.
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• The oscillator energy ~Ω is renormalised due to the coupling to the environ-
ment. The renormalised frequency Ω̄ is temperature independent.

• The integral for the renormalised frequency Ω̄ may diverge, depending on
the form of the spectral density ρ(ω), Eq.(1.3.4), in which case this theory
breaks down. We will make this statement more precise below.

• One can show that the Master equation Eq.(1.3.15) (and its non-RWA anal-
ogon, model 1) is indeed ‘wrong’ in the sense that there is an exact solution
for the density operator ρ(t) within the same model, which is different from
the solution of Eq.(1.3.15). This again will be discussed below.

• Comparing the exact ρ(t) with that obtained from Eq.(1.3.15), one could now
discuss the ‘validity of the entire Master equation approach’. However, the
damped harmonic oscillator is (with very few exceptions) the only quantum
dissipative system where an exact solution exists.

1.3.5 Expectation Values (RWA Model)

We would like to use our Master equation Eq.(1.3.15)

d

dt
ρ(t) = −iΩ̄[a†a, ρ]− κ

{

a†aρ+ ρa†a− 2aρa†
}

− 2κnB(Ω)
{

a†aρ+ ρaa† − aρa† − a†ρa
}

and calculate some ‘useful’ quantities as, for examples, expectation values of
System (= oscillator) observables θ̂. Let us do this for the number operator,
θ̂ = n̂ = a†a. Multiplying with n and taking the trace, we obtain

d

dt
〈n〉(t) = −iΩ̄Tr

(

n[a†a, ρ]
)

− κTr
{

a†aa†aρ+ ρa†aa†a− 2aρa†a†a
}

− 2κnB(Ω)Tr
{

a†aa†aρ+ ρaa†a†a− a†aaρa† − a†aa†ρa
}

= −iΩ̄Tr
(

a†aa†aρ− a†aρa†a
)

− κTr
{

2a†aa†aρ− 2ρa†(aa† − 1)a
}

− 2κnB(Ω)Tr
{

a†aa†aρ+ ρ(a†a + 1)a†a− a†(aa† − 1)aρ− aa†aa†ρ
}

= −2κTr
{

ρa†a
}

− 2κnB(Ω)Tr
{

a†aa†aρ+ ρ(a†a + 1)a†a− a†(aa† − 1)aρ− (a†a + 1)(a†a+ 1)ρ
}

= −2κTr
{

ρa†a
}

+ 2κnB(Ω)

= −2κ (〈n〉(t)− nB(Ω)) . (1.3.17)
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This now is a simple first order differential equation which has the solution

〈n〉(t) = 〈n〉(t = 0)e−2κt + κnB(Ω)
(

1− e−2κt
)

. (1.3.18)

In particular, one has

〈n〉(t→∞) = nB(Ω). (1.3.19)

For large times, the occupation number is thus given by the thermal equilibrium
Bose distribution, regardless of the initial condition 〈n〉(t = 0).

1.3.6 Master Equation (Non-RWA Model)

Let us re-call that now

Htotal ≡ HS +HSB +HB

= Ωa†a+
∑

Q

γQ(aQ + a†Q)(a+ a†) +
∑

Q

ωQa
†
QaQ.

1.3.7 Thermal Bath Correlation Function (non-RWA)

In the following, we will have a closer look at the properties of bath correlation
functions.

1.3.7.1 Definition

We first re-call the definition of the bath correlation function,

C(t) ≡ TrB

[

B̃(t)BR0

]

= TrB

[

∑

QQ′

γQγQ′(aQe
−iωQt + a†Qe

iωQt)(aQ′ + a†Q′)R0

]

=
∑

Q

γ2
Q

[

e−iωQt(1 + nB(ωQ)) + eiωQtnB(ωQ)
]

=

∫ ∞

0

dωρ(ω)
[

e−iωt(1 + nB(ω)) + eiωtnB(ω)
]

= C∗(−t). (1.3.20)

Furthermore, nB(ω) ≡ 1/[eβω − 1] is the Bose function.

1.3.7.2 Bosonic Spectral Density ρ(ω)

All the dependence on the coupling constants γQ is encapsulated within the spec-
tral density ρ(ω). The latter is often parametrised as

ρ(ω) = 2αω1−s
c ωse−ω/ωc , (1.3.21)
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where α is the dimensionless coupling parameter and ωc is the cutoff frequency.
Note that ρ(ω) has the dimension [ω] which is the reason for the pre-factor ω1−s

c .
The parameter s determines the low-frequency behaviour of ρ(ω), and one calls
couplings with

s < 1 : sub-ohmic

s = 1 : ohmic

s > 1 : super-ohmic. (1.3.22)

This classification has its origin in the analysis of the dissipative two-level (spin-
boson) system which we will discuss below.

The case s = 1, ωc →∞

ρ(ω) = 2αω (1.3.23)

is called scaling limit of the ohmic bath and has the special property of homogeneity
ρ(kω) = kρ(ω).

1.3.7.3 Properties of C(t)

One can write

C(t) =

∫ ∞

0

dωρ(ω) [coth (βω/2) cos(ωt)− i sin(ωt)] , (1.3.24)

where we used the useful identity

coth (βω/2) = 1 + 2nB(ω). (1.3.25)

Calculation of the integral with ρ(ω) given by Eq.(1.3.21) yields

C(t) = 2αω1−s
c β−(s+1) × (1.3.26)

Γ(s+ 1)

[

ζ

(

s+ 1,
1 + βωc − iωct

βωc

)

+ ζ

(

s+ 1,
1 + iωct

βωc

)]

,

where Γ is the Gamma function and

ζ(z, u) ≡
∞
∑

n=0

1

(n+ u)z
, u 6= 0,−1,−2, ... (1.3.27)

is the generalised Zeta function (cf. W. Magnus, F. Oberhettinger, and R. P.
Soni, Formulas and Theorem for the Special Functions of Mathematical Physics,
Springer, Berlin 1966). The zero temperature limit is obtained either from the
β →∞ limit of Eq.(1.3.26) or directly by calculating the integral,

C(t) = 2αωs+1
c Γ(s+ 1) (1 + iωct)

−(s+1) . (1.3.28)
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1.3.7.4 Validity of Markov Assumption

With explicit expressions like Eq. (1.3.26) and Eq. (1.3.28), one can now directly
assess the validity of the Markov assumption (Assumption 2a above): ‘ the bath
correlation function Ckl(τ) is strongly peaked around τ = 0 with a peak width
δτ ≪ γ−1, where γ is a typical rate of change of ρ̃(t′).’ For example, for T = 0,
γ = 2πρ(Ω), and within the model ρ(ω) = 2αω1−s

c ωse−ω/ωc , Eq.(1.3.21), one has
δτ ∼ ω−1

c , cf. Eq.(1.3.28). This would mean

ω−1
c 4παω1−s

c Ωse−Ω/ωc ≪ 1

4πα (Ω/ωc)
s e−Ω/ωc ≪ 1, (1.3.29)

which is fulfilled for large ωc (Ω/ωc . 1), s > 0, and small α. The condition
of small α is consistent with the Born approximation (perturbation theory in the
coupling to the bath).

1.3.8 Derivation of Master equation (non-RWA), secular
approximation

We now move on to derive the Master equation for the non-RWA model. Using
S̃(t) = ae−iΩt + a†eiΩt, we have

D ≡
∫ ∞

0

dτC(τ)S̃(−τ) =

∫ ∞

0

dτC(τ)
[

aeiΩτ + a†e−iΩτ
]

= Ĉ(−iΩ)a + Ĉ(iΩ)a† ≡ c−a+ c+a
†

E ≡
∫ ∞

0

dτC∗(τ)S̃(−τ) =

∫ ∞

0

dτC∗(τ)S̃†(−τ) = D†

= c∗+a+ c∗−a
†, (1.3.30)

where we used the Laplace transform of C(τ),

Ĉ(z) ≡
∫ ∞

0

dτe−zτC(τ). (1.3.31)

1.3.8.1 ‘Secular approximation’

We note that Ĉ(z) = Ĉ12(z) + Ĉ21(z). In the secular approximation, one sets

Ĉ12(iΩ) ≡
∫ ∞

0

dωρ(ω)e−iωte−iΩt(1 + nB(ω))→ 0

Ĉ21(−iΩ) ≡
∫ ∞

0

dωρ(ω)eiωteiΩtnB(ω)→ 0. (1.3.32)
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The real parts of Ĉ12(iΩ) and Ĉ21(−iΩ) are zero because δ(ω + Ω) yields no con-
tribution from the integral (remember that Ω > 0). This approximation therefore
neglects the imaginary parts of Ĉ12(iΩ) and Ĉ21(−iΩ) which, however, do not lead
to damping but only to a renormalisation of the system Hamiltonian HS. For
consistency, we therefore neglect the imaginary parts of Ĉ12(−iΩ) and Ĉ21(iΩ) as
well. Therefore,

c− + c+ ≈ 1

2
(γ+ + γ) = πρ(Ω)[1 + 2nB(ω)]

c− − c+ ≈ 1

2
(γ+ − γ) = πρ(Ω). (1.3.33)

1.3.8.2 x-p Representation

We now can write

D =
1√
2

((c− + c+) x+ i (c− − c+) p) ≈ πρ(Ω)√
2

(

x coth

(

βΩ

2

)

+ ip

)

,

(1.3.34)

where we again used coth (βΩ/2) = 1 + 2nB(Ω). Using E = D†, one obtains the
Master equation from the Non-RWA Model in secular approximation,

d

dt
ρ = −i[HS, ρ]− πρ(Ω)

2
coth

(

βΩ
2

)

(x2ρ+ ρx2 − 2xρx)

− iπρ(Ω)
2

(xpρ− ρpx− pρx+ xρp) .
(1.3.35)

1.4 Electronic Quantum Transport: Few-Level Systems

1.4.1 Model Hamiltonian

Quantum system as a few-level system,

HS =
∑

i

εi|i〉〈i| (1.4.1)

with electronic many-body states |i〉. Example: quantum dot with strong Coulomb
blockade, only one additional ‘transport’ (valence) electron in one of the levels |i〉,
i 6= 0, with the state |0〉 describing the state without additional electron.

Electron transport through the system is introduced by connecting to left and
right electron reservoirs in thermal equilibrium at chemical potential µL (µR) with
positive source-drain voltage VSD ≡ µL − µR > 0, inducing tunneling of electrons
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from the left to the right. The coupling to the electron reservoirs Hres is described
by the usual tunnel Hamiltonian HV ,

HB ≡ Hres =
∑

k,α=L/R

εk,αc
†
kαckα, HSB ≡ HV =

∑

kαi

(Vkαic
†
kαŝi +H.c.), (1.4.2)

where the Vkαi couple to a continuum of channels k in reservoir α = L/R and

ŝi ≡ |0〉〈i|. (1.4.3)

We note that the splitting of the whole electron system into reservoir and dot
regions bears some fundamental problems that are inherent in all descriptions
that use the tunnel Hamiltonian formalism. This relatively old problem of how to
describe tunnel junctions in a quantum mechanical model has been pointed out
first by Prange [?, ?, ?]. We do not discuss this point here but only note that the
tunnel Hamiltonian formalism has turned out to be a successful tool for a variety
of problems in electronic transport in mesoscopic systems [?, ?, ?]. Including the
‘empty’ state |0〉, the completeness relation for the system Hilbert space is

1̂ =
∑

i

n̂i, n̂i ≡ |i〉〈i|. (1.4.4)

In the above description, the lead electron spin index is included in the quantum
number k.

1.4.2 Master Equation: single level (i = 0, 1)

In this case,

HV =
∑

kα

(Vkαc
†
kαŝ+H.c.), ŝ ≡ |0〉〈1|. (1.4.5)

Performing the commutators and using the free time evolution of the electron
reservoir operators, one finds

d

dt
ρ̃(t) = −

∑

kα=L/R

∫ t

0

dt′gkα(t− t′)
{

s̃(t)s̃†(t′)ρ̃(t′)− s̃(t′)†ρ̃(t′)s̃(t)
}

−
∑

kα

∫ t

0

dt′ḡkα(t′ − t)
{

s̃†(t)s̃(t′)ρ̃(t′)− s̃(t′)ρ̃(t′)s̃†(t)
}

−
∑

kα

∫ t

0

dt′gkα
(t′ − t)

{

ρ̃(t′)s̃(t′)s̃†(t)− s̃†(t)ρ̃(t′)s̃(t′)
}

−
∑

kα

∫ t

0

dt′ḡkα(t− t′)
{

ρ̃(t′)s̃†(t′)s̃(t)− s̃(t)ρ̃(t′)s̃†(t′)
}

gkα(τ) ≡ |Vkα|2fα(εk)e
iεkτ , ḡkα(τ) ≡ |Vkα|2[1− fα(εk)]e

iεkτ , (1.4.6)
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with the Fermi distributions fα(εki
) ≡ Trres(R0c

†
kαckα). The sums over k can be

written as integrals, introducing the tunneling density of states να(ε) in lead α,

∑

k

|Vkα|2fα(εk)e
iεk(t−t′) =

∫ ∞

−∞
dενα(ε)fα(ε)eiε(t−t′), να(ε) ≡

∑

k

|Vkα|2δ(ε− εk).

(1.4.7)

1.4.3 Infinite Bias Limit

In the infinite source-drain voltage limit µL → ∞ and µR → −∞ introduced by
Gurvitz and Prager [?, ?], and Stoof and Nazarov [?], the left Fermi function is
one and the right Fermi function is zero. In this case, an additional simplification
is obtained for constant tunneling densities of states,

να(ε) = να = Γα/2π, (1.4.8)

with constant tunnel rates

Γα ≡ 2π
∑

k

|Vkα|2δ(ε− εk), (1.4.9)

cf. Eq. (??). This leads to delta functions like
∑

k

|VkL|2fL(εk)e
iεk(t−t′) = ΓLδ(t− t′), (1.4.10)

and correspondingly for the other terms. As a result, one directly obtains the
Markov limit without any further assumptions in this limit, and the Master equa-
tion Eq.(1.4.6) in the interaction picture becomes

d

dt
ρ̃(t) = − ΓL

2

{

s̃(t)s̃†(t)ρ̃(t)− 2s̃(t)†ρ̃(t)s̃(t) + ρ̃(t)s̃(t)s̃†(t)
}

− ΓR

2

{

s̃†(t)s̃(t)ρ̃(t)− 2s̃(t)ρ̃(t)s̃†(t) + ρ̃(t)s̃†(t)s̃(t)
}

, (1.4.11)

where
∫ t

0

dt′δ(t− t′)f(t′) =
1

2
f(t) (1.4.12)

was used. Now back-transformation into Schrödinger picture,

d

dt
ρ(t) = − i[HS, ρ(t)]

− ΓL

2

{

ss†ρ(t)− 2s†ρ(t)s + ρ(t)ss†
}

− ΓR

2

{

s†sρ(t)− 2sρs† + ρ(t)s†s
}

. (1.4.13)
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EXERCISE: Determine the occupation probabilities for the single level system
in this Infinite Bias Limit,

〈0|ρ(t)|0〉, 〈1|ρ(t)|1〉. (1.4.14)

1.5 NEMS (Nano Electro-Mechanical Systems)

1.5.1 Introduction

To follow.

1.5.2 Model Hamiltonian

Similar to few-level quantum systems: electron number i and vibrational degrees
of freedom n. Assume system eigenstates of the form

|i, n〉 ≡ |i〉 ⊗ |n〉, (1.5.1)

the simplest case is i = 0, 1 and n = 0, 1, 2, 3, ...nmax. The system Hamiltonian

HS =
∑

i,n

εi,n|in〉〈in| (1.5.2)

is the result of the diagonalisation of the isolated NEMS (no contact to external
leads and no vibrational damping).

1.5.3 Master Equation: single electronic level (i = 0, 1)

As before, electrons jump off and onto the system according to

HV =
∑

kα

(Vkα=L/Rc
†
kαŝ+H.c.), ŝ ≡ |0〉〈1|. (1.5.3)

There is no dependence on the vibrational degree of freedom at this stage! This
comes in at the point where we formulate the Master equation. As before, we use
our general expression Eq. (1.4.6):

1. Take matrix elements of Eq. (1.4.6) by ‘sandwiching’ as

〈0, n|...|0, n′〉, 〈1, n|...|1, n′〉. (1.5.4)

EXERCISE: Check that there are no terms 〈0, n|...|1, n′〉, 〈1, n|...|0, n′〉. This
means that there are no coherences between occupied and un-occupied states.
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2. Explicitely insert the time-dependence of the s̃(t′) etc.

3. Transform back into the Schrödinger picture via

〈0, n|ρ(t)|0, n′〉 = ei(ε0n′−ε0nt)〈0, n|ρ̃(t)|0, n′〉 (1.5.5)

etc.

4. Check that in all exponents the time-dependence is always via t− t′

This derivation yields
[

d

dt
− i(ε0n′ − ε0n)

]

〈0, n|ρ(t)|0, n′〉 = −
∑

mm′α

∫ ∞

−∞
dενα(ε)

∫ t

0

dt′ ×

fα(ε)〈0, m′|ρ(t)|0, n′〉〈0, n|1, m〉〈1, m|0, m′〉ei(ε−ε1m+ε0m′ )(t−t′)

+ fα(ε)〈0, n|ρ(t)|0, m〉〈0, m|1, m′〉〈1, m′|0, n′〉e−i(ε−ε1m′+ε0m)(t−t′)

− f̄α(ε)〈1, m|ρ(t)|1, m′〉〈0, n|1, m〉〈1, m′|0, n′〉e−i(ε−ε1m+ε0n)(t−t′)

− f̄α(ε)〈1, m|ρ(t)|1, m′〉〈0, n|1, m〉〈1, m′|0, n′〉ei(ε−ε1m′+ε0n′ )(t−t′)

(1.5.6)

and a corresponding equation for the 〈1, n|ρ(t)|1, n′〉. The Franck-Condon Fac-
tors

〈0, n|1, m〉 (1.5.7)

are determined by the overlap of the vibrational wave functions before and after
tunneling of one electron.

1.5.4 Franck-Condon Factors

to follow. Example linear oscillator coupling and explicit calculation of Franck-
Condon Factors there.

1.5.5 Markov Approximation

The Master equation is a system of linear integro-differential equations of the type

d

dt
yi(t) =

∑

ki

∫ ∞

−∞
dεgik(ε)

∫ t

0

dt′ei(ε−εik)(t−t′)yk(t
′). (1.5.8)

This system could in principle be solved as an initial value problem by Laplace
transformation, leading to

zŷi(z)− yi(t = 0) =
∑

ki

∫ ∞

−∞
dε

gik(ε)

z − i(ε− εik)
ŷk(z). (1.5.9)
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The Markov approximation amount to replacing the kernel of this equation by its
z = 0 (long time) value as follows

∫ ∞

−∞
dε

gik(ε)

z − i(ε− εki)
→ lim

δ→0

∫ ∞

−∞
dε

gik(ε)

δ − i(ε− εik)

= i lim
δ→0

∫ ∞

−∞
dε

gik(ε)

iδ + (ε− εik)

= πgik(εki) + P

∫ ∞

−∞
dε

gik(ε)

ε− εik

(1.5.10)

Often, the principle value part is neglected (depending on the problme at hand) as
it leads to un-interesting energy-shifts. Transforming back into the time domain,
the Master equation becomes

d

dt
yi(t) = π

∑

ki

gik(εik)yk(t). (1.5.11)

Alternative ‘derivation’: to follow.

1.6 Master Equation III: Phase Space Solution Methods

We discuss these methods here only for the Master equation of the damped har-
monic oscillator in RWA,

d

dt
ρ(t) = −iΩ̄[a†a, ρ]− κ

{

a†aρ+ ρa†a− 2aρa†
}

− 2κnB(Ω)
{

a†aρ+ ρaa† − aρa† − a†ρa
}

. (1.6.1)

1.6.1 P -representation

The idea here is to convert the operator equation into a partial differential equation
(PDE) for the P -representation of the reduced density operator ρ.

1.6.1.1 Revision: P -representation

We recall that the P -representation of an operator θ̂ was defined as (cf. 4.137)

θ̂ =

∫

d2z

π
P (θ̂; z)|z〉〈z|. (1.6.2)

Remarks:
1. Other authors use a definition without the 1/π.
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2. Some books write P (z) (instead of P (θ̂ = ρ; z)) for the P -representation of
the density operator, and use the form

P (z) ≡ P (z, z∗) = Tr
[

ρδ(z∗ − a†)δ(z − a)
]

. (1.6.3)

(again multiply this by π to get our P ).
3. For coherent states ρ = |z0〉〈z0|, one has P (z) = πδ(z − z0).
4. We have the Metha-formula (4.149),

P (θ̂; z) = e|z|
2

∫

d2z′

π
〈−z′|θ̂|z′〉e|z′|2ezz′∗−z∗z′. (1.6.4)

5. The P -distribution can be highly singular. Example: number state.

1.6.1.2 Derivation of the PDE

In order to transform the master equation, we require the P -representation of
terms like aρa† etc. Let us start with a†ρ.
Method 1: We follow Walls/Milburn and introduce Bargmann states

||z〉 ≡ e|z|
2/2|z〉 ≡

∑

n

zn

(n!)1/2
|n〉, (1.6.5)

(‘coherent states without the normalisation factor in front’). Therefore,

a†||z〉 =
∂

∂z
||z〉, 〈z||a =

∂

∂z∗
〈z||. (1.6.6)

We use this to write

ρ =

∫

d2z

π
||z〉〈z||e−|z|2P (z) (1.6.7)

a†ρ =

∫

d2z

π
a†||z〉〈z||e−|z|2P (z) =

∫

d2z

π

[

∂

∂z
||z〉
]

〈z||e−|z|2P (z)

= −
∫

d2z

π
||z〉〈z|| ∂

∂z
e−zz∗P (z) =

∫

d2z

π
||z〉〈z||e−|z|2

(

z∗ − ∂

∂z

)

P (z),

using integration by parts, ∂
∂z
〈z|| = 0, and assuming the vanishing of P (z) at

infinity. Comparison yields

a†ρ↔
(

z∗ − ∂

∂z

)

P (z). (1.6.8)
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Method 2: Use the Metha formula for θ̂ = a†ρ,

P (a†ρ; z) = e|z|
2

∫

d2z′

π
〈−z′|a†ρ|z′〉e|z′|2ezz′∗−z∗z′

= ezz∗
∫

d2z′

π
(−z′∗)〈−z′|ρ|z′〉e|z′|2ezz′∗−z∗z′ =

=

[

− ∂

∂z
+ z∗

]

(ezz∗)

∫

d2z′

π
〈−z′|ρ|z′〉e|z′|2ezz′∗−z∗z′ . (1.6.9)

Here, we generate −z′∗ in the integral by differentiation with respect to the pa-
rameter z and subsequent compensation of the term aring from ezz∗, thus arriving
even faster at Eq.(1.6.8). Similarly,

P (ρa; z) = ezz∗
∫

d2z′

π
〈−z′|ρ|z′〉z′e|z′|2ezz′∗−z∗z′ =

=

[

− ∂

∂z∗
+ z

]

(ezz∗)

∫

d2z′

π
〈−z′|ρ|z′〉e|z′|2ezz′∗−z∗z′. (1.6.10)

For the terms a†aρ, the first method is easier:

a†aρ =

∫

d2z

π
a†a||z〉〈z||e−|z|2P (z) =

∫

d2z

π

[

∂

∂z
||z〉
]

〈z||e−|z|2zP (z)

= −
∫

d2z

π
||z〉〈z|| ∂

∂z
e−zz∗zP (z) =

∫

d2z

π
||z〉〈z||e−|z|2

(

z∗ − ∂

∂z

)

zP (z)

ρa†a =

∫

d2z

π
||z〉〈z||a†ae−|z|2P (z) =

∫

d2z

π
||z〉

[

∂

∂z∗
〈z||
]

e−|z|2z∗P (z)

= −
∫

d2z

π
||z〉〈z|| ∂

∂z∗
e−zz∗z∗P (z) =

∫

d2z

π
||z〉〈z||e−|z|2

(

z − ∂

∂z∗

)

z∗P (z)

aρa† =

∫

d2z

π
a||z〉〈z||a†e−|z|2P (z) =

∫

d2z

π
||z〉〈z||e−|z|2zz∗P (z)

a†ρa =

∫

d2z

π

[

∂

∂z
||z〉
] [

∂

∂z∗
〈z||
]

e−|z|2P (z) =

∫

d2z

π
||z〉〈z|| ∂

∂z∗
∂

∂z
e−|z|2P (z)

=

∫

d2z

π
||z〉〈z||e−|z|2

(

z − ∂

∂z∗

)(

z∗ − ∂

∂z

)

P (z).
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In particular, for the master equation we need

{

a†aρ+ ρa†a− 2aρa†
}

↔
{

(

z∗ − ∂

∂z

)

z +

(

z − ∂

∂z∗

)

z∗ − 2zz∗
}

P (z)

= −
{ ∂

∂z
z +

∂

∂z∗
z∗
}

P (z) = −
{

z
∂

∂z
+ z∗

∂

∂z∗
+ 2
}

P (z)

{

a†aρ+ ρ(a†a + 1)− aρa† − a†ρa
}

↔
{

(

z∗ − ∂

∂z

)

z +

(

z − ∂

∂z∗

)

z∗ + 1

− zz∗ −
(

z − ∂

∂z∗

)(

z∗ − ∂

∂z

)

}

P (z)

=
{

− ∂

∂z
z + z

∂

∂z
+ 1 +

∂

∂z∗
∂

∂z

}

P (z) =
∂

∂z∗
∂

∂z
P (z)

[

a†a, ρ
]

↔
[

− ∂

∂z
z +

∂

∂z∗
z∗
]

P (z) =

[

−z ∂
∂z

+ z∗
∂

∂z∗

]

P (z).

The whole master equation is therefore transformed into

∂

∂t
P (z, t) =

{

2κ+ i
[

Ω̄− iκ
]

z
∂

∂z
− i
[

Ω̄ + iκ
]

z∗
∂

∂z∗
+ 2κnB

∂2

∂z∗∂z

}

P (z, t)(1.6.11)

Here, we have explicitely indicated that the P -function depends both on z and on
the time t.
Remarks:

• The first order derivate terms are called drift terms, the second order derivate
terms diffusion term.

• This is not directly solvable by Fourier transformation: z,z∗-dependence of
coefficients.

• Written in real coordinates, this has the form of a Fokker-Planck equation

∂

∂t
P (x) =

(

−
∑

j

∂

∂xj
Aj(x) +

1

2

∑

ij

∂

∂xi

∂

∂xj
Dij(x)

)

P (x) (1.6.12)

1.6.1.3 Solution of the PDE I: zero temperature T = 0 nB = 0

In this case, we only have first order derivatives. There is a (more or less) complete
theory of first order PDEs: they are solved by the method of characteristics (cf.
Courant/Hilbert).

We write the PDE as
{

∂

∂t
− i
[

Ω̄− iκ
]

z
∂

∂z
+ i
[

Ω̄ + iκ
]

z∗
∂

∂z∗

}

P (z, z∗t) = 2κP (z, z∗t) (1.6.13)
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and consider the function P (z, z∗, t) on trajectories z = z(t) and z∗ = z∗(t) where
P (z, z∗, t) = P (z(t), z∗(t), t). We regard the l.h.s. of Eq.(1.6.13) as a total differ-
ential. Along the trajectories, the temporal change of P is

d

dt
P (z(t), z∗(t), t) = {ż(t)∂z + ż∗(t)∂z∗ + ∂t}P (z(t), z∗(t), t)

= 2κP (z(t), z∗(t), t) (1.6.14)

Comparison yields

ż(t) = −i
[

Ω̄− iκ
]

z(t) z(t) = z0e
−i[Ω̄−iκ]t

ż∗(t) = i
[

Ω̄ + iκ
]

z∗(t) z∗(t) = z∗0e
i[Ω̄+iκ]t. (1.6.15)

On the other hand, d
dt
P = 2κP yields

P (z(t), z∗(t), t) = e2κtP0(z0, z
∗
0). (1.6.16)

Here, P0 is the initial condition for P , with z0 = z(t = 0) and z∗0 = z∗(t = 0). This
looks very innocent but has a deep physical (and geometrical) meaning: we can
trace back our trajectories z(t),z∗(t) to their origin z0, z

∗
0 , writing

z0 = z(t)e+i[Ω̄−iκ]t, z∗0 = z∗(t)e−i[Ω̄+iκ]t. (1.6.17)

We thus have expressed the inital values z0, z
∗
0 in terms of the ‘final’ values

z(t),z∗(t). Insertion into Eq.(1.6.16) yields

P (z(t), z∗(t), t) = e2κtP0

(

z(t)e+i[Ω̄−iκ]t, z∗(t)e−i[Ω̄+iκ]t
)

. (1.6.18)

We now write again z and z∗ instead of z(t), z∗(t), and therefore have

P (z, z∗, t) = e2κtP0

(

ze+i[Ω̄−iκ]t, z∗e−i[Ω̄+iκ]t
)

. (1.6.19)

1.6.1.4 Solution of the PDE II: finite temperature T ≥ 0 nB ≥ 0

Since we know the solution for nB = 0, we perform a transformation of variables
and seek the solution for nB > 0 in the form

P (z, z∗t) = F (u, u∗, s), u = ze+i[Ω̄−iκ]t, u∗ = z∗e−i[Ω̄+iκ]t, s = t, (1.6.20)

which leads to

∂tP =
(

i
[

Ω̄− iκ
]

ze+i[Ω̄−iκ]t∂u +−i
[

Ω̄ + iκ
]

z∗e−i[Ω̄+iκ]t∂u∗ + ∂s

)

F (u, u∗, s)

=
(

i
[

Ω̄− iκ
]

z∂z − i
[

Ω̄ + iκ
]

z∗∂z∗
)

P (z, z∗t) + ∂sF (u, u∗, s)

=̌
(

i
[

Ω̄− iκ
]

z∂z − i
[

Ω̄ + iκ
]

z∗∂z∗ + 2κ+ 2κnB∂z∂z∗
)

P (z, z∗t), (1.6.21)
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where in the last line we compared with the original PDE. Therefore, one has

∂sF (u, u∗, s) = 2κF (u, u∗, s) + 2κnB∂z∂z∗P (z, z∗t)

= 2κF (u, u∗, s) + 2κnBe
2κs∂u∂u∗F (u, u∗, s), (1.6.22)

where we used ∂z∂z∗ = e2κs∂u∂u∗ , cf. Eq.(1.6.20). The big advantage now is that
we had got rid of the first order derivatives with the z,z∗-dependent coefficients.
Eq.(1.6.22) is now a standard diffusion equation with time (s = t)-dependent
coefficients, which can be solved by Fourier transformation:

Reminder: Complex Fourier Transformation, cf (4.141)

Fourier Trafo f̃(w) ≡
∫

d2zeizwf(z), f(z) =

∫

d2w

(2π)2
e−izwf̃(w)

scalar product zw ≡ 1

2
(zw∗ + z∗w) = (z1, z2)

(

w1

w2

)

(1.6.23)

Reminder: Gauß Integrals

∫ ∞

−∞
dxe−ax2+bx =

√

π

a
e

b2

4a , ℜa > 0 (1.6.24)

∫

d2w

(2π)2
e−izwe−

a
4
ww =

1

πa
e−

|z|2

a . (1.6.25)

We now Fourier-transform Eq.(1.6.22), ∂sF = (2κ+2κnBe
2κs∂u∂u∗)F , to obtain

∂sF̃ (w,w∗, s) =

(

2κ+ 2κnBe
2κs

(

−1

4
ww

))

F̃ (w,w∗, s) (1.6.26)

 F̃ (w,w∗, s) = exp

{

2κs− 1

4
nB

(

e2κs − 1
)

ww

}

F̃ (w,w∗, s = 0)

 F (u, u∗, s) =

∫

d2w

(2π)2
e−iuw exp

{

2κs− 1

4
nB

(

e2κs − 1
)

ww

}

F̃ (w,w∗, s = 0)

=

∫

d2u′
∫

d2w

(2π)2
e−i(u−u′)we{2κs− 1

4
nB(e2κs−1)ww}F (u′, u′∗, s = 0)

=
e2κs

πnB (e2κs − 1)

∫

d2u′ exp

{

− |u− u′|2
nB (e2κs − 1)

}

F (u′, u′∗, s = 0)

Now we remember u = ze+i[Ω̄−iκ]t, s = t, and write u′ = z′ in F (u′, u′∗, s = 0) =
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P (z′, z′∗, t = 0), to find

P (z, z∗, t) =

∫

d2z′
1

πnB (1− e2κt)
exp

{

−|ze
+i[Ω̄−iκ]t − z′|2
nB (e2κt − 1)

}

P (z′, z′∗, t = 0)

=

∫

d2z′
1

πnB (1− e−2κt)
exp

{

−|z − z
′e−i[Ω̄−iκ]t|2

nB (1− e−2κt)

}

P (z′, z′∗, t = 0)

≡
∫

d2z′G(z, z′; t)P (z′, z′∗, t = 0),

G(z, z′; t) ≡ 1

πnB (1− e−2κt)
exp

{

−|z − z
′e−i[Ω̄−iκ]t|2

nB (1− e−2κt)

}

. (1.6.27)

This is the solution of the initial value problem of the PDE: we have explicitely
constructed the propagator G(z, z′; t) and expressed the solution of the PDE at
times t > 0 in terms of the initial P -distribution P (z′, z′∗, t = 0).

1.6.2 W -representation

An alternative phase-space method is to convert the operator master equation
into a PDE for the Wigner function W (A; z) of an operator A. We recall Formula
(4.177b) for the Wigner function of an operator product AB,

W (AB; z) = W (A; z) exp

[

1

2

(←−
∂ z

−→
∂ z∗ −

←−
∂ z∗
−→
∂ z

)

]

W (B; z) (1.6.28)

We obtain

W (a) = z, W (a†) = z∗

W (a†a) = z∗
(

1 +
1

2
(∂z∂z∗ − ∂z∗∂z)

)

z = z∗z − 1

2

W (a†aρ) =

(

z∗z − 1

2

)(

1 +
1

2
(∂z∂z∗ − ∂z∗∂z) +

1

8
(∂z∂z∗ − ∂z∗∂z) (∂z∂z∗ − ∂z∗∂z)

)

W (ρ)

=

(

z∗z − 1

2

)

W (ρ) +
1

2
z∗∂z∗W (ρ)− 1

2
z∂zW (ρ)− 2

8
∂z∂z∗W (ρ)

W (ρa†a) = W (ρ)

(

1 +
1

2
(∂z∂z∗ − ∂z∗∂z) +

1

8
(∂z∂z∗ − ∂z∗∂z) (∂z∂z∗ − ∂z∗∂z)

)(

z∗z − 1

2

)

=

(

z∗z − 1

2

)

W (ρ)− 1

2
z∗∂z∗W (ρ) +

1

2
z∂zW (ρ)− 2

8
∂z∂z∗W (ρ) (1.6.29)
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Similarly,

W (aρ) = z

(

1 +
1

2
(∂z∂z∗ − ∂z∗∂z)

)

W (ρ) = zW (ρ) +
1

2
∂z∗W (ρ)

W (aρa†) =

(

zW (ρ) +
1

2
∂z∗W (ρ)

)(

1 +
1

2
(∂z∂z∗ − ∂z∗∂z)

)

z∗

=

(

zz∗W (ρ) +
1

2
z∗∂z∗W (ρ)

)

+
1

2
∂z(zW (ρ)) +

1

4
∂z∂z∗W (ρ)

W (a†ρ) = z∗
(

1 +
1

2
(∂z∂z∗ − ∂z∗∂z)

)

W (ρ) = z∗W (ρ)− 1

2
∂zW (ρ)

W (a†ρa) =

(

z∗W (ρ)− 1

2
∂zW (ρ)

)(

1 +
1

2
(∂z∂z∗ − ∂z∗∂z)

)

z

=

(

zz∗W (ρ)− 1

2
z∂zW (ρ)

)

− 1

2
∂z∗(z

∗W (ρ)) +
1

4
∂z∂z∗W (ρ)

(1.6.30)

Thus,
{

a†aρ+ ρa†a− 2aρa†
}

↔ −
{

2 + z∂z + z∗∂z∗ + ∂z∂z∗

}

W (ρ)
{

a†aρ+ ρ(a†a + 1)− aρa† − a†ρa
}

↔ −∂z∂z∗W (ρ)
[

a†a, ρ
]

↔ (z∗∂z∗ − z∂z)W (ρ). (1.6.31)

Therefore, the master equation Eq.(1.6.1) is converted into

∂

∂t
W (z, t) = −iΩ̄ (z∗∂z∗ − z∂z)W (z, t) + κ

{

2 + z∂z + z∗∂z∗ + ∂z∂z∗

}

W (z, t)

+ 2κnB(Ω)∂z∂z∗W (z, t)

= {2κ + i
[

Ω̄− iκ
]

z
∂

∂z
− i
[

Ω̄ + iκ
]

z∗
∂

∂z∗
+ κ[1 + 2nB]

∂2

∂z∗∂z

}

W (z, t).

(1.6.32)

We compare this with the PDE for the P -function, Eq.(1.6.11):

∂

∂t
P (z, t) =

{

2κ+ i
[

Ω̄− iκ
]

z
∂

∂z
− i
[

Ω̄ + iκ
]

z∗
∂

∂z∗
+ 2κnB

∂2

∂z∗∂z

}

P (z, t)

The difference is just in the diffusion term, i.e., 1+2nB in the Wigner representation
instead of 2nB in the P representation. In the Wigner representation, even at zero
temperature T = 0 (nB = 0) one has a diffusion term in the PDE. Technically, the
solution proceeds as before: one first solves the first order part via characteristics
and then the diffusive part via Fourier transformation.
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• A similar derivation can be done for theQ-representation, cf. Walls/Milburn.
The Q-representation is more convenient for systems where the initial oscil-
lator state is squeezed, or the decay is into a bath not in thermal equilibrium
but in a squeezed state.

1.6.3 Remarks

Phase space methods are powerful tools for solving Master equations. The result-
ing PDEs, however, are often non-trivial and cannot be solved exactly. This is
particularly true if more than one degree of freedom is involved and one has to
solve systems of PDEs.

Systems of partial differential equations are really complicated beasts: in con-
trast to systems of ordinary differential equations, they are not equivalent to a
single PDE of higher order, cf. the discussion in Courant/Hilbert ‘Methoden der
Mathematischen Physik’.

Related problems occur in the theory of the Laser, where one has to deal with
PDEs containing derivatives up to infinite order. This is discussed in the book
by Scully/Lamb. Another, very recent challenge are systems of Master equations
with non-linear couplings between bosonic and electronic degrees of freedom in
nano-electromechanical systems.

1.7 The Two-Level System I

1.7.1 Generic Model: Two-Level System Interacting with Bosonic
Modes

1.7.1.1 System

Assume a system with Hilbert space H = C2 with basis vectors (1, 0)† and (0, 1)†.
In general, a ‘System’-Hamiltonian will have the form of the Hamiltonian of a
Pseudo Spin 1

2
in a (time-dependent) classical pseudo magnetic field B(t) (c-

number),

HS(t) ≡ B(t)~σ, ~σ =





σx

σy

σz



 . (1.7.1)

• Note that for a time-dependent B(t), the free Schrödinger equation with
HS(t) only is in general not analytically solvable. For an isolated two-level
system (HS(t) only), this is not a problem because one can easily solve a
two-by two differential equation on a computer. However, problems start
when it comes to system-bath Hamiltonians. Many of the ‘simpler’ system
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bath theories implicitely assume that the time-evolution under Hs is trivial
(which it is for constant B(t) = B).

• Some special cases are analytically solvable: Landau-Zener-Rosen tunneling
(Landau 1932).

• For a periodic time-dependence of B(t): Floquet theory (Shirley 1965).

• The wave function can aquire a geometrical phase (Berry phase, Berry 1984).

1.7.1.2 System-Bath Interaction

Assume a ‘bath’ of bosonic modes Q (the index Q contains all quantum numbers
of that mode) with creation operator a†Q. The simplest interaction between the

two-level system and the bath is linear in a†Q and aQ and can be written with
coupling constant vectors gQ(t),

HSB(t) ≡ Â(t)~σ ≡
∑

Q

(

gQ(t)a†Q + g†
Q(t)aQ

)

~σ. (1.7.2)

Note that Â(t) can be regarded as a fluctuating (quantum operator) pseudo mag-
netic field.

1.7.1.3 Bath

The simplest Hamiltonian for a bosonic bath is

HB =
∑

Q

ωQa
†
QaQ. (1.7.3)

• Example: free photons, ωQ = c|Q|.

• Example: phonons in crystals. However, more realistic Hamiltonians would
contain phonon-phonon interaction. In particular, in order to explain the
thermal expansion of materials one needs boson-boson interaction ( ‘Grüneisen
parameter’), cf. N. W. Ashcroft and N. D. Mermin, ‘Solid State Physics’,
Saunders College (Philadelphia, 1976).

• Photonic or phononic crystals or cavities have more complicated bandstruc-
tures and nontrivial dispersion relations ω = ωQ. Example: Phonon cavities
in 2-dimensional thin elastic plate, Rayleigh-Lamb waves; cf. L. D. Landau
and E. M. Lifshitz, ‘Theory of Elasticity’, Vol. 7 of Landau and Lifshitz,
Course of Theoretical Physics (Pergamon Press, 1970); B. Auld, ‘Acousic
Fields and Waves’, (Wiley, New York, 1973).
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1.7.1.4 Further Remarks

1. Coupling to non-bosonic baths: this is a relatively unexplored field. The most
prominent examples are spin-baths, where the system is coupled to a collection of
spins or other two-level systems. Connection to theory of glasses.
2. Dissipative dynamics of qubit with geometrical phase: this is the topic of some
current activities, cf. (Y. Makhlin et al. etc.)

1.7.2 Atom + Electrical Field

1.7.2.1 Model Atom

Assume a single electron within an atom, described as a two-level system with
states |g〉 (ground state), |e〉 (excited state), and energy difference ~ω0 between
ground and excited state. Then,

Hatom =
~ω0

2
σz , σz ≡

(

1 0
0 −1

)

≡ |e〉〈e| − |g〉〈g|. (1.7.4)

Remember

σx ≡
(

0 1
1 0

)

, σy ≡
(

0 −i
i 0

)

, σz ≡
(

1 0
0 −1

)

σ− ≡
(

0 0
1 0

)

, σ+ ≡
(

0 1
0 0

)

σ± =
1

2
(σx ± iσy), σx = σ+ + σ−, σy = −i(σ+ − σ−)

[σ+, σ−] = σz , [σz, σ±] = ±2σ±. (1.7.5)

1.7.2.2 Dipole Approximation

Consider an electrical field in the form of a linearly polarised, monochromatic plain
wave with wave vector k,

E(r, t) = E cos(kr− ωt). (1.7.6)

Describe the interaction of the atom with the electrical field in dipole approxima-
tion: the energy of a dipole d in a field E(r, t) is given by −dE(r, t). Treating the
field classically, we obtain the time-dependent dipole Hamiltonian

HL(t) = −〈g|dE(r, t)|e〉|g〉〈e| − 〈e|dE(r, t)|g〉|e〉〈g|
≈ − (~Ωσ− + ~Ω∗σ+) cos(ωt), (1.7.7)
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where we used kr≪ 1 in the overlap integral (wave length ≫ dimension of atom,
‘dipole approximation’), and introduced

σ− ≡ |g〉〈e|, σ+ ≡ |e〉〈g|. (1.7.8)

and the Rabi frequency

Ω ≡ 1

~
〈g|dE|e〉, (1.7.9)

which in general is a complex number. The total system Hamiltonian therefore is

HS(t) = Hatom +HL(t) =
~ω0

2
σz − (~Ωσ− + ~Ω∗σ+) cos(ωt). (1.7.10)

One usually assumes real Ω = Ω∗, in this case we can formally write HS(t) = B(t)~σ
with

B(t) =





−~Ω cos(ωt)
0

1
2
~ω0



 . (1.7.11)

1.7.2.3 Rotating Wave Approximation (RWA)

We introduce the System Hamiltonian HRWA
S (t) in rotating wave approximation

(RWA) by writing cos(ωt) = 1
2
(eiωt + e−iωt) and neglecting the counter-rotating

terms σ−e
−iωt and σ+e

iωt

HRWA
S (t) ≡ ~ω0

2
σz −

(

~Ω

2
σ−e

iωt +
~Ω

2
σ+e

−iωt

)

. (1.7.12)

In this case, HRWA
S (t) = BRWA(t)~σ with

BRWA(t) =





−1
2
~Ω cos(ωt)

−1
2
~Ω sin(ωt)

1
2
~ω0



 (1.7.13)

1.7.3 Spontaneous Emission (Atom without Driving Field)

1.7.3.1 Model for HSB: Two-Level System Coupled to Photon Bath in RWA

The microscopic interaction between a two-level atom and a photon bath is via a
coupling

(aQ + a†Q)(σ+ + σ−) = (aQ + a†Q)σx, (1.7.14)
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cf. Walls/Milburn, Carmichael, Baym or other quantum optics (quantum mechan-
ics) books. Comparing with our generic form Eq.(1.7.2),

HSB(t) ≡ Â(t)~σ ≡
∑

Q

(

gQ(t)a†Q + g†
Q(t)aQ

)

~σ,

this case would correspond to a (time-independent) coupling vector gQ(t) = g†
Q(t) =

(gQ, 0, 0). Within the RWA, this interaction is further simplified by neglecting the
‘counter-rotating’ terms and by writing

gQ =
1

2
γQ





1
−i
0



 , γQreal. (1.7.15)

Assuming a free photon bath, the total Hamiltonian then is

Htotal ≡ HS +HSB +HB

= HS +
∑

Q

γQ(aQσ+ + a†Qσ−) +
∑

Q

ωQa
†
QaQ. (1.7.16)

1.7.3.2 Mapping onto harmonic oscillator master equation

We now use the fact that HSB has the same form as for the the damped single
bosonic mode if we identify σ+ → a†, σ− → a. We can therefore ‘copy’ the
derivation of the master equation of the damped harmonic oscillator, as long as
no commutation relations are used! This is the case up to Eq.(1.3.13),

d

dt
ρ(t) = −i[Ωa†a, ρ(t)]

− 1

2

{

[

(γ+ + 2i∆+)a†a+ (γ + 2i∆)aa†
]

ρ(t)

+ ρ(t)
[

(γ − 2i∆)aa† + (γ+ − 2i∆+)a†a
]

− 2γ+aρ(t)a
† − 2γa†ρ(t)a

}

, harmonic oscillator.

The interaction picture for the two-level atom is with respect to the Hamiltonian

H0 ≡
ω0

2
σz +HB  σ̃±(t) = σ±e

±iω0t, σ̃z(t) = σz. (1.7.17)

In the interaction picture, the Master equation for the two-level atom therefore
reads

d

dt
ρ̃(t) = −1

2

{

[(γ+ + 2i∆+)σ+σ− + (γ + 2i∆)σ−σ+] ρ̃(t)

+ ρ̃(t) [(γ − 2i∆)σ−σ+ + (γ+ − 2i∆+)σ+σ−]

− 2γ+σ−ρ̃(t)σ+ − 2γσ+ρ̃(t)σ−

}

. (1.7.18)
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We now use

σ+σ− =
1

2
(1 + σz) , σ−σ+ =

1

2
(1− σz) , (1.7.19)

re-arrange and transform back into the Schrödinger picture,

d

dt
ρ(t) = −i1

2
(ω0 + ∆+ −∆) [σz , ρ]− 1

2
γ+

{

σ+σ−ρ+ ρσ+σ− − 2σ−ρσ+

}

− 1
2
γ
{

σ−σ+ρ+ ρσ−σ+ − 2σ+ρσ−

}

.
(1.7.20)

We recall (note that the harmonic oscillator frequency Ω has to be replaced by ω0)

γ+ ≡ 2πρ(ω0)[1 + nB(ω0)], γ ≡ 2πρ(ω0)nB(ω0)

∆+ −∆ ≡ δω0 ≡ P

∫ ∞

0

dω
ρ(ω)[1 + 2nB(ω)]

ω0 − ω
. (1.7.21)

Remarks:

• In contrast to the harmonic oscillator, the energy shift ~δω0 is now temper-
ature dependent.

• The T = 0 contribution is the Lamb-shift within RWA.

1.7.4 Expectation Values, Einstein Equations, Bloch Equations

We can write the Master equation with the help of

σ− ≡ |g〉〈e|, σ+ ≡ |e〉〈g|, σ−σ+ = |g〉〈g|, σ+σ− = |e〉〈e|

 
d

dt
ρ(t) = −i1

2
ω̄0[|e〉〈e| − |g〉〈g|, ρ]

− 1

2
γ+

{

|e〉〈e|ρ+ ρ|e〉〈e| − 2|g〉〈e|ρ|e〉〈g|
}

− 1

2
γ
{

|g〉〈g|ρ+ ρ|g〉〈g| − 2|e〉〈g|ρ|g〉〈e|
}

. (1.7.22)

Taking matrix elements, we obtain

d

dt
〈e|ρ|e〉 = −γ+〈e|ρ|e〉+ γ〈g|ρ|g〉 (1.7.23)

d

dt
〈g|ρ|g〉 = +γ+〈e|ρ|e〉 − γ〈g|ρ|g〉 (1.7.24)

d

dt
〈e|ρ|g〉 =

(

−iω̄0 −
γ+ + γ

2

)

〈e|ρ|g〉 (1.7.25)

d

dt
〈g|ρ|e〉 =

(

+iω̄0 −
γ+ + γ

2

)

〈g|ρ|e〉. (1.7.26)
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The first two equations for the diagonal elements (which are linearly dependent
because 〈e|ρ|e〉 + 〈g|ρ|g〉 = 1) are called Einstein equations. We can re-write the
four equations, subtracting the second from the first, as three equations,

d

dt
〈σz〉 = −(γ+ + γ)〈σz〉+ (γ − γ+)

d
dt
〈σ+〉 =

(

+iω̄0 − γ++γ
2

)

〈σ+〉
d
dt
〈σ−〉 =

(

−iω̄0 − γ++γ
2

)

〈σ−〉.
(1.7.27)

These equations are called Bloch equations. Introducing the relaxation time T1

and the decoherence time T2,

T1 =
1

2
T2 ≡ (γ+ + γ)−1, (1.7.28)

we can write

d

dt
〈σz〉 = − 1

T1

(〈σz〉 − 〈σz〉∞) , 〈σz〉∞ ≡
γ − γ+

γ + γ+

d

dt
〈σ+〉 =

(

+iω̄0 −
1

T2

)

〈σ+〉

d

dt
〈σ−〉 =

(

−iω̄0 −
1

T2

)

〈σ−〉. (1.7.29)



2. NUMERICAL IMPLEMENTATION OF
MASTER EQUATIONS

2.1 Master Equations as Matrix Equations

Master equations for the system density operator ρ in Born-Markov approximation
have the form

ρ̇ = Lρ, (2.1.1)

where L sometimes is called a superoperator. For practical calculations, one has
to choose a complete basis {|n〉}, n = 1, ..., N of system states. Here and in
the following, we always assume finite dimensional Hilbert spaces. For infinite
dimensional Hilbert spaces, a suitable truncation to a finite number of basis states
has to be carried out.

The matrix elements of ρ are then written as a column vector r with components
〈1|ρ|1〉, 〈1|ρ|2〉, ..., 〈2|ρ|2〉,..., 〈N |ρ|N〉. The Master equation then becomes a linear
matrix equation,

ṙ = Mr. (2.1.2)

The main task in practical calculations in the construction of M , i.e. finding
and implementing the correct matrix elements Mnn′ from a Master equation (the
Master equations is usually given in analytical form, involving system projection
operators and density matrix elements).

More formally, one can write

〈n|ρ̇|n′〉 ≡ Lnn′;mm′〈m|ρ|m′〉, (2.1.3)

which is called Bloch-Redfield equation with the Bloch-Redfield tensor Lnn′;mm′ .
Therefore, the above standard matrix form is nothing but a mapping from a higher-
rang tensor to a lower-rang tensor.

2.2 Stationary versus Time-Dependent

The simplest solution is the stationary solution for t→∞ when

0 = Lρ 0 = Mr. (2.2.1)
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Formally, the stationary solution ρ∞ thus is the eigenvector of M with eigenvalue
zero.

Often it is easier to calculate ρ∞ by inversion. To this end and since M must
be singular, one invokes the one additional normalisation condition

N
∑

n=1

〈n|ρ|n〉 = 1. (2.2.2)

In matrix language, this yields one additional equation to 0 = Mr. For example,

eN = M ′r, (2.2.3)

where eN = (0, 0, ..., 1)T and M ′ is M where the last (the Nth) row, which must
be linearly dependent on the first N − 1 rows, has been replaced by the correct
sequence of ‘ones’ such as (1, 0, 0, 0, ....1, ..., 1), corresponding to the diagonal ele-
ments of ρ.

Using M ′, standard matrix inversion can then be used provided the dimension
of the matrix is not too large.

Example: system with 4 electronic and 15 vibrational states, thus N = 4×15 =
60. The dimension of the matrix M scales as N2 ∼ 3600. If this goes up to say
10000 or more, one already has to start thinking about computer memory, better
algorithms etc.

2.3 Some Linear Algebra Programming

2.3.1 Fortran

The ‘emacs’ editor to write Fortran source code. Starting the GNU project Fortran
77 compiler on the Fortran source code ‘diagonalisation.for’, linking the ‘lapack’
package, creating binary ‘diag.out’:

g77 -o diag.out diagonalisation.for -llapack

Fortran auf unseren Linux-Rechnern:

gfortran -o diag.out diagonalisation.for -llapack

Dann diag.out aufrufen mit

./diag.out
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2.3.1.1 Compilers

The g77 compiler from GNU GCC project http://gcc.gnu.org/ comes free with
Linux but is no longer actively supported. ‘Today, truly free Fortran 90 or Fortran
95 compilers do not exist. We are trying to make one available to the Fortran
community’ (Nov. 2005).

2.3.1.2 Precision

Single and double precision.

2.4 Packages, Books

2.4.1 GENERAL

How to get freely available software for scientific computing? One way is Netlib:

2.1) What is Netlib?

The Netlib repository contains freely available software, documents,

and databases of interest to the numerical, scientific computing,

and other communities. The repository is maintained by

AT&T Bell Laboratories, the University of Tennessee

and Oak Ridge National Laboratory, and by colleagues world-wide.

The collection is replicated at several sites around the world,

automatically synchronized, to provide reliable and network efficient

service to the global community.

2.2) How do I retrieve software or documents from Netlib?

Mechanisms include the World Wide Web (WWW), email, ftp, gopher, xnetlib:

* World Wide Web (WWW)

http://www.netlib.org/

2.4.2 LAPACK

From the manual entry (‘man lapack’):

LAPACK(l) LAPACK FORTRAN LIBRARY ROUTINES LAPACK(l)

WHAT IS LAPACK?
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LAPACK is a transportable library of Fortran 77 subroutines for solving

the most common problems in numerical linear algebra: systems of linear

equations, linear least squares problems, eigenvalue problems, and singu-

lar value problems. It has been designed to be efficient on a wide range

of modern high-performance computers.

LAPACK is intended to be the successor to LINPACK and EISPACK. It

extends the functionality of these packages by including equilibration,

iterative refinement, error bounds, and driver routines for linear sys-

Further info from http://www.netlib.org/lapack/index.html and
http://www.netlib.org/lapack/lug/

2.4.2.1 LAPACK routines: Example SUBROUTINE DSYEV

They all have detailed explanations at the beginning of the code which always
have a similar structure. This is a routine

file dsyev.f dsyev.f plus dependencies

prec double

for Computes all eigenvalues, and optionally, eigenvectors of a real

, symmetric matrix.

gams d4a1

for the diagonalisation of a real symmetric matrix.

SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )

*

* -- LAPACK driver routine (version 3.0) --

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* June 30, 1999

*

* .. Scalar Arguments ..

CHARACTER JOBZ, UPLO

INTEGER INFO, LDA, LWORK, N

* ..

* .. Array Arguments ..

DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )

* ..

*

* Purpose
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* =======

*

* DSYEV computes all eigenvalues and, optionally, eigenvectors of a

* real symmetric matrix A.

*

* Arguments

* =========

*

* JOBZ (input) CHARACTER*1

* = ’N’: Compute eigenvalues only;

* = ’V’: Compute eigenvalues and eigenvectors.

*

* UPLO (input) CHARACTER*1

* = ’U’: Upper triangle of A is stored;

* = ’L’: Lower triangle of A is stored.

*

* N (input) INTEGER

* The order of the matrix A. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)

* On entry, the symmetric matrix A. If UPLO = ’U’, the

* leading N-by-N upper triangular part of A contains the

* upper triangular part of the matrix A. If UPLO = ’L’,

* the leading N-by-N lower triangular part of A contains

* the lower triangular part of the matrix A.

* On exit, if JOBZ = ’V’, then if INFO = 0, A contains the

* orthonormal eigenvectors of the matrix A.

* If JOBZ = ’N’, then on exit the lower triangle (if UPLO=’L’)

* or the upper triangle (if UPLO=’U’) of A, including the

* diagonal, is destroyed.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* W (output) DOUBLE PRECISION array, dimension (N)

* If INFO = 0, the eigenvalues in ascending order.

*

* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)

* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*



2. Numerical Implementation of Master Equations 43

* LWORK (input) INTEGER

* The length of the array WORK. LWORK >= max(1,3*N-1).

* For optimal efficiency, LWORK >= (NB+2)*N,

* where NB is the blocksize for DSYTRD returned by ILAENV.

*

* If LWORK = -1, then a workspace query is assumed; the routine

* only calculates the optimal size of the WORK array, returns

* this value as the first entry of the WORK array, and no error

* message related to LWORK is issued by XERBLA.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

* > 0: if INFO = i, the algorithm failed to converge; i

* off-diagonal elements of an intermediate tridiagonal

* form did not converge to zero.

*

* =====================================================================



3. EXCURSION: REAL MOLECULES AND
FRANCK-CONDON FACTORS

3.1 Introduction

(This is from my lectures notes ‘Quantum Mechanics of Atoms and Molecules’).
Molecules are system consisting of electrons and nuclei. This definition cov-

ers the full range from rather simple molecules like H2 up to extremely complex
situations with billions of nuclei, or in principle even solids or fluids although one
usually thinks of something like a microscopic object. The question, of course,
is what microscopic really means. In principle, one could have molecules with
macroscopic large numbers (like 1023) of electrons and nuclei. Would these behave
as quantum or as classical objects?

Even for small molecules, there are in fact some fundamental, conceptual issues
in the field of molecular structure, cf. for example the article by B. T. Sutcliffe
in ch. 35 of Vol. 1 of the ‘Handbook of Molecular Physics and Quantum Chem-
istry’, Wiley (2003). These are related to the question of whether or not molecular
structure and properties of molecules can be strictly derived from a microscopic
Schrödinger equation of an isolated molecule, including all the Coulomb interac-
tion among the constituents. For example, the total Hamiltonian commutes with
the parity operator which means that itsd eigenstates are parity eigenstates and
therefore cannot must have zero expectation value of the static dipole moment.
This would mean that there exist no molecules with static dipole moments, which
apparently is in contradiction to what we learn from chemistry. Another such
‘paradoxon’ seems to be isomers of polyatomic molecules, and the concept of the
chemical bond (‘deconstructing the bond’) is not an easy one, either. These seem
to be open questions.

3.1.1 Model Hamiltonian

We start from a Hamiltonian describing a system composed of two sub-systems,
electrons (e) and nuclei (n)

H = He +Hn +Hen, (3.1.1)
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where Hen is the interaction between the two systems. Note that the splitting of
the Hamiltonian H is not unique: for example, Hn could just be the kinetic energy
of the nuclei with their mutual interaction potential included into Hen (as in the
BO approximation).

The set-upH = He+Hn+Hen is quite general and typical for so-called ‘system-
bath’ theories where one would say the electrons are the ‘system’ and the nuclei are
the ‘bath’ (or vice versa!). In the theory of molecules, however, things are a little
bit more complicated as there is a back-action of from the electrons on the nuclei.
This back-action is due to the electronic charge density acting as a potential for
the nuclei.

There is no a priori reason why the nuclei and the electronic system should
not be treated on equal footing. However, the theory has a small parameter

κ =
(m

M

)
1

4

(3.1.2)

given by the ratio of electron mass m and a typical nuclear mass M ≫ m, and the
exponent 1/4 is introduced for convenience in the perturbation theory used by Born
and Oppenheimer in their original paper. The smallness of this parameter makes
it possible to use an approximation which is called the Born-Oppenheimer ap-
proximation.

We assume there is a position representation, where q ≡ {x1, ...,xN} represents
the positons of all electrons, X ≡ {X1, ...,XN} the positions of all nuclei, and
correspondingly for the momenta p and P ,

H = H(q, p;X,P ) = He(q, p) +Hn(X,P ) +Hen(q,X). (3.1.3)

Spin is not considered here. Also note that the interaction only depends on (q,X)
and not on the momenta.

3.2 The Born-Oppenheimer Approximation

This is the central aproximation used in many calculations.

3.2.1 Derivation

We now try to attack the Schrödinger equation HΨ = EΨ for the total system
(electron plus nuclei).
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3.2.1.1 Unsuccessful Attempt

A first guess to solve the stationary Schrödinger equation HΨ = EΨ for the total
system would be a separation ansatz

H(q, p;X,P )Ψ(q,X) = EΨ(q,X)

Ψ(q,X) = ψe(q)φn(X) unsuccessful, (3.2.1)

which does not work because the interaction Hen(q,X) depends on both q and X.

3.2.1.2 More Successful Attempt

As Hen(q,X) depends on the positions of the nuclei X, let us try an ansatz

Ψ(q,X) = ψe(q,X)φn(X) successful (3.2.2)

where now the electronic part depends on the nuclear coordinates X as well. This
looks unsymmetric: why shouldn’t one have Ψ(q,X) = ψe(q,X)φn(q,X)? First,
there is an asymmetry in the problem in the form of M ≫ m, and Ψ(q,X) =
ψe(q,X)φn(q,X) is no more better than Ψ(q,X) in the first place.

The idea with writing Ψ(q,X) = ψe(q,X)φn(X) is that the electronic part
ψe(q,X) already solves part of the problem, i.e.

[He(q, p) +Hen(q,X)]ψe(q,X) = E(X)ψe(q,X), (3.2.3)

an equation in which X, of course, appears as an external classical parameter that
commutes with all other variables. Consequently, the eigenvalue E(X) has to
depend on X. We thus obtain

Hψeφn ≡ [He +Hn +Hen]ψeφn

= [Hn + E(X)]ψeφn (?) = Eψeφn (3.2.4)

where the last questionmark indicated what we would like to have! Since Hn and
E(X) depend on the nuclear coordinates only, one would like to use an equation
like

[Hn + E(X)]φn(X) = Eφn(X), (3.2.5)

because then we would have achieved our goal. However, the operator Hn contains
the nuclear momenta P which operate on the X in ψe(q,X), i.e.

Hψeφn = ψe [Hn + E(X)]φn + [Hnψeφn − ψeHnφn]

= Eψeφn + [Hnψeφn − ψeHnφn]. (3.2.6)
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This shows that we are almost there if it wasn’t for the underlined term. One now
tries to find arguments why this term can be neglected. If it can be neglected,
then we have achieved the full solution of the Schrödinger equation by the two
separate equations

[He(q, p) +Hen(q,X)]ψe(q,X) = E(X)ψe(q,X) electronic part

[Hn + E(X)]φn(X) = Eφn(X) nuclear part. (3.2.7)

These two equations Eq. (3.2.7) are the central equations of the Born-Oppenheimer
approximation. Even without solving them, some quite interesting observations
can already be made:

• The electronic part is calculated as if the nuclei were at fixed positions X
(‘clamped nuclei’).

• The eigenvalue of the energy of the electronic part serves as a potential energy
for the nuclei in the nuclear part of the equations.

3.2.2 Discussion of the Born-Oppenheimer Approximation

We now have to justify the neglect of the underlined term in

Hψeφn = Eψeφn + [Hnψeφn − ψeHnφn]. (3.2.8)

Up to here, everything was still fairly general. Now we make out choice for Hn as
just the kinetic energy of the nuclei,

Hn =
N
∑

i=1

P 2
i

2Mi
. (3.2.9)

We simplify the following discussion by writing

Hn =
P 2

2M
= − ~

2

2M
∇2

X , (3.2.10)

which refers to a) a single relative motion of two nuclei of effective mass M , or

alternatively b) represents an ‘abstract notation’ for Hn =
∑N

i=1
P 2

i

2Mi
(to which the

following transformations can easily be generalised).
We write

Hnψeφn − ψeHnφn = − ~
2

2M

[

∇2
Xψe(q,X)φn(X)− ψe(q,X)∇2

Xφn(X)
]

= − ~
2

2M

[

∇X {φn∇Xψe + φe∇Xψn} − ψe∇2
Xφn

]

= − ~
2

2M

[

2∇Xφn∇Xψe + φn∇2
Xψe

]

. (3.2.11)
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This term is therefore determined by the derivative of the electronic part with
respect to the nuclear positions X, and it has the factor 1/M in front. The
‘handwaving’ argument now is to say that the derivatives ∇Xψe and ∇2

Xψe are
small.

3.2.3 Adiabaticity and Geometric Phases

The electronic part equation

[He(q, p) +Hen(q,X)]ψe(q,X) = E(X)ψe(q,X) (3.2.12)

usually should give not only one but a whole set of eigenstates,

[He +Hen] |α(X)〉 = Eα(X)|α(X)〉. (3.2.13)

Assume that for a fixed X we have orthogonal basis of the electronic Hilbert space
with states |α(X)〉, no degeneracies and a discrete spectrum Eα(X),

〈α(X)|β(X)〉 = δαβ . (3.2.14)

Adiabaticity means that when X is changed slowly from X → X ′, the correspond-
ing state slowly changes from |α(X)〉 → |α(X ′)〉 and does not jump to another
α′ 6= α like |α(X)〉 → |α′(X ′)〉. In that case, we can use the |α(X)〉 as a basis for
all X and write

Ψ(q,X) =
∑

α

φα(X)ψα(q,X). (3.2.15)

Now

H
∑

α

|φα〉n ⊗ |ψα〉e =
∑

α

[Hn + Eα(X)] |φα〉n ⊗ |ψα〉e, (3.2.16)

and taking the scalar product with a 〈ψα| of the Schrödinger equation HΨ = EΨ
therefore gives

[〈ψα|Hn|ψα〉e + Eα(X)] |φα〉n = E|φα〉n (3.2.17)

This is the Schrödinger equation for the nuclei within the adiabatic approximation.
Now using again

Hn = − ~
2

2M
∇2

X  Hnψα(q,X)φα(X)

= − ~
2

2M

[

ψα(q,X)∇2
Xφα(X) + φα(X)∇2

Xψα(q,X)

+ 2∇Xφα(X)∇Xψα(q,X)
]

(3.2.18)



3. Excursion: Real Molecules and Franck-Condon Factors 49

and therefore the nuclear Schrödinger equation becomes

[〈ψα|Hn|ψα〉e + Eα(X)] |φα〉n = E|φα〉n  
[

− ~
2

2M
∇2

X + Eα(X)− 〈ψα|
~

2∇2
X

2M
|ψα〉 − 〈ψα|

~
2∇X

M
|ψα〉∇X

]

|φα〉n

= E|φα〉n (3.2.19)

which can be re-written as
[

− ~
2

2M
∇2

X + Eα(X)− ~
2

2M
G(X)− ~

2

M
F (X)∇X

]

|φα〉n = E|φα〉n

G(X) ≡ 〈ψα|∇2
Xψα〉, F (X) ≡ 〈ψα|∇Xψα〉 , (3.2.20)

where we followed the notation by Mead and Truhlar in their paper J. Chem.
Phys. 70, 2284 (1979). Eq. (3.2.20) is an important result as it shows that
the adiabatic assumption leads to extra terms F (X) and G(X) in the nuclear
Schrödinger equation in BO approximation on top of just the potential created
by the electrons. In particular, the term F (X) is important as it leads to a non-
trivial geometrical phase in cases where the curl of F (X) is non-zero. This
has consequences for molecular spectra, too. geometric phases such as the abelian
Berry phase and the non-abelian Wilczek-Zee holonomies play an important
role in other areas of modern physics, too, one example being ‘geometrical quantum
computing’. For more info on the geometric phase in molecular systems, cf. the
Review by C. A. Mead, Prev. Mod. Phys. 64, 51 (1992).

3.2.4 Breakdown of the Born-Oppenheimer Approximation

This is a non-trivial, much discussed issue and in actual fact still the topic of
present research. From our discussion in the previus section we understand that
adiabaticity is lost if transitions between electronic states |α(X)〉 → |α′(X ′)〉 oc-
cur while change X. One example for is the so-called Landau-Zener tunneling
between nearby energy levels Eα(X) and Eα′(X). Also discussed in this context
are the Renner-Teller and the Jahn-Teller effects, cf. the short summary by B. T.
Sutcliffe in ch. 36 of Vol. 1 of the ‘Handbook of Molecular Physics and Quantum
Chemistry’, Wiley (2003).

3.3 Vibrations and Rotations in Diatomic Molecules

Here, we follow Weissbluth [?] ch. 27, and Landau-Lifshitz III [?].
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3.3.1 Hamiltonian

Before deriving the Hamiltonian, a short excursion to classical mechanics of two
particles:

3.3.1.1 Angular Momentum of Two Particles

If two particles have positions r1 and r2 and momenta p1 and p2, the angular
momentum of the total system of the two particles is

L = r1 × p1 + r2 × p2. (3.3.1)

We introduce center-of-mass and relative coordinates according to

R =
m1r1 +m2r2

m1 +m2
, r = r2 − r1, (3.3.2)

and furthermore momenta

P = p1 + p2 (3.3.3)

p =
m1p2 −m2p1

m1 +m2
. (3.3.4)

Note that the relative momentum p is not just the difference of the individual
momenta. It is rather defined such that in terms of

µ ≡ m1m2

m1 +m2

reduced mass, (3.3.5)

one has

µṙ = µ(ṙ2 − ṙ1) = µ

(

p2

m2

− p1

m1

)

= p. (3.3.6)

Using these definitions, one checks

L = r1 × p1 + r2 × p2 (3.3.7)

= R×P + r× p. (3.3.8)

This is the sum of a center-of-mass angular momentum, R × P, and a relative
angular momentum, r× p.
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3.3.1.2 Born-Oppenheimer Approximation

We recall the Born-Oppenheimer Approximation for the total wave function Ψ(q,X)
of a molecule, cf. Eq. (3.2.15),

Ψ(q,X) =
∑

α

φα(X)ψα(q,X), (3.3.9)

where q stands for the electronic, X for the nuclear coordinates, and the sum is over
a complete set of adiabatic electronic eigenstates with electronic quantum numbers
α. This form leads to the Schrödinger equation in the adiabatic approximation
Eq. (3.2.17),

[〈ψα|Hn|ψα〉e + Eα(X)] |φα〉n = E|φα〉n. (3.3.10)

Here, Eα(X) is the potential acting on the nuclei. We now specify the kinetic
energy of the nuclear part for a diatomic molecule,

Hn =
P2

2M
+

p2

2µ
. (3.3.11)

Exercise Check that Hn =
p2

1

2m1
+

p2
2

2m2
.

The effective nuclear Hamiltonian corresponding to an electronic eigenstate α
thus is

Hn,α = 〈ψα|
P2

2M
|ψα〉+ 〈ψα|

p2

2µ
|ψα〉+ Eα(r), (3.3.12)

which is a sum of a center-of-mass Hamiltonian and a Hamiltonian for the relative
motion of the two nuclei. Only the latter is interesting because it contains the
potential Eα(r). Note that both center-of-mass and relative Hamiltonian still
contain the geometrical phase terms, cf. Eq. (3.2.20), which however we will
neglect in the following.

3.3.2 Angular Momentum

Neglecting the geometric phase terms, Eq. (3.2.20), we have in three spatial
dimensions

Hrel
n,α =

p2

2µ
+ Eα(r) = − ~

2

2µ
∆r + Eα(r)

= − ~
2

2µ

(

∂2

∂r2
+

2

r

∂

∂r

)

+
J2

2µr2
+ Eα(r), (3.3.13)
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where J is the relative angular momentum operator of the nuclei. We have a
three-dimensional problem which however due to the radial symmetry of Eα(r)
is reduced to a one-dimensional radial eqaution, very much as for the case of the
hydrogen atom! We could write the eigenfunctions of Hrel

n,α as

Ψ(r) = R(r)YJM(θ, φ) (3.3.14)

with the corresponding angular quantum numbers J and M of the nuclear relative
motion separated off in the spherical harmonics.

Instead of dealing with the angular momentum operator of the nuclei, one
would rather descrive rotations of the whole molecule by the total angular momen-
tum K of the molecule

K = J + L + S, (3.3.15)

where L is the total angular momentum of all electrons and S is the total spin.

3.3.2.1 Spin S = 0

This is the simplest case. The total angular momentum of the nuclei is then

J = K− L. (3.3.16)

Since we have neglected geometric phase terms, we can replace ∆r by its expecta-
tion value in the electronic state α under consideration,

∆r = 〈ψα|∆r|ψα〉 (3.3.17)

 J2 = 〈ψα|J2|ψα〉 = 〈ψα|(K− L)2|ψα〉. (3.3.18)

This allows one to express everything in terms of total angular quantum numbers
K as follows: We first write

J2 = 〈ψα|(K− L)2|ψα〉 (3.3.19)

= 〈ψα|K2|ψα〉 − 2〈ψα|KL|ψα〉+ 〈ψα|L2|ψα〉.

First, K2 is conserved and can be replaced by its eigenvalue K(K + 1) whence

〈ψα|K2|ψα〉 = K(K + 1). (3.3.20)

Second, 〈ψα|L2|ψα〉 only depends on the electronic degrees of freedom and can
therefore be simply added to the potential Eα(r).

Finally, we assume that the electronic state α is an eigenstate of the z compo-
nent Lz with eigenvalue Λ of the electronic angular momentum. Then,

〈ψα|KL|ψα〉 = K〈ψα|L|ψα〉 = KezΛ. (3.3.21)
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On the other hand, we have Jez = 0 since the angular momentum of the two nuclei
is perpendicular to the molecule axis ez ∝ r, thus

(Kz − Lz) = 0 Kz = Lz (3.3.22)

and

〈ψα|KL|ψα〉 = KezΛ = LzΛ

= 〈ψα|Lz|ψα〉Λ = Λ2. (3.3.23)

Summarizing, we now have for the radial part

− ~
2

2µ

(

∂2

∂r2
+

2

r

∂

∂r

)

+
K(K + 1)

2µr2
− 2Λ2

2µr2
+
〈ψα|L2|ψα〉

2µr2
+ Eα(r)

≡ − ~
2

2µ

(

∂2

∂r2
+

2

r

∂

∂r

)

+
K(K + 1)

2µr2
+ Uα(r).

Thus we have finally arrived at the form for the effective potential energy,

K(K + 1)

2µr2
+ Uα(r). (3.3.24)

The first term K(K+1)
2µr2 is the centrifugal energy as in the hydrogen problem. Since

Kz = Lz with fixed eigenvalue Λ for the given state α, the eigenvalues of the total
angular momentum must fulfill

K ≥ Λ. (3.3.25)

3.3.3 Radial SE

Our SE for the radial motion of the two nuclei has the form
[

− ~
2

2µ

(

∂2

∂r2
+

2

r

∂

∂r

)

+
K(K + 1)

2µr2
+ Uα(r)

]

Rα;Kv(r) = εα;KvRα;Kv(r).(3.3.26)

We therefore have two sets of quantum numbers K and v that describe the ro-
tational and vibrational and state of the molecule for a given electronic state α.
Setting

Rα;Kv(r) =
1

r
Pα;Kv(r) (3.3.27)

leads to a standard one-dimensional SE with a ‘proper’ d2

dr2 kinetic energy term,

[

− 1

2µ

d2

dr2
+ Uα(r) +

K(K + 1)

2µr2

]

Pα;Kv(r) = εα;KvPα;Kv(r), r ≥ 0. (3.3.28)
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3.3.3.1 Harmonic Approximation

The rotation term K(K+1)
2µr2 is assumed as small, and the potential Uα(r) is expanded

around a minimum rα,

Uα(r) = Uα(rα) +
1

2

d2

dr2
Uα(r = rα)(r − rα)2 + ... (3.3.29)

Here, rα can be considered as the equilibrium distance of the two nuclei which
clearly still depends on the electronic quantum number α. If the higher order
terms in the Taylor expansion are neglected, and K(K+1)

2µr2 replaced by K(K+1)
2µr2

α
, the

approximate SE becomes

[

− 1

2µ

d2

dr2
+
K(K + 1)

2µr2
α

+ Uα(rα) +
1

2
µω2

α(r − rα)2

]

P harm
α;Kv (r)

= εα;KvP
harm
α;Kv (r), ω2

α =
1

µ

d2

dr2
Uα(r = rα). (3.3.30)

This is the equation of a linear harmonic oscillator apart from the fact that r ≥ 0.
However, |r − rα| has been assumed to be small anyway and within this approxi-
mation, the energy levels are therefore those of a linear harmonic oscillator shifted
by K(K+1)

2µr2
α

+ Uα(rα),

εharm
α;Kv =

K(K + 1)

2µr2
α

+ Uα(rα) + ωα

(

v +
1

2

)

. (3.3.31)

3.3.3.2 The Energy Spectrum

The structure of the energy spectrum is determined by the magnitude of the three
terms K(K+1)

2µr2
α

, Uα(rα), and ωα

(

v + 1
2

)

. These differ strongly due to their depen-
dence on the relative nuclei mass µ. In terms of the small dimensionless parameter
m/µ (where m is the electron mass), we have

Uα = O(1), electronic part (3.3.32)

ωα

(

v +
1

2

)

= O(m/µ)1/2, vibrational part (3.3.33)

K(K + 1)

2µr2
α

= O(m/µ), rotational part. (3.3.34)

In spectroscopic experiments, one determined energy differences δE which there-
fore are broadly determined by

δEel ≫ δEvib ≫ δErot. (3.3.35)
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3.3.4 Spin S > 0

Things get a little bit more complicated for S > 0 which leads to the so-called
Hund’s cases a, b, c and d. For more details cf. Landau-Lifshitz III [?], or Atkins-
Friedman.

3.3.5 Beyond the Harmonic Approximation

The harmonic approximation has to break down somewhere. A diatomic molecule
with its two nuclei harmonically bound would never be able to dissociate into two
individual atoms or ions.

One way is to introduce phenomenological potentials with fitting parameters,
e.g. the Morse potential

Uα(r)→ UMorse
α (r) ≡ Dα

[

1− e−βα(r−rα)
]2
, (3.3.36)

where Dα is the depth of the minimum below the asymptote and represents the
dissociation energy of the molecule.

3.4 Selection Rules

3.4.1 Dipole Approximation

Assume system of charges qn localised around a spatial position r0 = 0. The
coupling to an electric field E(r, t) within dipole approximation is then given by

Hdip(t) = −dE(t), d ≡
∑

n

qαrα, (3.4.1)

where E(t) ≡ E(r0, t) is the electric field at r0 = 0. The dipole approximation is
valid if the spatial variation of E(r, t) around r0 is important only on length scales
l with l ≫ a, where a is the size of the volume in which the charges are localised.
For a plane wave electric field with wave length λ one would have l ∼ λ.

3.4.2 Pure Rotation

Pure rotational transitions are between states where only rotational quantum num-
bers are changed,

|KmK , v, α〉 → |K ′m′
K , v, α〉 (3.4.2)

leaving the vibrational quantum number(s) v and the electronic quantum num-
ber(s) α unchanged. Such transitions then depend on matrix elements of the
dipole operator,

〈KmK |d|K ′m′
K〉. (3.4.3)
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The calculation of this matrix element, using spherical harmonics, yields the purely
rotational selection rules

∆K = ±1, ∆mK = 0,±1. (3.4.4)

Writing the rotational part of the energy as

εrot(K) = BK(K + 1) (3.4.5)

 ∆εrot(K) ≡ B(K + 1)(K + 2)− BK(K + 1) = 2B(K + 1).

The distance between the corresponding spectral lines is constant, ∆εvib(K+1)−
∆εvib(K) = 2B.

3.4.3 Pure Vibration

In this case, we have to deal with the harmonic oscillator.

3.4.3.1 Recap of the Harmonic Oscillator

The Hamiltonian of the harmonic oscillator

Ĥosc =
p̂2

2m
+

1

2
mω2x̂2 (3.4.6)

can be re-written using the ladder operators

a ≡
√

mω

2~
x̂+

i√
2m~ω

p̂, a† ≡
√

mω

2~
x̂− i√

2m~ω
p̂ (3.4.7)

x̂ =

√

~

2mω

(

a+ a†
)

, p̂ = −i
√

m~ω

2

(

a− a†
)

, (3.4.8)

as

Ĥosc = ~ω

(

a†a +
1

2

)

. (3.4.9)

The commutation relation is

[x̂, p̂] = i~, [a, a†] = 1. (3.4.10)

The eigenfunctions of the harmonic oscillator are n-phonon states,

Ĥosc|n〉 = εn|n〉, εn = ~ω

(

n+
1

2

)

, n = 0, 1, 2, ...

|n〉 ↔ ψn(x) =
(mω

π~

)1/4 1√
n!2n

Hn

(
√

mω

~
x

)

e−
mω
2~

x2

, (3.4.11)
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where Hn are the Hermite polynomials.
The ladder operators are also called creation (a†) and annihiliation (a) opera-

tors. They act on the states |n〉 as

a†|n〉 =
√
n + 1|n+ 1〉, a|n〉 =

√
n|n− 1〉, a|n〉 = 0. (3.4.12)

The state |0〉 is called ground state.

3.4.3.2 Pure Vibrational Dipole Transitions

Pure vibrational transitions are between states where only vibrational quantum
numbers are changed,

|KmK , v, α〉 → |KmK , v
′, α〉. (3.4.13)

Such transitions then depend on matrix elements of the dipole operator,

〈v|dα|v′〉, (3.4.14)

where |v〉 is an harmonic oscillator eigenstate (we write v instead of n now), and

dα = 〈α|d|α〉 (3.4.15)

is the diagonal matrix element of the dipole operator between the adiabatic elec-
tronic eigenstates |α〉.

Remember that the harmonic potential came from the Taylor expansion of the
Born-Oppenheimer energy,

Uα(r) ≈ Uα(rα) +
1

2

d2

dr2
Uα(r = rα)(r − rα)2

 Ĥosc =
p̂2

2µ
+

1

2
mω2

αx̂
2 = ~ωα

(

a†a+
1

2

)

(3.4.16)

ω2
α =

1

µ

d2

dr2
Uα(r = rα) (3.4.17)

where the harmonic oscillator coordinate x = r − rα.
The dipole moment operator dα depends on the electronic wave functions α and

thus parametrically on the coordinate x that describes the internuclear separation.
We Taylor-expand

dα(x) = dα(0) + d′
α(0)x+O(x2). (3.4.18)
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For transitions between v and v′ 6= v, one therefore has to linear approximation

〈v|dα|v′〉 = d′
α(0)〈v|x|v′〉 = d′

α(0)

√

~

2µω
〈v|a+ a†|v′〉

= d′
α(0)

√

~

2µω

(

δv+1,v′
√
v + 1 + δv−1,v′

√
v
)

. (3.4.19)

The vibrational selection rule thus is

∆v = ±1. (3.4.20)

The corresponding energy differences determine the transition frequency,

∆εvib(v) = ~ωα, (3.4.21)

which means that a purely vibrational, harmonic spectrum just consists of a single
spectral line!

3.4.4 Vibration-Rotation Spectra

Vibrational and Rotational transitions are coupled, and one now has to discuss the
various transition possibilities. This leads to a description in terms of P-, Q-, and
R-branch for the allowed transitions in diatomic molecules. For further reading,
cf. Atkins/Friedman [?] ch. 10.11 or Weissbluth [?] ch. 27.2

3.5 Electronic Transitions

Transitions between two molecular states in general involve all quantum numbers:
electronic, vibrational, and rotational, i.e.

|KmK , v, α〉 → |K ′m′
K , v

′, α′〉. (3.5.1)

3.5.1 The Franck-Condon Principle

Here, a good description is in Atkins/Friedman ch. 11.4.
For simplicity, we leave out the rotations here and just discuss electronic and

vibrational transitions. In a classical picture (with respect to the large mass nuclear
motion), one considers the two potential curves Uα(r) and Uα′(r) and argues that
the electronic transition occurs so fast that the nuclear system has no time to
react: before and after the transition, the nuclear coordinate X is the same. This,
however, means that the distance |x′| ≡ |X−rα′ | from the equilibrium position rα′
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Figure 3.1: Franck-Condon-Principle. Left: Classical picture, right: quantum-
mechanical picture. From Prof. Ed Castner’s lecture http://rutchem.rutgers.edu/.

after the transition and the distance |x| ≡ |X − rα| from the equilibrium position
rα before the transition are not the same: when the nuclei are in equilibrium
before the transition (X = rα, x = 0), their new coordinate x′ relative to the new
equilibrium rα′ is x′ ≡ X − rα′ = rα − rα′ 6= 0 after the transition.

The total dipole moment operator is a sum of electronic and nuclear dipole
moment,

d = −e
∑

i

qi + e
∑

s

ZsXs = de + dn. (3.5.2)
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The transition matrix element in Born-Oppenheimer approximation is (α 6= α′)

〈α′v′|de + dn|αv〉 =

∫

dqdXψ∗
α′(qX)φ∗

α′,v′(X)(de + dn)φα,v(X)ψα(qX)

=

∫

dXφ∗
α′,v′(X)

[
∫

dqψ∗
α′(qX)deψα(qX)

]

φα,v(X)

+

∫

dXφ∗
α′,v′(X)φα,v(X)dn

∫

dqψ∗
α′(qX)ψα(qX)

=

∫

dXφ∗
α′,v′(X)

[
∫

dqψ∗
α′(qX)deψα(qX)

]

φα,v(X) + 0

≈ 〈α′|de|α〉S(v, v′), S(v, v′) ≡ 〈v′|v〉. (3.5.3)

Here it was assumed that the integral

∫

dqψ∗
α′(qX)deψα(qX) ≈ 〈α′|de|α〉 (3.5.4)

does not depend on the nuclear coordinates X.
The transition between two electronic levels α and α′ is therefore determined

by the dipole matrix element 〈α′|de|α〉 and the Franck-Condon factors S(v, v′),
which are the overlap integrals of the corresponding vibronic states. As these
states belong to different electronic states α and α′, the overlaps are not zero, and
there is also no selection rule for ∆v.



4. QUANTUM NOISE AND COUNTING
STATISTICS

4.1 Correlation Functions and the Quantum Regression

Theorem

4.1.1 Correlation Functions

Correlation functions are important since they can tell us a lot about the dynamics
of dissipative systems. Moreover, they are often directly related to experimentally
accessible quantities, such as photon or electron noise. In quantum optics, fluctu-
ations of the photon field are expressed by correlations functions such as g(1)(τ)
and g(2)(τ).

We would like to calculate the correlation function of two system operators A
and B,

CBA(t, τ) ≡ 〈B(t)A(t+ τ)〉 ≡ Trtotal (χ(0)B(t)A(t+ τ)) , τ > 0. (4.1.1)

We insert the time evolution of the operators,

χ(t) = e−iHtχ(0)eiHt, B(t) = eiHtBe−iHt, A(t+ τ) = eiH(t+τ)Ae−iH(t+τ)

(4.1.2)

to find

CBA(t, τ) = Trtotal (χ(0)B(t)A(t+ τ))

= Trtotal

(

eiHtχ(t)Be−iHteiH(t+τ)Ae−iH(t+τ)
)

= Trtotal

(

e−iHτχ(t)BeiHτA
)

= Trtotal

(

e−iHτρ(t)R0Be
iHτA

)

Born Approximation

≡ TrS

(

ATrBath

{

e−iHτρ(t)BR0e
iHτ
})

≡ TrS

(

ATrBath

{

e−iHτρB;tR0e
iHτ
})

≡ TrS (AρB;t(τ)) . (4.1.3)
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The correlation function can therefore be written as an expectation value of A
with a ‘modified system density matrix’ ρB;t(τ) which starts at τ = 0 as ρB;t(τ =
0) = ρ(t)B and evolves as a function of time τ > 0.

For the time-evolution of a system operator Ô according to

Ô(τ) ≡ TrBath

{

e−iHτ ÔR0e
iHτ
}

, (4.1.4)

we can write a formal operator equation

d

dτ
Ô(τ) ≡ Lτ Ô(τ), (4.1.5)

where we introduced the super-operator Lτ .
Example: Master equation for Ô = ρ(0) in Born and Markov approximation,

cf. Eq.(1.2.30)

d

dt
ρ(t) = −i[HS , ρ(t)]

−
∑

k

[

SkDkρ(t)−Dkρ(t)Sk + ρ(t)EkSk − Skρ(t)Ek

]

.

It is important to realise that Lτ is a linear operator. We now assume that the
system has a basis of kets {|α〉} and express the linearity of Lτ by writing the
matrix elements of Lτ Ô(τ),

〈α|LτÔ(τ)|β〉 =
∑

γδ

∫ τ

0

dτ ′Mαβ
γδ (τ, τ ′)〈γ|Ô(τ ′)|δ〉. (4.1.6)

with a time-dependent memory kernel as a fourth-order tensorM(τ, τ ′) that relates
the matrix elements of the system operator Ô at earlier times to its matrix elements
of the (time-evolved) system operator at later times.

Using now A = |β〉〈α| in CBA, we have

CB,|β〉〈α|(t, τ) = 〈α|ρB;t(τ)|β〉,
d

dτ
CB,|β〉〈α|(t, τ) =

d

dτ
〈α|ρB;t(τ)|β〉 = 〈α|LτρB;t(τ)|β〉

=
∑

γδ

∫ τ

0

dτ ′Mαβ
γδ (τ, τ ′)〈γ|ρB;t(τ

′)|δ〉

=
∑

γδ

∫ τ

0

dτ ′Mαβ
γδ (τ, τ ′)CB,|δ〉〈γ|(t, τ

′) (4.1.7)

Introducing

k ≡ (αβ), l ≡ (γδ)

Ak ≡ |β〉〈α|, Mαβ
γδ (τ, τ ′) ≡Mkl(τ, τ

′), (4.1.8)
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we convert the tensor equation into a vector equation,

d

dτ
CB,Ak

(t, τ) =
∑

l

∫ τ

0

dτ ′Mkl(τ, τ
′)CB,Al

(t, τ ′) (4.1.9)

which can be written in compact form using the vector of operators,

A ≡













A1

A2

..
Ak

..













. (4.1.10)

In vector and matrix notation, we thus obtain the quantum regression theorem ,

d

dτ
〈B(t)A(t+ τ)〉 =

∫ τ

0
dτ ′M(τ, τ ′)〈B(t)A(t+ τ ′)〉, τ > 0. (4.1.11)

Remarks:

• We have not made use of the Markov approximation here.

• Within the Markov approximation (assumptions 2a and 2b), one has a sim-
ple differential (tensor) equation instead of an integro-differential (tensor)
equation:

〈α|LτÔ(τ)|β〉 =
∑

γδ

Mαβ
γδ 〈γ|Ô(τ)|δ〉

 
d

dτ
〈B(t)A(t+ τ)〉 = M〈B(t)A(t+ τ ′)〉, τ > 0. (4.1.12)

This is the usual form of the quantum regression theorem as discussed in
many textbooks.

• For τ < 0, the derivation of the quantum regression theorem is analogous to
the case τ > 0 (exercise!)

• The first derivation of the quantum regression theorem has been given by
Melvin Lax, Phys. Rev. 129, 2342 (1963). He emphasises that the only
approximation one needs is the factorisation (in our notation χ(t) = ρ(t)R0,
Born approximation). In the ‘Note added in proof’ in his paper he states
that the derivation therefore is correct even for non-Markoffian systems.

• However, it has been shown that the quantum regression theorem only really
holds for the Markovian case!
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4.2 Photon-Counting in Quantum Optics: Introduction

When it comes to counting photons, one has to answer the eternal question: ‘What
is a photon’, and ‘What is light ?’. Einstein said in 1951: ‘...these days every fool
pretends to know what a photon is. I have been thinking about this for the whole
of my life, and I haven’t found the answer‘.

A ‘practical’ answer for us is to consider cavity modes with H = ωa†a and
n-photon eigenstates |n〉. A more profound answer is to regard the photon as
the gauge-boson of QED (modern view). The irony in the history of quantum
mechanics, which was discovered in its own classical limit, is that one does not
need photons in order to explain the photoelectric effect!

The main idea of counting photons is to count photo-electrons in photo-detectors
instead of photons. The counting statistics then is a theory for

pn(t, t+ T ) probability for n photo-electrons in [t, t+ T ). (4.2.1)

Some challenges: one has to deal with detector back-action and a system-bath
problem ‘with two baths’, which is not entirely trivial.

4.3 Photoelectric Counting: Classical Fields

4.3.1 The Mandel Formula

The simplest photodetector model is the ionization of a single atom. We consider
a classical electromagnetic field with vector potential A(r)e−iωt + A∗(r)eiωt. The
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probability p1(t, t+ ∆t) of one count is then given by Fermi’s Golden Rule as

p1(t, t+ ∆t) =

∫ ∞

0

dEν(E)
∣

∣

∣
〈E| e

m
pA(r)|E0〉

∣

∣

∣

2

D∆t(E −E0 − ω)

= ηI(r)∆t, I(r) = |A(r)|2(intensity). (4.3.1)

Here, D∆t(ε) ≡
(

[sin 1
2
ε∆t]/[1

2
ε]
)2

mit ∆t → 0 und A(r) = ~εA(r). Note that the
concept of a PHOTON is not used here - one rather uses the discreteness of atomic
energy levels.

How to obtain the probability of n transitions pn(t, t + T ) now? One has the
short-time probability p1(t, t+ ∆t) = ηI(r)∆t for single electron transitions, with
ηI(r) as the transition rate. The long-time probability of n transitions pn(t, t+T )
then corresponds to transitions of n electrons. Individual transitions are statis-
tically independent which leads to a Poisson distribution, characterized by an
average n̄,

pn(t, t+ T ) =
n̄n

n!
e−n̄, n̄ = ηI(r)T. (4.3.2)

In more detail, one performs the transit from short to long times via a Markovian
Master equation for the probabilities pn(t) ≡ pn(0, t),

pn(t+ dt) = pn(t)× [1− ηI(r)dt] + pn−1(t)× ηI(r)dt (4.3.3)

d

dt
pn(t) = ηI(r)[pn−1(t)− pn(t)]. (4.3.4)

This is solved by introducing a generating function

G(s, t) ≡
∞
∑

n=0

snpn(t), ∂tG(s, t) = ηI(r)(s− 1)G(s, t) (4.3.5)

and solving with p0(0) = 1, pn(0) = 0, n > 0, G(s, 0) = 1, thus obtaining

G(s, t) = exp[ηI(r)t(s− 1)] =
∞
∑

n=0

sn n̄
n

n!
e−n̄, (4.3.6)

where n̄ = ηI(r)t. We thus have the classical photo-electron counting formula
(Mandel formula),

pn(t, t+ T ) =
n̄n

n!
e−n̄, n̄ = ηI(r)T. (4.3.7)
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4.4 The Photo-Count Formula in Quantum Optics

4.4.1 The Scully-Lamb Photodetector

Reference: M. Scully, W. Lamb Jr., Phys. Rev. 179, 368 (1969). Key ideas:

• ‘Photon statistics’ means (reduced) density operator ρ(t) of a light field (more
generally: boson field).

• ‘Photon statistics’ is inferred by photoelectric counting techniques.

The detector model is formulated as a system-bath theory with the system as a
single photon mode a and N detector single level ‘quantum dots’ j with one (|1〉j)
or zero (|0〉j) electrons. Photon absorption then empties the dots into the bath,

which is a collection of leads j, c†αj |vac〉. We thus write

HSB =
∑

αj

(

V j
α c

†
αj |0〉j〈1|a+ V̄ j

α cαj |1〉j〈0|a†
)

≡
∑

k

Sk ⊗Bk. (4.4.1)
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We now use the Master equation technique in order to trace out the leads, We
assume ‘broadband detection’ at all energies,

∑

α |V j
α |2δ(ε− εαj) = ν and obtain

d

dt
ρ̃t = −πν

∑

j

{

|1〉j〈1|a†aρ̃t + ρ̃ta
†a|1〉j〈1| − 2|0〉j〈1|aρ̃ta

†|1〉j〈0|
}

.(4.4.2)

Now let us consider detector states

|m;λ〉 ≡ Π̂λ|0〉1...|0〉m|1〉m+1...|1〉N (4.4.3)

with m excitations. Here, Π̂λ is a certain permutation of the ions. The m-resolved
field ‘pseudo’ density matrix is

ρ̃
(m)
t ≡

∑

λ

〈m;λ|ρ̃t|m;λ〉. (4.4.4)
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Our Master equation becomes

d

dt
ρ̃t = −πν

∑

j

{

|1〉j〈1|a†aρ̃t + ρ̃ta
†a|1〉j〈1| − 2|0〉j〈1|aρ̃ta

†|1〉j〈0|
}

(4.4.5)

∑

j

〈m;λ|ρ̃t|1〉j〈1|m;λ〉 = (N −m)〈m;λ|ρ̃t|m;λ〉 (4.4.6)

∑

j

〈m;λ|0〉j〈1|ρ̃t|1〉j〈0|m;λ〉 =
mterms
∑

λ′

〈m− 1;λ′|ρ̃t|m− 1;λ′〉(4.4.7)

d

dt
ρ̃

(m)
t = −πν

{

(N −m)
[

a†aρ̃
(m)
t + ρ̃

(m)
t a†a

]

− 2(N −m+ 1)aρ̃
(m−1)
t a†

}

.(4.4.8)

This can be simplified in the limit N ≫ m, γ ≡ 2πNν  

d

dt
ρ

(m)
t = −i[HF, ρ

(m)
t ]− γ

2

(

a†aρ
(m)
t + ρ

(m)
t a†a− 2aρ

(m−1)
t a†

)

. (4.4.9)

The counting statistics is now defined as

pm(t) ≡ Trρ
(m)
t . (4.4.10)

Analysing the above Master equation, we recognize that there are two types of
super-operators: The jump super-operator J , Jρ ≡ γaρa†, and the time evolu-
tion generator L0. Defining L0ρ ≡ Y ρ+ ρY † with Y ≡ −iHF − γ

2
a†a gives

ρ̇
(m)
t = L0ρ

(m)
t + Jρ

(m−1)
t . (4.4.11)

Introducing the generating operator Ĝ(s, t) as

Ĝ(s, t) ≡
∞
∑

m=0

smρ
(m)
t (4.4.12)

with the counting variable s = eiχ, the infinite set of master equations now becomes
a single equation,

∂
∂t
Ĝ(s, t) = (L0 + sJ)Ĝ(s, t). (4.4.13)

4.5 Photo-Counting and the P-representation

The above operator equation,

d

dt
Ĝ = −i[HF, Ĝ]− γ

2

(

a†aĜ+ Ĝa†a− 2saĜa†
)

, (4.5.1)



4. Quantum Noise and Counting Statistics 69

can be solved using the P-representation in the harmonic oscillator Hilbert space.
Glauber introduced coherent states

|z〉, a|z〉 = z|z〉, (4.5.2)

which are used in the Glauber-Sudarshan representation of operators such as Ĝ as

Ĝ =

∫

d2zP (Ĝ; z, z∗)|z〉〈z|. (4.5.3)

Here, z and z∗ are independent variables. In the following, we use the short form
P (z) instead P (Ĝ; z, z∗). The rules for translating the Master equation into the P-
representation are (cf. QOptics books), aĜa† ↔ zz∗P (z), a†aĜ ↔ (z∗ − ∂z)P (z),
Ĝa†a↔ (z − ∂z∗)P (z).

4.5.1 PDE for P -function of generating operator

Using the field Hamiltonian HF = Ωa†a, we obtain

∂

∂t
Ps(z, t) =

[

−yz∂z − y∗z∗∂z∗ + γ(1 + |z|2(s− 1))
]

Ps(z, t) (4.5.4)

y ≡ −iΩ − γ

2
. (4.5.5)

In the case s = 1, this simply is the damped harmonic oscillator, where the 1st
order PDE is solved by the method of characteristics

P1(z, t) = eγtP (0)
(

zei(Ω−iγ/2)t
)

. (4.5.6)

For example, for G(s, t = 0) ≡ ρ(0)(t = 0) = |z0〉〈z0| one obtains

P1(z, t = 0) = δ(2)(z − z0) (4.5.7)

P1(z, t > 0) = eγtδ(2)
(

zei(Ω−iγ/2)t − z0
)

= δ(2)
(

z − z0e−i(Ω−iγ/2)t
)

, (4.5.8)

(two-dimensional Delta-function!) and thus a state that spirals into the origin.
For arbitrary s, one has

Ps(z, t) = eγtP (0)
(

zei(Ω−iγ/2)t
)

exp{−|z|2(s− 1)(1− eγt)} (4.5.9)

Now from

TrĜ(s, t) ≡
∞
∑

m=0

smTrρ
(m)
t , (4.5.10)

we read off the photoelectron counting distribution

pm(t) ≡ Trρ
(m)
t (4.5.11)
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as

TrĜ(s, t) =

∫

d2zPs(z, t) =

∫

d2zP (0)(z)e−|z|2(s−1)(e−γt−1)

=
∞
∑

m=0

sm

∫

d2zP (0)(z)
(|z|2ηt)

m

m!
e−|z|2ηt , ηt ≡ 1− e−γt.(4.5.12)

Using the normal ordering property of the P -representation, we thus obtain the
single-mode counting distribution

pm(t) = Trρ(0) :
(a†aηt)

m

m!
e−a†aηt :, ηt ≡ 1− e−γt. (4.5.13)

4.5.2 Single-mode counting formula: discussion

For a coherent state ρ(0) = |z0〉〈z0|, the distribution is

pm(t) =
(〈n〉ηt)

m

m!
e−〈n〉ηt , (4.5.14)

i.e. a Poisson-distribution with average 〈n〉 ≡ 〈a†a〉 = |z0|2. This coincides with
the semiclassical Mandel formula for γt≪ 1.

For a Fock-state ρ(0) = |n〉〈n|, the distribution is

pm(t) =

(

n
m

)

ηm
t (1− ηt)

n−m, n ≥ m, (4.5.15)

which is a Bernoulli-distribution that counts m successful events (photo-counts)
and n−m failures (no counts) regardless of the order.

4.6 Photo-Counting in Spontaneous Emission and Resonance
Fluorescence

Now we move from one single mode a† to many modes a†Q: we do quantum optics
by quantization of Maxwell’s equations, using the vector potential in Coulomb
gauge, and Fourier expansion into field modes uQ(r) with mode index Q,

(∇2 + ω2
Q)uQ(r) = 0. (4.6.1)

The electric field operator is written as

E(r) = i
∑

Q

(

~ωQ

2ε0

)1/2

uQ(r)aQ +H.c. = E(+)(r) + E(−)(r).
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4.6.1 Quantum sources of light

The most basic source is a single two-level atom. We first discuss spontaneous
emission from a two-level atom with states |1〉, |0〉,

H =
ω0

2
σz +

∑

Q

γQ

(

σ+aQ + σ−a
†
Q

)

+
∑

Q

ωQa
†
QaQ. (4.6.2)

with the usual Pauli matrices and photon creation operators a†Q.
This problem was first discussed by Wigner and Weisskopf. We write the

Schrödinger equation for the total wave function

|Ψ(t)〉 = c(t)|1〉|vac〉+
∑

Q

bQ(t)|0〉a†Q|vac〉, c(0) = 1 (4.6.3)

One finds approximately the exponential decay

c(t) = e−Γt/2−iω0t (4.6.4)

and no re-absorption of any emitted photon. Note that this differes from the single
mode model where one has only one mode Q (Jaynes-Cummings Hamiltonian)
and where ‘revivals’ occur. Here, we do not discuss these but move on towards an
expression for the electric field E(+)(r, t) = E

(+)
f (r, t) + E

(+)
s (r, t) and the source

field in terms of source operators: The Heisenberg EOM ȧQ(t) = −iωQaQ(t) −
iγkσ−(t) in particular lead to

aQ(t) = aQe
−iωQt − iγQ

∫ t

0

dt′σ−(t′)e−iωQ(t−t′). (4.6.5)

Expressing the field at the detector in terms of the atom dipole operator, one finds

E(+)
s (r, t) =

∫ t

0

dt′

[

∑

Q

fQ(r)e−iωQ(t−t′)

]

σ−(t′) (4.6.6)

≈
∫ t

0

dt′ [E(r̂)δ(t− t′ − r/c)]σ−(t′) = E(r̂)σ−(t− r/c). (4.6.7)

Note the dipole form of E(r̂) (cf. Carmichael).
In this example, however, we haven’t learnded too much - we just have a tran-

sient process with an exponentially decaying probability, as could be expected.
What turns out to be much more interesting is the stationary process of ‘driven
spontaneous emission’ (resonance fluorescence). In particular, this quantum op-
tics example has many interesting commonalities with electron transport, i.e.
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tunneling of a single electron through a single level quantum dot (cf. figure).

4.6.2 Resonance Fluorescence Model

We assume spontaneous emission from a two-level system plus driving with a
classical field E cos(ωLt) at Rabi-frequency Ω ≡ dE/~ and with dipole moment d.
In RWA the model reads

Ht ≡ HSE +
Ω

2

(

e−iωLtσ+ + eiωtσ−
)

, (RWA). (4.6.8)

A time-dependent unitary trafo leaves Liouville-v.Neumann equation invariant,

H̄t ≡ −iU †
t

∂Ut

∂t
+ U †

tHtUt, ρ̄t ≡ U †
t ρtUt. (4.6.9)

The form

Ut = exp(−iN̂FωLt)diag(e−iωLt, 1) (4.6.10)

leads to (ω0 = ωL)

H̄t ≡ Ω
2

(σ+ + σ−) +
∑

Q γQ

(

σ+aQ + σ−a
†
Q

)

+
∑

Q(ωQ − ωL)a†QaQ (4.6.11)
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The corresponding master equation for TLS-‘source’ density operator ρt can
now be derived as

ρ̇t = i
Ω

2
[σ+ + σ−, ρt]− β (σ+σ−ρt + ρtσ+σ− − 2σ−ρtσ+) . (4.6.12)

Here, in the spontaneous emission rate β = π
∑

Q γ
2
Qδ(ωL − ωQ), the effect of the

external driving field has been neglected (otherwise one obtains what is called
the ‘intra-collisional field effect’ - this plays a role however only at very high field
strengths). We now compare this with our previous photo-detector equation,

ρ̇
(m)
t = −i[HF, ρ

(m)
t ]− γ

2

(

a†aρ
(m)
t + ρ

(m)
t a†a− 2aρ

(m−1)
t a†

)

. (4.6.13)

We also remember that in spontaneous emission, the field at the detector is ex-
pressed in terms of atom dipole operator,

E(+)
s (r, t) ≈ E(r̂)σ−(t− r/c). (4.6.14)

This suggests the correspondence

a ∼ E(+)
s ∼ σ−. (4.6.15)

The absorption of a photon in the detector thus corresponds to an electron jumping
from up to down, as described by the operator σ−.

4.6.3 Cook’s ‘counting at the source’

We are now closing into the final approach towards ‘jump’-resolved Master equa-
tions which are at the core of counting statistics within the Master equation frame-
work: In 1981, R. J. Cook published a paper on n-resolved master equations for
resonance fluorescence (R. J. Cook PRA 23, 1243 (1981)). His key idea was to
expand the resonance fluourescence Master equation by introducing a further label
(index) n,

ρ̇
(n)
t = i

Ω

2
[σ+ + σ−, ρ

(n)
t ]− β

(

σ+σ−ρ
(n)
t + ρ

(n)
t σ+σ− − 2σ−ρ

(n−1)
t σ+

)

(4.6.16)

by splitting up the total density operator as

ρt =
∞
∑

n=0

ρ
(n)
t (4.6.17)

according to the number n of photon emissions that have taken place after time
t. Cook’s original idea was actually to count the number of momentum transfers
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between atom and driving field: every time a spontaneous emission event takes
place, the atom is ready to absorb another photon from the laser which leads to a
‘recoil’, i.e. a momentum transfer in discrete units n~k. In fact, we can introduce
the jump super-operator J with

Jρ = 2βσ−ρσ+ = 2β|−〉〈+|ρ|+〉〈−〉. (4.6.18)

This operator takes the atom from the excited to the ground state. We then
proceed as in photo-detector theory: introducing the generating operator as usual,
G(s, t) ≡∑∞

n=0 s
nρ

(n)
t with counting variable s, we define the counting statistics as

pn(0, t) = Trρ
(n)
t . (4.6.19)

The photons are, of course, already integrated out, and we just end up with a 4
by 4 equation

∂tG = i
Ω

2
[σ+ + σ−, G]− β (σ+σ−G+Gσ+σ− − 2sσ−Gσ+) (4.6.20)

that is formally solved as

G = exp{(L0 + sJ)t}ρ(0), (4.6.21)

for example by diagonalization.
In Laplace space, we write Ĝ(s, z) = [z − L0 − sJ ]−1ρ(0) which then can be

inverted. Writing Ĝ as a vector, the corresponding resolvent matrix is

[z −L0 − sJ ]−1 =









z + 2β 0 0 −Ω
−2βs z 0 Ω

0 0 z + β 0
Ω
2

−Ω
2

0 z + β









. (4.6.22)

The result in Laplace space

TrĜ(s, z) =
(z + β)(z + 2β) + Ω2 + (s− 1)2β

[

(z + β)ρ++
0 + ΩImρ+−

0

]

z(z + β)(z + 2β) + Ω2[z + β(1− s)] (4.6.23)

can now be used for further discussions. Let us assume initial conditions ρ++
0 =

ρ+−
0 = 0, ρ−−

0 = 1 for simplicity in the following.

4.6.4 Resonance fluorescence: sub-Poissonian counting statistics

In order to extract information from

TrĜ(s, z) =
f(z)

zf(z) + βΩ2(1− s) , f(z) ≡ (z + β)(z + 2β) + Ω2,
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we need to transform back into time-domain,

pn(0, t) =
∂n

∂sn
TrG(s, t)|s=0 . (4.6.24)

〈n〉t =
∂

∂s
TrG(s, t)|s=1 1st moment. (4.6.25)

〈n(n− 1)t〉 =
∂2

∂s2
TrG(s, t)|s=1 2nd factorial moment. (4.6.26)

An expansion for large times t corresponds to an expansion in Laplace space around
the pole z0 closest to z = 0. If we expand z0 =

∑∞
m=1 cm(s− 1)m, we find

 〈n〉t→∞ =
βΩ2

2β2 + Ω2
t (4.6.27)

 σ2
t ≡ 〈∆n2〉t→∞ = 〈n〉t→∞

[

1− 6β2Ω2

(2β2 + Ω2)2

]

. (4.6.28)

This results into a negative Mandel Q-parameter Q ≡ F − 1 and a Fano factor
F ≡ 〈∆n2〉/〈n〉 < 1 (sub-Poissonian statistics).

Note that both 〈n〉 and σ are proportional to t for large times t. We will see
below that this is a general feature of cumulants, which is just an expression of
the central limit theorem. For large t≫ β−1, the counting statistics pn(t) in fact
becomes a Gaussian,

lim
t→∞

pn(t) =
1

√

2πσ2
t

e−(n−n̄t)2/2σ2
t . (4.6.29)

(D. Lenstra, PRA 26, 3369 (1982)).

4.7 The Quantum Jump (Quantum Trajectory) Approach

References: M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998);
H. Carmichael ‘An Open System Approach to Quantum Optics’, Springer Lecture
Notes in Physics m18, Springer (Berlin, Heidelberg, 1993).

4.7.1 Introduction

• Method for numerically solving Master equations in a Monte-Carlo-like sim-
ulation: wave functions instead of density matrix  computational advan-
tages.

• Restricted to Markovian Master equations of Lindblad form.

• Some regard it as more physical than usual density operator theory.
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4.7.1.1 Motivation: telegraphic fluorescence (driven spontaneous emission) of single
atoms

Example single V-systems: two upper levels 1 (fast spontaneous emission) and 2
(slow spontaneous emission), one lower level 0 driven by two lasers. Transition
0 → 2 traps the system in 2 for a long time. Resonance fluorescence intensity
I(t) therefore exhibits jumps: ‘telegraphic fluorescence’ with random switching
between bright and dark periods. Aim: calculate distribution of dark periods.

Length TD of dark period can be simply calculated from the density matrix
element ρ22

T−1
D = ρ̇22(t = 0), ρ22 = 0, (4.7.1)

where the derivative is calculated from the underlying equation of motion (Master
equation). However, the calculation of other, more complicated quantities related
to the description of telegraphic fluorescence turns out to be technically compli-
cated within the Master equation formalism. Example: ‘exclusive probability’
P0(t) that, after an emission at time t = 0, no other photon has been emitted in
the time interval [0, t].

• Some people raise ‘objections’ against the traditional Master equation ap-
proach: the density operator ρ describes ensembles of quantum systems and
is therefore inappropriate to describe single quantum systems such as a sin-
gle ion in an ion trap. However, these objections are unjustified; as long as
one sticks with the probabilistic interpretation of Quantum Mechanics, the
density operator description is perfectly valid for a single quantum system.

• ‘Single quantum systems’ can not only be realised in ion traps, but also in
‘artificial atoms’ and ‘artificial molecules’ (solid state based quantum dots,
superconducting charge or flux qubits). These will be discussed in a later
chapter.

4.7.2 Unravelling and Decomposition into Histories

4.7.2.1 Super-Operators

We have another look at the (Markoffian) Master equation of the damped harmonic
oscillator at zero temperature T = 0 (spontaneous emission only);

d

dt
ρ(t) = −iΩ̄[a†a, ρ]− κ

{

a†aρ+ ρa†a− 2aρa†
}

. (4.7.2)
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Suppose we started from a pure state ρ(0) = |Ψ〉〈Ψ| at time t = 0: after a short
time ∆t, this would evolve according to

|Ψ〉〈Ψ| → |Ψ〉〈Ψ|+ ∆t
{

(

−iΩ̄a†a− κa†aρ
)

|Ψ〉〈Ψ|
(

iΩ̄a†a− κa†aρ
)

}

+2κa|Ψ〉〈Ψ|a†

≡ |Ψ〉〈Ψ|+ ∆t
{

L0|Ψ〉〈Ψ|+ L1|Ψ〉〈Ψ|
}

, (4.7.3)

where we defined the super-operators via

L0ρ ≡ −iHeffρ+ ρiH†
eff , Heff ≡ H − iκa†a = Ω̄a†a− iκa†a

L1ρ ≡ 2κaρa†. (4.7.4)

For pure states |Ψ〉〈Ψ|: L0 generates time-evolution with non-hermitian Hamilto-
nian Heff , but L1 generates a quantum jump;

L0 : |Ψ〉 → −iHeff |Ψ〉
L1 : |Ψ〉 →

√
2κa|Ψ〉. (4.7.5)

The state a|Ψ〉 corresponds to a state with one photon less.

4.7.2.2 Decomposition into Histories

We may write the Master equation Eq.(4.7.2) as

d

dt
ρ(t) = (L0 + L1) ρ(t). (4.7.6)

This can be formally solved as follows: we define

ρ̄(t) ≡ e−L0tρ(t), L̄1(t) ≡ e−L0tL1e
L0t (4.7.7)

 
d

dt
ρ̄(t) = −L0ρ̄(t) + e−L0t (L0 + L1) e

L0tρ̄(t) = L̄1(t)ρ̄(t)

 ρ̄(t) = ρ(0) +

∫ t

0

dt1L̄1(t1)ρ̄(t1)

= ρ(0) +

∫ t

0

dt1L̄1(t1)ρ(0) +

∫ t

0

dt1

∫ t1

0

dt2L̄1(t1)L̄1(t2)ρ̄(t2)

...

= ρ(0) +
∞
∑

n=1

∫ t

0

dt1...

∫ tn

0

dtnL̄1(t1)...L̄1(tn)ρ(0). (4.7.8)
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Transforming back to ρ(t), we can explicitely write this as

ρ(t) = eL0tρ(0)

+

∞
∑

n=1

∫ t

0

dt1...

∫ tn

0

dtne
L0te−L0t1L1e

L0t1e−L0t2L1e
L0t2 ...e−L0tnL1e

L0tnρ(0)

= eL0tρ(0)

+
∞
∑

n=1

∫ t

0

dt1...

∫ tn

0

dtne
L0(t−t1)L1e

L0(t1−t2)L1e
L0(t2−t3)...eL0(tn−1−tn)L1e

L0tnρ(0)

≡ eL0tρ(0) +
∞
∑

n=1

∫ t

0

dt1...

∫ tn

0

dtnρc(t; t1, ..., tn), (4.7.9)

where we defined the un-normalised, conditioned ‘density matrix’ ρc(t; t1, ..., tn)
at time t with n quantum jumps occuring at times t1, ..., tn. This object (the
underlined term in Eq.(4.7.9)) indeed corresponds to the original density matrix
ρ(0), ‘freely’ time-evolved with the effective Hamiltonian Heff during the time
intervals (0, tn], (tn, tn−1],... interrupted by n ‘jumps’ at times tn, tn−1, ..., t1. The
total density matrix ρ(t) at time t then is the sum over all possible ‘trajectories’
with n = 0, ...,∞ jumps occuring in between a ‘free’, effective time evolution.

4.7.2.3 ‘Monte Carlo’ Procedure

The decomposition of histories can now be simulated on a computer in order to
actually solve the Master equation. Here, we only describe the simplest version
(spontaneous emission, no driving field), starting from a pure state |Ψ〉 of the total
system. For more details, see Carmichael or Plenio/Knight.

Step 1: Fix a time step ∆t. Calculate the probability ∆P of photon emission;

∆P ≡ γ∆t〈Ψ|a†a|Ψ〉. (4.7.10)

Step 2: Compare ∆P with a random number 0 ≤ r ≤ 1

• For ∆P > r: ‘emission’, replace

|Ψ〉 → a|Ψ〉
‖a|Ψ〉‖ (4.7.11)

• For ∆P ≤ r: no emission but time-evolution under effective Hamiltonian
Heff ,

|Ψ〉 → (1− i∆tHeff)|Ψ〉
(1−∆P )1/2

(4.7.12)
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Step 3: Go back to Step 1.
This procedure (performed with small time-steps ∆t up to a final time tfinal)

yields a ‘curve’ of simulated states |Ψ(t)〉, t ∈ [0, tfinal] in the system Hilbert space
HS. The procedure is then repeated many times in order to obtain time-dependent
averages 〈Ψ|θ̂|Ψ〉 of observables θ̂.

The entire procedure yields a density operator ρ(t) = |Ψ〉〈Ψ| that solves the
original Master equation, Eq.(4.7.2): in one time step ∆t, we have

ρ(t+ ∆t) = ∆P
a|Ψ(t)〉〈Ψ(t)|a†
‖a|Ψ(t)〉‖2 + (1−∆P )

(1− i∆tHeff)|Ψ(t)〉〈Ψ(t)|(1 + i∆tH†
eff)

(1−∆P )1/2(1−∆P )1/2

= γ∆taρ(t)a† + ρ(t)− i∆t[H, ρ(t)] + κ∆t
(

a†aρ(t) + ρ(t)a†a
)

+O(∆t)2

 
d

dt
ρ(t) = −i[H, ρ(t)]− κ

{

a†aρ+ ρa†a− 2aρa†
}

. (4.7.13)

Remarks:

• The splitting of L as L = L0 + L1 is not unique, there are ususally several
ways of how to ‘unravel’ the Master equation.

• For more complicated Master equations, one has to extend and modify the
above procedure.

4.8 Full Counting Statistics in Master Equations

Let us once more look at a generic form of an n-resolved Master equation in Born-
Markov approximation,

ρ̇
(n)
t = L0ρ

(n)
t + Jρ

(n−1)
t . (4.8.1)

Here, the Jump operator J is related to the quantum jump approach as we saw in
the previous section. Splitting up ρt =

∑∞
n=0 ρ

(n)
t as

ρt =

∞
∑

n=0

∫ t

0

dtn...

∫ t2

0

dt1St−tnJStn−tn−1
J...JSt1ρ(0) (4.8.2)

with St ≡ eL0t, we define the probabilities pn(0, t) = Trρ
(n)
t for n jumps after time

t.
Emary and co-workers have re-formulated the counting problem in an elegant

way: we define the Fourier transform

ρ(χ, t) =
∞
∑

n=0

ρ
(n)
t eiχn (4.8.3)
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with χ called counting variable. At large times t, this quantity decays as

ρ(χ, t→∞) ∼ e−λ0(χ)t, (4.8.4)

where λ0 is the eigenvalue with λ0(χ = 0) = 0 which is unique if the stationary
solution for ρ is unique. The full solution is formally obtained as

ρ(χ, t) = Ω(χ, t− t0)ρ(χ, t0), Ω(χ, t) ≡ e(L0+eiχJ)tθ(t), (4.8.5)

which is a useful starting point for frequency-dependent noise spectra. Here, we
only discuss the time-independent Full Counting Statistics (FCS).

4.8.1 Full Counting Statistics

One first defines a cumulant generating function F via

e−F(χ,t) = Trρ(χ, t) =

∞
∑

n=0

pn(0, t)eiχn → e−λ0(χ)t, t→∞ (4.8.6)

which means

F(χ, t→∞) = λ0(χ)t. (4.8.7)

The cumulants of the probability distributions pn(0, t) at any fixed time t ≥ 0 are
now obtained via differentiation of F(χ) with respect to χ. For example,

C1 ≡ 〈n〉t = −(−i) ∂
∂χ
F(χ, t)|χ=0 (4.8.8)

C2 ≡ σ2
t = 〈n2〉t − 〈n〉2t = −(−i)2 ∂

2

∂χ2
F(χ, t)|χ=0 . (4.8.9)

4.8.2 Central Limit Theorem for Cumulants

The cumulants are all proportional to t at large times t owing to ρ(χ, t → ∞) ∼
e−λ0(χ)t. We therefore introduce the reduced variable

xn ≡
n− 〈n〉t

σt
(4.8.10)

and a corresponding new cumulant generating function K(χ, t),

e−K(χ,t) ≡
∑

n

pn(0, t)eiχxn (4.8.11)

∝ e
λ0

“

χ
σt

”

t−iχ〈n〉t/σt , t→∞. (4.8.12)
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which means

K(χ, t→∞) = iχ〈n〉t/σt − λ0

(

χ

σt

)

t (4.8.13)

A Taylor expansion leads to

K(χ, t→∞) = −t
[

λ0(0) +
χ

σt

λ′0(0) +
1

2

(

χ

σt

)2

λ′′0(0) +
1

6

(

χ

σt

)3

λ′′′0 (0) + ...

]

+ iχ〈n〉t/σt

= −t
[

0 + i
χ〈n〉t
tσt

− 1

2

(

χ

σt

)2
σ2

t

t
+

1

6

(

χ

σt

)3

λ′′′0 (0) + ...

]

+ iχ〈n〉t/σt

=
1

2
χ2 +O

(

1

t1/2

)

. (4.8.14)

This means that the distribution of the reduced variable xn approaches a Gaussian
with mean zero and variance one for t→∞, which is just the central limit theorem
for the case of counting: as discussed by Lenstra (D. Lenstra, Phys. Rev. A 26,
3369 (1982)), we can divide the counting interval into N identical intervals within
which the electron numbers are then almost identically distributed.

4.8.3 Simple Application: Single Resonant Level

For transport through a single level dot in the infinite bias limit, one has

L0 + eiχJ =

(

−ΓL eiχΓR

ΓL −ΓR

)

. (4.8.15)

From the first moment, one obtains the stationary current

〈I〉 ≡ lim
t→∞

1

t
〈n〉t =

C1

t
=

ΓLΓR

ΓL + ΓR

. (4.8.16)

We define the Fano factor

F ≡ C2

C1
= 1− 2ΓLΓR

Γ2
, Γ ≡ ΓL + ΓR. (4.8.17)

This means that the electronic quantum noise (shot noise) through a single reso-
nant level is sub-Poissonian.



5. BEYOND THE MASTER EQUATION

5.1 Feynman-Vernon Influence Functional Theories

5.1.1 Introduction, Motivation

This is a technique to solve the Liouville-von-Neumann Equation,

d

dt
χ(t) = −i[H,χ(t)], χ(t) = e−iHtχ(t = 0)eiHt, (5.1.1)

for the time-dependent density matrix ρ(t) of system-bath Hamiltonians

H ≡ HS +HB +HSB, (5.1.2)

cf. Eq. (1.2.1). It is mainly useful for cases where the system Hamiltonian HS

referees to a single (or a few) degrees of freedom, coupled via HSB to a bath HB

of many degrees of freedom. The technique is based on double path integrals.
The original reference is R. P. Feynman, F. L. Vernon, Ann. Phys. (N. Y.) 24,
118 (1963).

One of the applications of influence functional theories is the systematic deriva-
tion of a semiclassical dynamics (Fokker-Planck equations, ...) from an exact
quantum-mechanical theory:
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5.1.2 Single Path Integrals

We assume a time-independent Hamiltonian for a particle of mass M in a one-
dimensional potential V (x) (the generalisation to larger than one dimension is
easy),

H ≡ T + V, T ≡ p2

2M
. (5.1.3)

The solution of the Schrödinger equation can be written as

|Ψ(t)〉 = e−iHt|Ψ(0)〉, 〈x|Ψ(t)〉 =

∫

dx′G(x, t; x′, t′ = 0)〈x′|Ψ(0)〉, t > 0(5.1.4)

with the help of the propagator

G(x, t; x′) ≡ G(x, t; x′, t′ = 0) ≡ 〈x|e−iHt|x′〉. (5.1.5)

We now use the Trotter product formula

e−λ(T+V ) =
(

e−
λ
N

(T+V )
)N

= lim
N→∞

(

e−
λ
N

T e−
λ
N

V
)N

(5.1.6)

with λ = it (~ = 1) and write (inserting the identity N − 1 times)

G(x, t; x′) = lim
N→∞

∫

dx1...dxN−1

N−1
∏

j=0

〈xj+1|e−
λ
N

T e−
λ
N

V |xj〉, xN ≡ x, x0 ≡ x′

= lim
N→∞

∫

dx1...dxN−1

N−1
∏

j=0

〈xj+1|e−
λ
N

T |xj〉e−
λ
N

V (xj). (5.1.7)

Now use (cf. p 1.15, 1.17),

∫

dp

(2π)
|p〉〈p| = 1, 〈x|p〉 = eipx  

〈x|e− λ
N

T |y〉 = 〈x|e− λ
2MN

p2 |y〉
∫

dp

2π
〈x|p〉e− λ

2MN
p2〈p|y〉 =

∫

db

2π
e−

λ
2MN

p2+LP (x−y) =

√

MN

2πλ
e−MN(x−y)2/2λ,(5.1.8)

where we analytically continued the formula for Gaussian integrals

∫ ∞

−∞
dxe−ax2+bx =

√

π

a
eb2/4a, Re a > 0, (5.1.9)
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a→ ia+η, η > 0, cf. Fresnel integrals and the book by H. Kleinert, ‘Path Integrals’
2nd edition, World Scientific (Singapore, 1995).

We now introduce ε = t/N = λ/iN and have

G(x, t; x′) = lim
N→∞

∫

dx1...dxN−1

(

MN

2πλ

)
N
2

N−1
∏

j=0

exp

[

−MN(xj − xj+1)
2

2λ
− λV (xj)

N

]

= lim
N→∞

∫

dx1...dxN−1

(

M

2πiε

)
N
2

exp

[

iε
N−1
∑

j=0

[

M

2

(xj − xj+1)
2

ε2
− V (xj)

]

]

≡
∫ x

x′

Dxei
R t

0
dt′L(x,ẋ), L(x, ẋ) =

1

2
Mẋ2 − V (x). (5.1.10)

Here, we have defined the Lagrange Function L for the path x(t′), 0 ≤ t′ ≤
t, x(0) ≡ x′, x(t) ≡ x with start point x and end point x′ in configuration space.
The Feynman path integral measure Dx is a symbolic way of writing the limit
N →∞,

Dx = lim
N→∞

∫

dx1...dxN−1

(

M

2πiε

)
N
2

. (5.1.11)

• When calculating the path integral explicitely, one always has to go back to
the finite N version and then take N →∞.

• The path integral represents an integration over all paths of the particle
starting at x′ and ending at x′, not only the ones allowed by the Euler-
Lagrange equations of classical mechanics. Each path is weighted with the
factor exp(iScl), where

Scl ≡
∫ t

0

dt′
1

2
Mẋ(t′)2 − V (x(t′)) (5.1.12)

is the classical action integral of the individual path x(t′). We therefore can
write

G(x, t; x′) =

∫ x

x′

Dx exp(iScl). (5.1.13)

Note, however, that this is only a shorthand notation for the discretised
version in the N →∞ limit.
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5.1.3 Double Path Integrals

Now let us come back to our density operator for our system-bath Hamiltonian,

H ≡ HS +HB +HSB, χ(t) = e−iHtχ(t = 0)eiHt. (5.1.14)

For the moment, let us assume that the system has one degree of freedom q and the
bath the degree of freedom x (the generalisation to many bath degrees of freedom
xi is straightforward). We then use a representation of χ(t) in spatial coordinates,

〈x, q|χ(t)|q′, x′〉 =

∫

dq0dq
′
0dx0dx

′
0〈x, q|e−iHt|q0, x0〉〈x0q0|χ(t = 0)|q′0, x′0〉

× 〈x′0q′0|eiHt|q′, x′〉. (5.1.15)

We trace out the bath degree of freedoms to obtain an effective density matrix

ρ(t) ≡ TrBχ(t) (5.1.16)

of the system,

〈q|ρ(t)|q′〉 =

∫

dq0dq
′
0dx0dx

′
0dx〈x, q|e−iHt|q0, x0〉〈x0q0|χ(t = 0)|q′0, x′0〉

× 〈x′0q′0|eiHt|q′, x〉. (5.1.17)

Now we realise that the Hamiltonian H ≡ HS+HB+HSB induces a classical action
Stotal ≡ SS[q] + SB[x] + SSB[xq], where in the following for notational simplicity
we omit indices at the three S. We use the path integral representation for the
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propagator matrix elements,

〈q|ρ(t)|q′〉 =

∫

dq0dq
′
0dx0dx

′
0dx

∫ q

q0

Dq
∫ x

x0

Dx
∫ q′

q′
0

D∗q′
∫ x′=x

x′
0

D∗x′

× exp [i (S[q] + S[x] + S[xq])− i (S[q′] + S[x′] + S[x′q′])]

× 〈x0q0|χ(t = 0)|q′0, x′0〉

=

∫

dq0dq
′
0

∫ q

q0

Dq
∫ q′

q′
0

D∗q′ exp [i (S[q]− S[q′])]

×
∫

dx0dx
′
0dx

∫ x

x0

Dx
∫ x

x′
0

D∗x′ exp [i (S[x] + S[xq])− i (S[x′] + S[x′q′])]

× 〈x0q0|χ(t = 0)|q′0, x′0〉
= [assume χ(t = 0) = ρ(0)⊗ ρB]

=

∫

dq0dq
′
0〈q0|ρ(0)|q′0〉

∫ q

q0

Dq
∫ q′

q′
0

D∗q′ exp [i (S[q]− S[q′])]F [q(t′), q′(t′)]

F [q(t′), q′(t′)] ≡
∫

dx0dx
′
0dx〈x0|ρB|x′0〉

×
∫ x

x0

Dx
∫ x

x′
0

D∗x′ exp [i (S[x] + S[xq])− i (S[x′] + S[x′q′])]

• In the original Feynman-Vernon method, one assumes a factorising initial
condition χ(t = 0) = ρ(0) ⊗ ρB, although that can be generalised to non-
factorising initial density matrices χ(t = 0), cf. for example H. Grabert, P.
Schramm, G. L. Ingold, Phys. Rep. 168, 115 (1988), or the book by Weiss.

• The functional F [q(t′), q′(t′)] is called influence functional . It describes
the effect of the bath on the time-evolution of the system density matrix.

• For zero system-bath coupling HSB = 0, F [q(t′), q′(t′)] = 1

5.1.4 The Influence Functional

Let us assume that we can write

HSB = HSB[q] = f(q̂)X̂ (5.1.18)
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with some given bath operator X̂ and some given function f(q̂) of the system
coordinate q̂. The influence functional can then be written as

F [q(t′), q′(t′)] ≡
∫

dx0dx
′
0dx〈x0|ρB|x′0〉

×
∫ x

x0

Dx exp [i (S[x] + S[xq])]

∫ x

x′
0

D∗x′ exp [−i (S[x′] + S[x′q′])]

=

∫

dx0dx
′
0dx〈x0|ρB|x′0〉〈x|UB[q]x0〉 [〈x|UB[q′]x′0〉]

∗

= TrB

(

ρBU
†
B[q′]UB[q]

)

, (5.1.19)

where UB[q] is the unitary time-evolution operator for the time-dependent Hamil-
tonian HB + HSB[q] with a given q(t′), 0 ≤ t′ ≤ t. Note that q(t′) and q′(t′) are
independent paths, they enter as ‘external’ parameters into the influence func-
tional which then in the final expression for 〈q|ρ(t)|q′〉 is integrated over all paths
q(t′) and q′(t′). This form is useful to recognise general properties of F [q(t′), q′(t′)],

• q(t′) = q′(t′) F [q(t′), q′(t′)] = 1.

• |F [q(t′), q′(t′)]| ≤ 1.

The

Operator Form of Influence Functional

F [q(t′), q′(t′)] ≡ TrB

(

ρBU
†
B[q′]UB[q]

)

,
(5.1.20)

is particularly useful for discussing the coupling to other baths (spin-baths, Fermi
baths etc.)

5.1.5 Influence Functional for Coupling to Harmonic Oscillators

We start with the coupling of the system to a single harmonic oscillator,

HB +HSB[q] ≡ HB(t) ≡ p2

2M
+

1

2
MΩ2x2 + g(t)x, (5.1.21)

where without loss of generality we set f [q(t)] = g(t).

5.1.5.1 Time-evolution operator UB[q] ≡ UB(t)

This is given by the solution of the Schrödinger equation,

i
∂

∂t
UB(t) = HB(t)UB(t), UB(0) = 1, (5.1.22)
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the formal solution of which is

UB(t) = Te−i
R t

0
dt′HB(t′) (5.1.23)

with the time-ordering operator T. Now, UB(t) can’t be directly calculated from
Eq. (5.1.23) because the HB(t′) do not commute with each other at different times
1. One solution is to calculate UB(t) by direct evaluation of the path integral which
is tedious but can be done. Here, we show an alternative solution: introduce the
interaction picture and write

HB(t) = H0 + g(t)x ≡ H0 + V (t)

UB(t) = e−iH0tŨ(t), i∂tŨ(t) = Ṽ (t)Ũ(t)

Ṽ (t) = eiH0tV (t)e−iH0t = g(t)

(

x̂ cos Ωt+
p̂

MΩ
sin Ωt

)

. (5.1.24)

We solve for Ũ(t) by making the general ansatz

Ũ(t) = e−iA(t)e−iB(t)x̂e−iC(t)p̂ (5.1.25)

with functions A(t) etc to be determined by taking the time-derivative of Ũ(t).
This yields

i
∂

∂t
Ũ(t) = Ȧ(t)Ũ(t) + x̂Ḃ(t)Ũ(t) + Ċ(t)e−iA(t)e−iB(t)x̂p̂e−iC(t)p̂

= Ȧ(t)Ũ(t) + x̂Ḃ(t)Ũ(t) + Ċ(t)e−iA(t)
(

p̂e−iB(t)x̂ +
[

e−iB(t)x̂, p̂
]

)

e−iC(t)p̂

= use [e−iαx, p] = i∂xe
−iαx = αe−iαx

=
(

Ȧ(t) + x̂Ḃ(t) + p̂Ċ(t) +B(t)Ċ(t)
)

Ũ(t) ≡ Ṽ (t)Ũ(t). (5.1.26)

Therefore, comparing with the expression for Ṽ (t) yields

B(t) =

∫ t

0

dt′g(t′) cos Ωt′, C(t) =
1

MΩ

∫ t

0

dt′g(t′) sin Ωt′

A(t) = − 1

MΩ

∫ t

0

dt′
∫ t′

0

dsg(t′)g(s) cosΩs sin Ωt′ (5.1.27)

and therefore,

〈x|UB(t)|x′〉 = 〈x|e−iH0te−iA(t)e−iB(t)x̂e−iC(t)p̂|x′〉
= e−iA(t)〈x|e−iH0te−iB(t)x̂|x′ + C(t)〉
= e−iA(t)〈x|e−iH0t|x′ + C(t)〉e−iB(t)[x′+C(t)] (5.1.28)

1 This is a dangerous source of mistakes, cf. J. H. Reina, L. Quiroga, and N. F. Johnson,
‘Decoherence of quantum registers’, Phys. Rev. A 65, 032326 (2002)
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In order to get explicit results here, we now need the propagator matrix elements
for the harmonic oscillator,

〈x|e−iH0t|x′〉 =

√

MΩ

2πi sin Ωt
exp

{

iMΩ

2 sinΩt

[(

x2 + x′2
)

cos Ωt− 2xx′
]

}

. (5.1.29)

These again can either be obtained by direct evaluation of the single path integral
for the harmonic oscillator or (somewhat simpler) by using the stationary eigen-
states. The matrix element for the driven harmonic oscillator, 〈x|UB(t)|x′〉, can
then after some transformations (straightforward algebra with trig functions) be
written as

〈x|UB(t)|x′〉 =

√

MΩ

2πi sin Ωt
exp {iS(x, t; x′)}

S(x, t; x′) ≡ iMΩ

2 sin Ωt

[

(

x2 + x′2
)

cos Ωt− 2xx′

− 2x

MΩ

∫ t

0

dt′g(t′) sin Ωt′ − 2x′

MΩ

∫ t

0

dt′g(t′) sin Ω(t− t′)

− 2

M2Ω2

∫ t

0

∫ t′

0

dt′dsg(t′)g(s) sinΩ(t− t′) sin Ωs
]

. (5.1.30)

This coincides with the result given in L. S. Schulman, Techniques and Applications
of Path Integration, Wiley (1981).

5.1.5.2 Influence Phase

The influence phase can be obtained directly from its definition, Eq. (5.1.19),

F [q(t′), q′(t′)] ≡ TrB

(

ρBU
†
B[q′]UB[q]

)

= TrB

(

ρBŨ
†[q′]eiH0te−iH0tŨ [q]

)

= TrB

(

ρBe
iC′p̂eiB′x̂eiA′

e−iAe−iBx̂e−iCp̂
)

= ei(A′−A)

∫

dx〈x|ρB|eiC′p̂ei(B′−B)x̂e−iCp̂|x〉

= ei(A′−A)

∫

dx〈x|ρB|x+ C − C ′〉ei(B′−B)(x+C),

where for a moment we abbreviated A, A′ etc. for the integrals Eq. (5.1.27)
with g(t′) ≡ f(q(t′)) in the undashed and g′(t′) ≡ f(q′(t′)) in the dashed (not
the derivative) quantities. We now assume a thermal equilibrium for the density
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operator ρB,

ρB =
e−βH0

Z
, Z = Tre−βH0 =

1

2 sinh βΩ/2
(5.1.31)

〈x|ρB|x′〉 =
1

Z

√

MΩ

2π sinh Ωβ
exp

{ −MΩ

2 sinh βΩ

[(

x2 + x′2
)

cosh βΩ− 2xx′
]

}

,

where we used the matrix elements of the propagator 〈x|e−iH0t|x′〉 for it = β (Wick
rotation of the time t). Doing the Gaussian integral yields

F [q(t′), q′(t′)] = ei(A′−A)

∫

dx〈x|ρB|x+ C − C ′〉ei(B′−B)(x+C)

= ei(A′−A) 1

Z

√

MΩ

2π sinh Ωβ

∫

dxei(B′−B)(x+C)

× exp

{

− MΩ

2 sinh βΩ

[(

x2 + (x+ C − C ′)2
)

cosh βΩ− 2x(x+ C − C ′)
]

}

=

[

use tanh
x

2
=

cosh x− 1

sinh x
, coth x− 1

2
tanh

x

2
=

1

2
coth

x

2

]

= exp

{

i(A′ −A) +
i

2
(B′ −B)(C + C ′)

}

× exp

{

− 1

4MΩ
coth

βω

2

[

(B′ − B)2 +M2Ω2(C − C ′)2
]

}

. (5.1.32)

the last step now is to re-insert the definitions of A,B,C,A′, B′, C ′. The resulting
long expression

F [q(t′), q′(t′)] (5.1.33)

= exp

{

− 1

4MΩ
coth

βω

2

∫ t

0

dt′
∫ t

0

ds(g′t′ − gt′)(g
′
s − gs) cosΩ(t′ − s)

}

× exp

{

− i

MΩ

∫ t

0

dt′
∫ t′

0

ds(g′t′g
′
s − gt′gs) cos Ωs sin Ωt′

}

× exp

{

i

2MΩ

∫ t

0

dt′
∫ t

0

ds(g′t′g
′
s − gt′gs) cos Ωt′ sin Ωs

}

× exp

{

i

2MΩ

∫ t

0

dt′
∫ t

0

ds(g′t′gs − gt′g
′
s) cos Ωt′ sin Ωs

}

(5.1.34)

can be further simplified with sinα cosβ = 1
2
[sin(α−β)+sin(α+β)] and carefully

considering the limits of the integrals and the symmetry of the integrands. Re-
installing furthermore gt′ ≡ g(t′) ≡ f [qt′ ] (we write the time-arguments as an index
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to avoid bulky expressions with too many brackets), the result can be written in
a compact form, the Feynman-Vernon Influence Functional for the coupling of a
single particle to a single harmonic oscillator in thermal equilibrium,

H = HS[q] +HB[x] +HSB[xq] = HS[q] +
p2

2M
+

1

2
MΩ2x2 + f [q]x

〈q|ρ(t)|q′〉 =

∫

dq0dq
′
0〈q0|ρ(0)|q′0〉

∫ q

q0

Dq
∫ q′

q′
0

D∗q′ exp [i (S[q]− S[q′])]F [qt′, q
′
t′ ]

F [qt′ , q
′
t′ ] = exp {−Φ[qt′ , q

′
t′ ]} Influence Functional

Φ[qt′ , q
′
t′ ] =

∫ t

0

dt′
∫ t′

0

ds {f [qt′ ]− f [q′t′ ]} {L(t′ − s)f [qs]− L∗(t′ − s)f [q′s]}

L(τ) =
1

2MΩ

(

coth
βΩ

2
cos Ωτ − i sin Ωτ

)

. (5.1.35)

5.1.5.3 Linear Response, Fluctuation-Dissipation Theorem for L(t)

We first check that

L(t) = 〈x(t)x〉0, (5.1.36)

the (van-Hove) position correlation function of the harmonic oscillator with co-
ordinate x in thermal equilibrium: write

x =

√

1

2MΩ

(

a + a†
)

, x(t) =

√

1

2MΩ

(

ae−iΩt + a†eiΩt
)

L(t) = 〈x(t)x〉0 =
1

2MΩ
〈aa†e−iΩt + a†aeiΩt〉 =

1

2MΩ

{

(1 + nB)e−iΩt + nBe
iΩt
}

=
1

2MΩ
{(1 + 2nB) cos Ωt− i sin Ωt} =

1

2MΩ

{

coth
βΩ

2
cos Ωt− i sin Ωt

}

,(5.1.37)

where we again have used the relation

1 + 2nB = 1 +
2

eβΩ − 1
=
eβΩ + 1

eβΩ − 1
= coth

βΩ

2
. (5.1.38)

Now let us have another look at this function. Consider the Hamiltonian

HB[x] +HSB[xq] ≡ H(t) =
p2

2M
+

1

2
MΩ2x2 + f(t)x, (5.1.39)

where we consider the function f [qt] = f(t) for a fixed path qt as an external
classical force acting on the oscillator. The density matrix ρB(t) of the oscillator



5. Beyond the Master Equation 92

in the interaction picture fulfills, cf Eq.(1.2.6),

ρ̃B(t) = ρ0 − i
∫ t

0

dt′f(t′)[x̃(t′), ρ̃B(t′)] (5.1.40)

≈ ρ0 − i
∫ t

0

dt′f(t′)[x̃(t′), ρ0] 1st order,

where ρ0 = ρB(t = 0) is assumed to be the thermal equilibrium density matrix.
The expectation value of the position is then

〈x〉t ≡ TrρB(t)x = Trρ̃B(t)x̃(t)

= 〈x〉0 − i
∫ t

0

dt′f(t′)Tr[x̃(t′), ρ0]x̃(t) = 〈x〉0 − i
∫ t

0

dt′f(t′)Trρ0[x̃(t), x̃(t
′)]

= 〈x〉0 − i
∫ t

0

dt′f(t′)〈[x̃(t), x̃(t′)]〉0, 1st order.

We check that

〈[x̃(t), x̃(t′)]〉0 = 〈[x̃(t− t′), x̃(0)]〉0 (5.1.41)

(definition of ρ0 !) and define the linear susceptibility

χxx(t− t′) ≡ iθ(t− t′)〈[x̃(t− t′), x̃(0)]〉0, (5.1.42)

so that we can write

〈x〉t = 〈x〉0 − i
∫ t

0

dt′χxx(t− t′)f(t′). (5.1.43)

The theta function in χxx(t− t′) guarantees causality: the response of x at time t
is determined by the system at earlier times t′ ≤ t only.

Define additional functions and their symmetric and antisymmetric (in time)
linear combinations,

C+(t) ≡ 〈x̃(t)x〉0, C−(t) ≡ 〈x̃(−t)x〉0 = 〈xx̃(t)〉0
C±(t) ≡ S(t)± iA(t) (5.1.44)

S(t) = S(−t) =
1

2
〈x̃(t)x+ xx̃(t)〉0, A(t) = −A(−t) =

1

2i
〈x̃(t)x− xx̃(t)〉0.

We thus have

χxx(t) = −2θ(t)A(t) (5.1.45)
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We define the Fourier transforms,

Ĉ±(ω) ≡
∫ ∞

−∞
dtC±(t)eiωt, Ŝ(ω) ≡

∫ ∞

−∞
dtS(t)eiωt, Â(ω) ≡

∫ ∞

−∞
dtA(t)eiωt

χ̂(ω) ≡
∫ ∞

0

dtχ(t)eiωt(5.1.46)

and use

Tr(e−βHBxx̃(t)) = Tr(e−βHBxeβHBe−βHB x̃(t)) = Tr(x̃(iβ)e−βHB x̃(t))

= Tr(e−βHB x̃(t)x̃(iβ)) = Tr(e−βHB x̃(t− iβ)x)

 C−(t) = C+(t− iβ), (5.1.47)

and therefore in the Fourier transform

C−(ω) = C+(ω)e−βω (detailed balance relation). (5.1.48)

We now define real and imaginary part of the Fourier transform of the suscepti-
bility,

χ̂xx(ω) ≡ χ̂′
xx(ω) + iχ̂′′

xx(ω). (5.1.49)

Then,

χ̂′′(ω) = Im

∫ ∞

0

dtχ(t)eiωt = −2Im

∫ ∞

0

dtA(t)eiωt = −2
1

2i

∫ ∞

0

dt
(

A(t)eiωt −A(t)e−iωt
)

= i

∫ ∞

0

dt

(

A(t)eiωt −
∫ 0

−∞
dtA(−t)eiωt

)

= [A(t) = −A(−t)] = i

∫ ∞

−∞
dtA(t)eiωt

= iÂ(ω) = i
1

2i

(

Ĉ+(ω)− Ĉ−(ω)
)

=
1

2

(

1− e−βω
)

Ĉ+(ω) (5.1.50)

The relation

χ̂′′(ω) =
1

2

(

1− e−βω
)

Ĉ+(ω) (5.1.51)

is called Fluctuation-Dissipation Theorem (FDT) (Callen, Welton 1951) and
can be re-written, using

Ŝ(ω) =
1

2
(Ĉ+(ω) + Ĉ−(ω)) =

1

2

(

1 + e−βω
)

Ĉ+(ω), (5.1.52)

leading to

Ŝ(ω) = χ̂′′(ω) coth
βω

2
. (5.1.53)
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Example- harmonic oscillator: we have

χ(t) = iθ(t)〈[x(t), x]〉0 =
iθ(t)

2MΩ

(

e−iΩt − eiΩt
)

 χ̂xx(ω) = Im
i

2MΩ

∫ ∞

0

dt
(

e−iΩt − eiΩt
)

eiωt

=
1

2MΩ

∫ ∞

0

dt {cos(ω − Ω)t− cos(ω + Ω)t}

=
1

2MΩ

1

2

∫ ∞

−∞
dt {cos(ω − Ω)t− cos(ω + Ω)t} , (5.1.54)

therefore

χ̂xx(ω) =
1

2MΩ

2π

2
{δ(ω − Ω)− δ(ω + Ω)}. (5.1.55)

On the other hand,

C(t) ≡ L(t) = 〈x̃(t)x〉0 =
1

2MΩ

{

coth
βΩ

2
cos Ωt− i sin Ωt

}

 S(t) =
1

2MΩ
coth

βΩ

2
cos Ωt

 S(ω) =
1

2MΩ
π {δ(ω + Ω) + δ(ω − Ω)} coth

βΩ

2

=
1

2MΩ
π {−δ(ω + Ω) + δ(ω − Ω)} coth

βω

2
= χ̂xx(ω) coth

βω

2
,(5.1.56)

which is consistent with the FDT.

5.1.6 Applications: Linear Coupling, Damped Harmonic Oscillator

Our result for the influence phase can immediately be generalised to a single par-
ticle, coupled to a system of N > 1 harmonic oscillators in thermal equilibrium,

H = HS[q] +HB[x] +HSB[xq] = HS[q] +
N
∑

α=1

p2
α

2Mα

+
1

2
MαΩαx

2 + fα[q]xα

F [qt′ , q
′
t′ ] = exp {−Φ[qt′ , q

′
t′ ]} Influence Functional

Φ[qt′ , q
′
t′ ] =

N
∑

α=1

∫ t

0

dt′
∫ t′

0

ds {fα[qt′ ]− fα[q′t′ ]} {Sα(t′ − s)fα[qs]− S∗
α(t′ − s)fα[q′s]}

Sα(τ) =
1

2MαΩα

(

coth
βΩα

2
cos Ωατ − i sin Ωατ

)

. (5.1.57)
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5.1.6.1 Linear Coupling

In many applications, one assumes (often for simplicity) a linear coupling to the
bath,

HB[x] +HSB[xq] =
N
∑

α=1

[

p2
α

2Mα
+

1

2
MαΩ2

α

(

xα −
cα

MαΩ2
α

q

)2
]

=

N
∑

α=1

[

p2
α

2Mα
+

1

2
MαΩ2

αx
2
α − cαqxα +

1

2

c2α
MαΩ2

α

q2

]

F [qt′ , q
′
t′ ] = exp {−Φ[qt′ , q

′
t′ ]} Influence Functional

Φ[qt′ , q
′
t′ ] =

∫ t

0

dt′
∫ t′

0

ds {qt′ − q′t′} {L(t′ − s)qs − L∗(t′ − s)q′s}

+ i
µ

2

∫ t

0

dt′
{

q2
t′ − (q′t′)

2
}

(5.1.58)

Here, the kernel L(t) and the spectral density J(ω) are

L(τ) ≡ 1
π

∫∞
0
dωJ(ω)

(

coth βω
2

cosωτ − i sinωτ
)

J(ω) ≡ π
2

∑N
α=1

c2α
MαΩα

δ(ω − Ωα). (5.1.59)

Note that in this form, an additional term appears in HSB as a potential

Vcounter(q) ≡
1

2
µq2, µ ≡ 1

2

∑

α

c2α
MαΩ2

α

=
2

π

∫ ∞

0

J(ω)

ω
. (5.1.60)

Since the action S appears as exp(iS[q]) in the path integral for q and exp(−iS[q])
in the path integral for q′, we could absorb the counter term into the influence
phase as

exp(i
µ

2

∫ t

0

dt′
{

q2
t′ − (q′t′)

2
}

).

Note that the entire information on the coupling to the bath is now contained in
the spectral density J(ω), which we have defined following the notation of Weiss,
‘Quantum Dissipative Systems’.

5.1.6.2 Propagator for Damped Harmonic Oscillator

One now has to face the tedious task to (exactly) evaluate the double path integral,
which can be done because it is Gaussian. Reference: H. Grabert, P. Schramm,
and G.-L. Ingold, Phys. Rep. 168, 115 (1988).

Comparison to Master Equation Approach: R. Karrlein, H. Grabert, Phys.
Rev. E 55, 153 (1997).
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5.1.7 Another Look at Influence Functionals for General Baths

(This sub-section is partly due to private communications from W. Zwerger). Feyn-
man and Vernon realised that the coupling of a system S to any bath B can be
mapped onto the coupling to an equivalent oscillator bath, if the coupling is weak
and second order perturbation theory can be applied: let us have another look at
the operator form of the influence functional, Eq. (5.1.20),

F [q(t′), q′(t′)] ≡ TrB

(

ρBU
†
B[q′]UB[q]

)

HB(t) = H0 + V (t), H ′
B(t) = H0 + V ′(t), (5.1.61)

where UB[q] is the time-evolution operator for HB(t) and U †
B[q′] the (backwards

in time) evolution operator for H ′
B(t). Here, HB(t) and H ′

B(t) refer to different
paths q and q′.

Example: For a Fermi bath, we could have

H0 =
∑

k

εkc
†
kck, V (t) ≡ V [qt] =

∑

kk′

Mkk′ exp(i(k − k′)qt)c†k′ck. (5.1.62)

where c†k creates a Fermion with quantum number k.

We again introduce the interaction picture and write

UB[q] = e−iH0t

{

1 + i

∫ t

0

dt′Ṽ (t′)−
∫ t

0

∫ t′

0

dt′dsṼ (t′)Ṽ (s) + ...

}

U †
B[q′] =

{

1− i
∫ t

0

dt′Ṽ ′(t′)−
∫ t

0

∫ t′

0

dt′dsṼ ′(s)Ṽ ′(t′) + ...

}

eiH0t(5.1.63)
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The product of the two time-evolution operators therefore becomes

U †
B[q′]UB[q] = 1− i

∫ t

0

dt′
{

Ṽ ′(t′)− Ṽ (t′)
}

+

∫ t

0

dt′Ṽ ′(t′)

∫ t

0

dsṼ (s)

−
∫ t

0

∫ t′

0

dt′ds
{

Ṽ ′(s)Ṽ ′(t′) + Ṽ (t′)Ṽ (s)
}

+ ...

= 1− i
∫ t

0

dt′
{

Ṽ ′(t′)− Ṽ (t′)
}

+
1

2

∫ t

0

∫ t

0

dt′ds
{

Ṽ ′(t′)Ṽ (s) + Ṽ ′(s)Ṽ (t′)
}

−
∫ t

0

∫ t′

0

dt′ds
{

Ṽ ′(s)Ṽ ′(t′) + Ṽ (t′)Ṽ (s)
}

+ ...

= 1− i
∫ t

0

dt′
{

Ṽ ′(t′)− Ṽ (t′)
}

+

∫ t

0

∫ t′

0

dt′ds
{

Ṽ ′(t′)Ṽ (s) + Ṽ ′(s)Ṽ (t′)
}

−
∫ t

0

∫ t′

0

dt′ds
{

Ṽ ′(s)Ṽ ′(t′) + Ṽ (t′)Ṽ (s)
}

+ ...

= 1− i
∫ t

0

dt′
{

Ṽ ′(t′)− Ṽ (t′)
}

+

∫ t

0

∫ t′

0

dt′ds
{[

Ṽ ′(t′)− Ṽ (t′)
]

Ṽ (s)
}

−
∫ t

0

∫ t′

0

dt′ds
{

Ṽ ′(s)
[

Ṽ ′(t′)− Ṽ (t′)
]}

+ ... (5.1.64)

In order to be a little bit more definite, a useful parametrisation of the interaction
operators might be

V̂ (t) ≡
∑

αβ

gαβ(t)X̂αβ, V̂ ′(t) ≡
∑

αβ

g′αβ(t)X̂αβ , (5.1.65)

with bath operators X̂αβ. Note that this comprises the cases considered so far
(harmonic oscillator, Fermi bath). Taking the trace over ρB, we obtain

F [q(t′), q′(t′)] ≡ TrB

(

ρBU
†
B[q′]UB[q]

)

≡ 〈U †
B[q′]UB[q]〉0

= 1− i
∑

αβ

∫ t

0

dt′
{

g′αβ(t′)− gαβ(t′)
}

〈X̃αβ(t′)〉0

+
∑

αβγδ

∫ t

0

∫ t′

0

dt′ds
{

g′αβ(t′)− gαβ(t′)
}

[

gγδ(s)〈X̃αβ(t′)X̃γδ(s)〉0

− g′γδ(s)〈X̃γδ(s)X̃αβ(t′)〉0
]

+ ... (5.1.66)

Introducing the correlation tensor

Lαβγδ(t
′, s) ≡ 〈X̃αβ(t′)X̃γδ(s)〉0, (5.1.67)
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this can be written as

F [q(t′), q′(t′)] = 1− i
∑

αβ

∫ t

0

dt′
{

g′αβ(t′)− gαβ(t′)
}

〈X̃αβ(t′)〉0

+
∑

αβγδ

∫ t

0

∫ t′

0

dt′ds
{

g′αβ(t′)− gαβ(t′)
}

[

gγδ(s)Lαβγδ(t
′, s)− g′γδ(s)Lγδαβ(s, t′)

]

+ ... (5.1.68)

5.1.7.1 ‘Re-Exponentiation’

So far this expression for the influence functional is very general, but it is only
to second order in the system-bath interaction! In principle, one should write
down the entire Dyson series for U †

B[q′] and UB[q] and sum up all the terms of the
resulting expression in order to obtain the final result for the influence functional.
Clearly, this is in general not possible, and it is even not guaranteed that such an
expression would be convergent and mathematically meaningful.

For simplicity, let us assume that the linear term vanishes,

〈X̃αβ(t′)〉0 ≡ 0. (5.1.69)

For example, this is fullfilled for coupling to a linear harmonic oscillator, X̂αβ ≡
δαβ x̂ with x̂ the oscillator coordinate.

At least some contributions to the infinite series for F [q(t′), q′(t′)] can be
summed up in closed form: this is done by ‘re-exponentiation’. In fact, up to
second order in the system-bath interaction, we can write (summarising all our
definitions so far)

V̂ [qt] ≡
∑

αβ

gαβ[qt]X̂αβ, Lαβγδ(t
′, s) ≡ 〈X̃αβ(t′)X̃γδ(s)〉0

Fpert[q(t′), q′(t′)] = exp{−Φpert[q(t′), q′(t′)]},

Φpert[q(t′), q′(t′)] =
∑

αβγδ

∫ t

0

∫ t′

0

dt′ds {gαβ [qt′ ]− gαβ[q′t′ ]}

×
[

gγδ[qs]Lαβγδ(t
′, s)− gγδ[q

′
s]Lγδαβ(s, t′)

]

(5.1.70)

by simply expanding the exponential. The ‘re-exponentiation’ automatically sums
up an infinite number of terms. Such ‘exponentiation’ schemes are known, e.g.,
from cluster expansions of the statistical operator e−βĤ . The important observa-
tion here is that for the harmonic oscillator case, this re-exponentiation becomes
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exact: with V̂ = f [q]x̂ and V̂ ′ = f [q′]x̂, we recognise

Φ[q(t′), q′(t′)] =

∫ t

0

∫ t′

0

dt′ds {f [qt′ ]− f [q′t′ ]} {L(t′, s)f [qs]− L(s, t′)f [q′s]} ,(5.1.71)

L(t′, s) = 〈x(t′)x(s)〉0 = 〈x(t′ − s)x〉0 = L(t′ − s)
L(s, t′) = 〈x(s)x(t′)〉0 = 〈x(t′)x(s)〉∗0 = L∗(t′ − s), (5.1.72)

and therefore by comparison with Eq. (5.1.35) we find that both expressions
co-incide.

5.1.8 ‘Semiclassical’ Limit for Damped Single Particle Motion

References: A. Schmid, J. Low Temp. Phys. 49, 609 (1982); W. Zwerger, Phys.
Rev. B 35, 4737 (1987); N. Janssen and W. Zwerger, Phys. Rev. B 52, 9406
(1995); U. Weiss, ‘Quantum Dissipative Systems’ (2nd ed.), World Scientific (Sin-
gapore) (1999), ch. 5.5.

Let us assume a single particle in a potential V (q),

HS =
p2

2m
+ V (q). (5.1.73)

We consider the reduced density matrix ρ(t) of the system S,

ρ(x, y, t) ≡ 〈x+ y/2|ρ(t)|x− y/2〉, (5.1.74)

where we set

q = x+ y/2, q′ = x− y/2; x =
1

2
(q + q′) , y = q − q′, (5.1.75)

thus introducing the ‘center-of-mass’ coordinate x and the relative coordinate y.
Note that the Wigner distribution function f(x, p, t) is obtained from the
density matrix as a Fourier transform with respect to the relativ co-ordinate y,

f(x, p, t) =

∫ ∞

−∞

dy

2π
ρ(x, y, t)e−ipy. (5.1.76)

Correspondingly, in the double path integral we integrate over center-of-mass-
coordinate and relative-coordinate paths,

xt =
1

2
(qt + q′t) , yt = qt − q′t (5.1.77)
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The Jacobian of the corresponding discretised variable transformation is one whence
one can write

ρ(x, y, t) =

∫

dx0dy0ρ0(x0, y0)J(x, y, t; x0, y0)

J(x, y, t; x0, y0) =

∫ x

x0

Dx
∫ y

y0

Dy exp

[

i

∫ t

0

dt′ (Mẋt′ ẏt′ − V (x+ y/2) + V (x− y/2))

]

× exp {−Φ[xt′ , yt′]} (5.1.78)

5.1.8.1 Expansion of the Influence Phase

In order to derive a semiclassical limit from the double path integral, the central
idea is to expand the influence phase in powers of the paths yt′. The yt′-paths
describe ‘off-diagonal excursions’ from the diagonal paths xt′ in the time-evolution
of ρ(t). We write

F [xt′ , yt′] = exp {−Φ[xt′ , yt′]} Influence Functional

−Φ[xt′ , yt′] = −
N
∑

α=1

∫ t

0

dt′
∫ t′

0

ds {fα[xt′ + yt′/2]− fα[xt′ − yt′/2]}

× {Sα(t′ − s)fα[xs + ys/2]− S∗
α(t′ − s)fα[xs − ys/2]}

= −
N
∑

α=1

∫ t

0

dt′
∫ t′

0

dsf ′
α[xt′ ]yt′

× {Re Sα(t′ − s)f ′
α[xs]ys + 2iIm Sα(t′ − s)fα[xs]}+O [ys]

3 .(5.1.79)

In the semiclassical approximation, we thus can write the influence functional as

Fsc[xt′ , yt′] ≡ exp {−Φ[xt′ , yt′]} = exp {iφ1 − φ2} (5.1.80)

iφ1 ≡ −i
∫ t

0

dt′
∫ t′

0

dsϕ1[xs]yt′ , ϕ1[xs] ≡
N
∑

α=1

2Im Sα(t′ − s)f ′
α[xt′ ]fα[xs]

φ2 ≡
∫ t

0

dt′
∫ t′

0

dsϕ2[xs]yt′ys, ϕ2[xs] ≡
N
∑

α=1

Re Sα(t′ − s)f ′
α[xt′ ]f

′
α[xs].

Exercise: Check that for the linear model (coupling linear in q), Eq.(5.1.58), the
influence phase becomes

Φ[xt′ , yt′] =

∫ t

0

dt′
∫ t′

0

dsyt′ {Re L(t′ − s)ys + 2iIm L(t′ − s)xs}

+ iµ

∫ t

0

dt′xt′yt′ . (5.1.81)
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For the linear model, the semiclassical expansion of the influence phase is therefore
exact.

In a similar way, we expand the potential V (x ± y/2) in the action in powers
of the off-diagonal path y, thus arriving at

ρsc(x, y, t) =

∫

dx0dy0ρ0(x0, y0)Jsc(x, y, t; x0, y0) (5.1.82)

Jsc(x, y, t; x0, y0) =

∫ x

x0

Dx
∫ y

y0

Dy exp

[

i

∫ t

0

dt′ (Mẋt′ ẏt′ − V ′(xt′)yt′)

]

× exp

{

−i
∫ t

0

dt′
∫ t′

0

dsϕ1[xs]yt′ −
∫ t

0

dt′
∫ t′

0

dsϕ2[xs]yt′ys

}

.

The first step now is to perform an integration by parts to transform the term
Mẋt′ ẏt′ , and to re-arrange

Jsc(x, y, t; x0, y0) =

∫ x

x0

Dx
∫ y

y0

Dy exp [iM(ẋty − ẋ0y0)]

× exp

[

−i
∫ t

0

dt′yt′ {Mẍt′ + V ′(xt′) + FB[xs, t
′]} −

∫ t

0

dt′
∫ t′

0

dsϕ2[xs]yt′ys

]

FB[xs, t
′] ≡

∫ t′

0

dsϕ1[xs] =

∫ t′

0

ds

N
∑

α=1

2Im Sα(t′ − s)f ′
α[xt′ ]fα[xs]

= −
N
∑

α=1

∫ t′

0

ds
sin Ωα(t′ − s)

MαΩα

f ′
α[xt′ ]fα[xs]. (5.1.83)

This is an interesting expression: the term in the brackets {} looks likely to lead
to a classical equation of motion,

Mẍt′ + V ′(xt′) + FB[xs, t
′] = 0, (5.1.84)

where −V ′(xt′) is the force due to the potential V (x), and FB[xs, t
′] is a retarded,

position-dependent deterministic friction force due to the bath. In addition, how-
ever, there is the term quadratic in y containing the function

ϕ2[xs] ≡
N
∑

α=1

Re Sα(t′ − s)f ′
α[xt′ ]f

′
α[xs]

=
N
∑

α=1

1

2MαΩα

coth
βΩα

2
cos Ωα(t′ − s)f ′

α[xt′ ]f
′
α[xs], (5.1.85)

which is the only place where the bath temperature T = 1/β enters.
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5.1.8.2 Completing the Square

This is a useful trick when dealing with functional integrals. We start from the
identity for a real symmetric, positive definite n× n matrix A,

e−
1

2
yAy = [2π detA]−n/2 ∫∞

−∞ dx1...dxne
− 1

2
xA−1x+iyx (5.1.86)

Exercise: Prove this identity. Hint: use the standard formula for Gaussian inte-
grals and a linear transformation that diagonalises A.

We now obtain

exp

[

−1

2

∫ t

0

∫ t

0

dt′dsA(t′, s)yt′ys

]

= lim
N→∞

exp

[

−ε
2

2

N−1
∑

j,k=0

Ajkyjyk

]

= lim
N→∞

[2π detA]−N/2

∫

dξ0...dξN−1 exp

[

−ε
2

2

N−1
∑

j,k=0

ξj
A−1

jk

ε2
ξk + iε

N−1
∑

j=0

yjξj

]

=

∫

Dξ exp

[

−
∫ t

0

∫ t

0

dt′dsξt′A
−1(t′, s)ξs + i

∫ t

0

dt′yt′ξt′

]

(5.1.87)

Dξ ≡ lim
N→∞

[2π detA]−N/2 dξ0...dξN−1

A(t′, s) = ϕ2[x](t
′, s), cf. Eq. (5.1.85).

Here, we have used the fact that the discrete inverse of an operator needs to be
divided by ε2,

A−1(t′, s)↔ 1

ε2
A−1

jk . (5.1.88)

This can be derived by considering the discrete equivalent of the delta function
and leads to the following translation table between continuous and discrete:

f(x) =

∫

dx′δ(x− x′)f(x′), fm =
∑

m

δmnfn = ε
∑

m

δmn

ε
fn

 δ(x− x′)↔ δmn

ε
∫

dx′A−1(x, x′)A(x′, x′′) = δ(x− x′), ε
∑

m′

A−1
mm′

ε2
Am′m′′ =

δmm′′

ε

 A−1(x, x′)↔ 1

ε2
A−1

mm′ . (5.1.89)
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Now using the fact that ϕ2 is symmetric in t′ and s, we have

∫ t

0

dt′
∫ t′

0

dsϕ2[xs]yt′ys =
1

2

∫ t

0

dt

∫ t

0

dsϕ2[xs]yt′ys (5.1.90)

and therefore

Jsc(x, y, t; x0, y0) =

∫ x

x0

Dx
∫ y

y0

DyeiM(ẋty−ẋ0y0)

× exp

[

−i
∫ t

0

dt′yt′ {Mẍt′ + V ′(xt′) + FB[xs, t
′]} − 1

2

∫ t

0

∫ t

0

dt′dsϕ2[xs]yt′ys

]

=

∫ x

x0

Dx
∫ y

y0

DyeiM(ẋty−ẋ0y0)

∫

Dξ[x] exp

[

−1

2

∫ t

0

∫ t

0

dt′dsξt′ϕ2[xs]
−1ξs

]

× exp

[

−i
∫ t

0

dt′yt′ {Mẍt′ + V ′(xt′) + FB[xs, t
′]− ξt′}

]

. (5.1.91)

Here we have explicitly indicated the dependence of the measure Dξ[x] on the paths
xs, which enters through the determinant of the operator ϕ2[xs]. The pathintegral
over Dy is now very easy: we find (ε = t/N)

∫ y

y0

Dy exp

[

−i
∫ t

0

dt′yt′bt′

]

= lim
N→∞

∫

dy1...dyN−1

(

M

2πiε

)
N
2

exp

[

−iε
N−1
∑

j=0

yjbj

]

= lim
N→∞

(

M

2πiε

)
N
2 2πδ(b0)

ε
· ... · 2πδ(bN−1)

ε
e−iεy0b0 ≡ ∆(yt′ − bt′), (5.1.92)

Here, ∆ indicates the product of delta functions that fixes the yt′ path to the bt′
path, and for ε→ 0 the e−iεy0b0 becomes irrelevant. Inserting yields

Jsc(x, y, t; x0, y0) = eiM(ẋty−ẋ0y0)

∫ x

x0

Dx
∫

Dξ[x] exp

[

−1

2

∫ t

0

∫ t

0

dt′dsξt′ϕ2[xs]
−1ξs

]

× ∆(Mẍt′ + V ′(xt′) + FB[xs, t
′]− ξt′). (5.1.93)
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5.1.8.3 Wigner Distribution in ‘Semi-classical’ Limit

Considering now the definition of the Wigner distribution function,

fsc(x, p, t) =

∫ ∞

−∞

dy

2π
ρ(x, y, t)e−ipy =

∫ ∞

−∞

dy

2π
e−ipy

∫

dx0dy0ρ0(x0, y0)Jsc(x, y, t; x0, y0)

=

∫

dy

2π
dx0dy0ρ0(x0, y0)e

−ipyeiM(ẋty−ẋ0y0)

∫ x

x0

Dx
∫

Dξ[x]e− 1

2

R t

0

R t

0
dt′dsξt′ϕ2[xs]−1ξs

× ∆(Mẍt′ + V ′(xt′) + FB[xs, t
′]− ξt′)

=

∫

dx0f0(x0, p0 = Mẋ0)δ(p−Mẋ)

∫ x

x0

Dx
∫

Dξ[x]e− 1

2

R t
0

R t
0

dt′dsξt′ϕ2[xs]−1ξs

× ∆(Mẍt′ + V ′(xt′) + FB[xs, t
′]− ξt′). (5.1.94)

Here, the y-integral generated δ(p−Mẋ), and the y0-integral transformed the initial
condition ρ0(x0, y0) into its Wigner transform f0(x0, p0 = Mẋ0). We summarise,

fsc(x, p, t) =
∫

dx0f0(x0,Mẋ0)δ(p−Mẋ)

×
∫ x

x0
Dx
∫

Dξ[x] exp
[

−1
2

∫ t

0

∫ t

0
dt′dsξt′ϕ2[xs]

−1ξs

]

× ∆(Mẍt′ + V ′(xt′) + FB[xs, t
′]− ξt′).

(5.1.95)

5.1.8.4 Discussion

In the semi-classical approximation, the time-evolution of the Wigner-distribution
function is determined by Eq. (5.1.95). This equation describes a stochastic process
for the center-of-mass co-ordinate xt′ of the particle, moving within a potential
V (x) under the action of a deterministic friction force FB[xs, t

′],

FB[xs, t
′] = −

N
∑

α=1

∫ t′

0

ds
sin Ωα(t′ − s)

MαΩα
f ′

α[xt′ ]fα[xs], (5.1.96)

and a stochastic force ξt′ . The motion of the particle is governed by the stochastic
integro-differential equation

Mẍt′ + V ′(xt′) + FB[xs, t
′] = ξt′ , (5.1.97)

where the stochastic force ξt′ is a random force which itself depends on the coor-
dinate of the particle: this can be seen by the fact that its variance,

〈ξt′ξs〉 = ϕ2[x] =
N
∑

α=1

1

2MαΩα
coth

βΩα

2
cos Ωα(t′ − s)f ′

α[xt′ ]f
′
α[xs], (5.1.98)
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depends on the particle path xs. The Wigner distribution is obtained by integrat-
ing over all possible realisations of the stochastic force, such that Eq. (5.1.98) is
fulfilled. Since the ξ path-integral is Gaussian, one speaks of a Gaussian stochastic
process. This of course is due to the fact that we truncated the yt′ expansion in
the influence phase after the term quadratic in yt′.

Our results shows that the influence of the bath is two-fold: it leads to a deter-
ministic, retarded ‘friction’ force, and to a stochastic force. The latter contains the
temperature and, by means of the coth(β~Ω/2) terms in ϕ2[x], a fully quantum
mechanical description of the bath.

For certain types of system-bath couplings, one can explicitely show that the
operator ϕ2 is positive definite and therefore, the term quadratic in yt′ in the
original double path integral exponentially suppresses strong deviations from the
diagonal paths with yt′ = 0. In this case, the expansion of the one-particle potential
V ,

− V (x+ y/2) + V (x− y/2) ≈ −V ′(x)y (5.1.99)

becomes more plausible. One should, however, expect that quantum mechanical
effects (like particle tunneling) are destroyed by the approximation Eq. (5.1.99).

5.1.8.5 Linear Dissipation (‘Ohmic Bath’)

The influence phase for the linear model, Eq.(5.1.58), the influence phase is (cf.
Eq. (5.1.81,5.1.60,5.1.59))

Φ[xt′ , yt′] =

∫ t

0

dt′
∫ t′

0

dsyt′ {Re L(t′ − s)ys + 2iIm L(t′ − s)xs}

+ iµ

∫ t

0

dt′xt′yt′ , µ ≡ 1

2

∑

α

c2α
MαΩ2

α

=
2

π

∫ ∞

0

J(ω)

ω

L(τ) ≡ 1

π

∫ ∞

0

dωJ(ω)

(

coth
βω

2
cosωτ − i sinωτ

)

, (5.1.100)
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whence the deterministic friction force FB[xs, t
′] becomes

FB[xs, t
′] = µxt′ +

∫ t′

0

ds2Im L(t′ − s)xs

=
2

π

∫ ∞

0

dω
J(ω)

ω
xt′ −

2

π

∫ ∞

0

dωJ(ω)

∫ t′

0

ds sinω(t′ − s)xs

=
2

π

∫ ∞

0

dω
J(ω)

ω
xt′ −

2

π

∫ ∞

0

dωJ(ω)

[

xt′

ω
− cosωt′

ω
x0 −

∫ t′

0

ds
cosω(t′ − s)

ω
ẋs

]

=
2

π

∫ ∞

0

dωJ(ω)

[

cosωt′

ω
x0 +

∫ t′

0

ds
cosω(t′ − s)

ω
ẋs

]

. (5.1.101)

The term xt′ from the integration by parts has cancelled exactly with the counter-
term µxt′ . If one now assumes a linear spectral function J(ω),

Johmic(ω) ≡ ηω, (5.1.102)

we recover the original Caldeira-Leggett description of quantum friction (plus the
additional term 2ηx0δ(t

′) that was missing there, cf. A. O. Caldeira, A. J. Leggett,
Physica 121 A, 587 (1983); ibid. 130 A, 374(E), (1985); Weiss book chapter 5.1),

Fohmic[xs, t
′] =

2η

π

∫ ∞

0

dω

[

x0 cosωt′ +

∫ t′

0

ds cosω(t′ − s)ẋs

]

= 2ηx0δ(t
′) + 2η

∫ t′

0

dsδ(t′ − s)ẋs = 2ηx0δ(t
′) + ηẋt′ .(5.1.103)

The resulting stochastic equation of motion Eq. (5.1.97) is

Mẍt′ + ηẋt′ + V ′(xt′) = ξt′ − 2ηx0δ(t
′). (5.1.104)

Note that the ‘awkward’ term 2ηx0δ(t
′) brings in a dependence on the ‘initial

condition’ x0.

5.1.8.6 Application: Polaron-Transport

Feynman et al. (R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M.
Platzman, Phys. Rev. 127 1004 (1962), K. K. Thornber, R. P. Feynman, Phys.
Rev. B 1, 4099 (1970)), and Janssen and Zwerger (N. Janssen and W. Zwerger,
Phys. Rev. B 52, 9406 (1995)) have used the influence functional theory for the
non-equilibrium polaron problem, i.e. the motion of a single electron coupled to
optical phonons in a crystal. The periodic crystal potential is considered in the
form of an effective band-mass m∗, and the potential V is due to an accelerating,
homogeneous force in which case the expansion Eq. (5.1.99) becomes exact.



6. NUMERICAL RENORMALISATION
GROUP

Literature: K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H. R. Krishna-murthy,
J. W. Wilkins, and K. W. Wilson, Phys. Rev. B 21, 1003 (1980). These are the
main original articles.

For a contemporary ‘hands-on’ approach I recommend material from recent
PhD theses, e.g. the one by Michael Sindel (LMU Munich, 2004) which I partly
used here.

6.1 Kondo Model

6.1.1 Historical Background

The s − d-Hamiltonian to be discussed in this lecture was introduced very early
in order to study ferromagnetism in metals (Zener), cf. the book ‘Theory of
Magnetism’ by K. Yoshida (Springer, 1996). One question is whether the magnetic
moment of an impurity embedded into a metal is screened at low temperatures,
or whether it persists.

Kondo introduced his model later (in 1964) in order to explain the resistivity
minimum (as a function of temperature) of non-magnetic metals containing mag-
netic impurities, for example magnetic Co impurities in Au metal. These impurities
lead to spin-flip scattering: a scattering process where the spin of an impurity and
a metal electron are flipped simultaneously. This scattering is temperature depen-
dent and becomes particularly strong below a temperature TK called the Kondo
temperature. Together with the other scattering mechanisms in metals (electron-
phonon, electron-electron, electron-impurity), this leads to the resistivity minimum
that was already observed in the 1930s.

6.1.2 Model Hamiltonian

The Kondo Hamiltonian describes a localized magnetic impurity with spin S which
is coupled to a gas of free, non-interacting electrons, for example electrons in a
conduction band.
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The impurity is described by second-quantized creation operators d†σ with
σ =↑,↓ for impurity spin 1/2. The impurity spin operators are

Sz ≡ 1

2

(

d†↑d↑ − d
†
↓d↓

)

, S+ ≡ d†↑d↓, S− ≡ d†↓d↑ (6.1.1)

Sx ≡ 1

2

(

S+ + S−) , Sy ≡ 1

2i

(

S+ − S−) . (6.1.2)

The band electrons are described by the Hamiltonian of a free electron gas,

HB ≡
∑

kσ=↑,↓
(εk − µ)a†kσakσ, (6.1.3)

where µ is the chemical potential. The spin of the band electrons at the origin x = 0
(site of the impurity) is correspondingly described by electron field operators in d
dimensions. For example, an operator that flips the band electron spin at x = 0
is given by

s+
0 ≡ Ψ†

↑(0)Ψ↓(0) =
1

Ω

∑

kk′

a†k↑ak′↓, (6.1.4)

where we used an expansion into plane waves and where Ω is the total volume of
the system. In a spin-flip, the total spin of the system (band electrons + impurity)
must be conserved.

The total Kondo Hamiltonian HK is given by a sum of two terms,

HK = HB − 2JSs0, (6.1.5)

where S = (Sx, Sy, Sz) (s correspondingly) and J is a (simplified) coupling param-
eter between the magnetic impurity spin and the free electron spins. Its micro-
scopic origin is the exchange interaction between band electrons and the magnetic
impurity electrons. J < 0 is called ferromagnetic exchange interaction, whereas
J > 0 is called anti-ferromagnetic exchange interaction. For a detailed discussion
of the exchange interaction, cf. quantum mechanics text books or similar, e.g.
‘Statistical Mechanics’ by R. Feynman.

Explicitly, the scalar product Ss0 is given by (EXERCISE)

Ss0 = Szsz
0 +

1

2

(

S+s−0 + S−s+
0

)

, (6.1.6)

and we can thus write the Kondo Hamiltonian

HK =
∑

kσ

(εk − µ)a†kσakσ +Hsd

Hsd ≡ −J
Ω

∑

kk′

[

Sz
(

a†k↑ak′↑ − a†k↓ak′↓

)

+ S+a†k↓ak′↑ + S−a†k↑ak′↓

]

, (6.1.7)
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where the part Hsd ≡ −2JSs0 is called s− d-Hamiltonian.
In the discussion of the Kondo-Hamiltonian one often has J < 0, i.e. anti-

ferromagnetic exchange coupling. In the following, we write Hsd = 2|J |Ss0 or
Hsd = 2JSs0 with J > 0 instead.

6.1.3 Key Questions, Relation to Other Models

The Kondo model can be derived from the Single Impurity Anderson Model
(SIAM) via a Schrieffer-Wolff transformation, cf. Bruus/Flensberg or other text-
books.

6.2 The Kondo Hamiltonian and Many-Body Physics

6.2.1 Why is it difficult?

The Kondo Hamiltonian almost looks like a simple one-body problem - but it
is not! It is in fact one of the best studied non-trivial many-body problems in
Condensed Matter Physics.

‘The importance of the impurity is simple: it forces one to study the conduc-
tion band as a many-electron system’ (Wilson). Example: consider two spin-up
electrons and the impurity with spin down. The first electron can scatter off the
impurity and spin flip both their spin (‘spin-flip scatter’). The impurity is then
left with its spin up. But then the second electron can not spin-flip scatter because
it has spin up and this would violate spin conservation. The two electrons thus
are correlated through the spin-flip scattering at the impurity spin.

6.2.2 Key idea

As we have to solve an interacting problem, there is no other way but to diagonalise
the full many-body problem, i.e. all the band electrons combined with the impurity
spin. This is, of course, impossible to by exact numerical diagonalisation: the
Hilbert space simply is too large - already for a very moderate number of electrons
distributed among a small number of single-particle levels, this is an impossible
task. One therefore has to find an alternative strategy.

6.2.3 New basis

The first step is to find a very good basis of single particle states in which to
diagonalise the problem. One part of the strategy will then be to consider only
a fraction of all single particle states, i.e. to work with a truncated basis with
a truncation that is good enough to produce very accurate results, at least for a
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Figure 6.1: Onion-like states around the impurity, from Wilson (1975).

certain part of the total energy spectrum. It will turn out that the low-enery part
of the spectrum can be obtained in this way to a very good accuracy.

The usual plane-wave basis for the conduction band is not very suitable to treat
the Kondo-Hamiltonian: it is better to use basis states that emphasise the interac-
tion between the impurity at the origin and the conduction band electrons. Such
basis states roughly resemble spherical Wannier functions (localized electrons)
around the impurity at the origin.

The first single particle state has a very strong overlap with the impurity.
The second is already further away from the impurity. One thus has ‘onion-like
spherical shells’ (Kondo basis), i.e. an infinite set of electron levels with ever
increasing width of order Λn/2, where Λ > 1 is a parameter and n labels the shells
around the impurity, cf. the figure. The shells increase in width and therefore
the momentum spread becomes smaller and smaller: as n increases, the states are
concentrated closer and closer around the Fermi surface in momentum space. The
energy scale for shells decreases as Λ−n/2.

6.2.4 Strategy and numerical procedure

First solve the impurity coupled to first Kondo state: this yields a few eigenvalues.
Then add the second layer and solve combined system, etc.: this yields more
eigenvalues of the total spectrum. The eigenvalues are already on a finer scale,
as we have moved towards single particle states, i.e. shells, with larger width in
real space. Continuing this procedure corresponds to solving for more and more
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eigenvalues at smaller and smaller energy scales ∼ Λ−n/2 (note that Λ > 1.
The numerical solution of Kondo Hamiltonian in ‘Kondo-basis’ thus starts with

step n = 0: impurity coupled to first Kondo state, then proceeds to step n = 1
(couple to second onion layer), etc. In doing so, the total number of many-body
states increases as

22n+3 (6.2.1)

in each step: step zero corresponds to 2 impurity times 4 ‘onion shell’ states (|0〉,
| ↑〉, | ↓〉, | ↑↓〉. In each step four additional states are added, and thus the
dimension of the problem is multiplied by four in each step. Already at moderate
n, a complete diagonalization is therefore totally out of the question.

One therefore develops an approximation where only a certain number of the
lowest eigenstates are kept in each of the subsequent steps, i.e. the matrices are
truncated. It turns out that the eigenstates and eigenvalues after the n-th trunca-
tion step then very accurately describe thermodynamic properties for temperatures
T of the order ∼ Λ−n/2. This argument relies on a consideration of Boltzmann
factors e−Em/kBT (which enter the partition sum). For large n one therefore can
describe properties at very low temperatures.

As a further remark: if we are interested in low-temperature properties, only
electrons close to the Fermi surface are excited. These correspond to states far
away from the impurity. Therefore, we neglect states far away from the impurity
and far way from Fermi surface.

6.2.5 Where does this procedure lead to?

Of course, the key question is now whether the truncation procedure outlined
above will lead to any meaningful results. A less stringent requirement is that
such a procedure shoudl at least converge in some sense, i.e., it should lead to
some sort of stable numerical result once the iteration index n is large enough.

It now turns out that for the problem at hand (the Kondo Hamiltonian), this is
exactly the case. Moreover, the convergence of the procedure can best be described
in the language of the renormalisation group (RG): in adding another shell, we
move from Hamiltonian HN to HN+1, which is called a renormalisation group
step,

HN+1 = R[HN ], (6.2.2)

where R is a renormalisation group transformation - this is a non-linear
transformation that maps the energies and the matrix elements of the previous
Hamiltonian HN into a new Hamiltonian, HN+1.
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6.3 The NRG Hamiltonian and the Wilson Chain

We now try to understand how this all works out in detail.

6.3.1 Using the spherical symmetry

We first expand the operators Ψ†
↑(0)Ψ↓(0) etc. into spherical waves, using spherical

harmonics Ylms in three dimensions. We recognize that the impurity only couples
to s-waves l = 0, m = 0. As a consequence, one only needs to consider the s-wave
part of the Kondo Hamiltonian. The energies εk then only depend on |k|.

Furthermore, we count energies from the Fermi energy εF . A linearisation is
also carried out,

εk = εF + (k − kF )
∂εk

∂k
+ .... (6.3.1)

Energies are counted from εF , one introduces units such that within this linearized
approximation

εk = k = ε. (6.3.2)

Note that we are not interested in details of the bandstructure εk other than the
fact that there is a cutoff at some (high) energy, which is modelled by introducing
cutoffs −D and D,

HK =
∑

σ

∫ D

−D

dεεa†εσaεσ + 2JSs0 (6.3.3)

For the transformation of the term 2JSs0 see below.

6.3.2 Logarithmic discretisation of conduction band

This is the main idea of the procedure. First of all, the coupling term 2JSs0 in
the Kondo Hamiltonian couples the impurity to all k, i.e. to electrons across the
whole conduction band thus involving all continuous energies of the conduction
band. Wilson therefore divides the energy band [−D,D] into discrete intervals
[−Λ−n,−Λ−(n+1)] on the negative side and [Λ−(n+1),Λ−n] on the positive side where
n = 0, 1, 2, ... (Figure). Here, 2D is the bandwidth of the conduction band which
is det to D = 1.

In order to transfrom from operators a†εσ with continous labels ε to an equivalent
set of operators with discrete labels. This is done by defining a Fourier series inside
each energy interval (analogous to wave functions on a ring)

Ψ±
np(ε) =

{

1√
dn
e±iωnpε, Λ−(n+1) < ±ε < Λ−n

0 else
(6.3.4)

p = 0,±1,±2, ..., dn ≡ Λ−n(1− Λ−1), ωn = 2π/dn. (6.3.5)
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Figure 6.2: Logarithmic discretisation of conduction band, from Wilson (1975).

Correspondingly, expand the operators

aεσ =
∑

np

[

anpσΨ
+
np(ε) + bnpσΨ−

np(ε)
]

(6.3.6)

into new operators anpσ and bnpσ with Fermionic commutation relations and with
discrete quantum numbers n, p instead of the continuous energy ε. The peculiarity
here is that the transformation is directly done on the second quantised Fermionic
operators and not on the wave functions in real space!

6.3.3 Main approximation: neglect all terms with p 6= 0

This means one only keeps the p = 0 component in each interval n. We denote the
p = 0 components as anp=0σ ≡ anσ and bnp=0σ ≡ bnσ for simplicity. The conduction
band part of the Hamiltonian, HB, then becomes (EXERCISE)

HB =
1

2
(1 + Λ−1)

∑

nσ

Λ−n
(

a†nσanσ − b†nσbnσ

)

(6.3.7)

The validity or otherwise of this approximation is, of course, the crucial point,
and Wilson discussed it in quite some detail in his work.
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6.3.4 Coupling Term

In the coupling term

2JSs0 = J
[

Sz
(

Ψ†
↑(0)Ψ↑(0)−Ψ†

↓(0)Ψ↓(0)
)

+ S+Ψ†
↓(0)Ψ↑(0) + S−Ψ†

↑(0)Ψ↓(0)
]

(6.3.8)

we write the field operator

Ψσ(0) =
1√
Ω

∑

k

akσ →
∫ D

−D

dεaεσ =

∫ D

−D

dε
∑

n

[

anσΨ
+
n (ε) + bnσΨ−

n (ε)
]

.(6.3.9)

Now we use
∫ D

−D

dεΨ±
n (ε) =

1√
dn

(

Λ−n − Λ−n−1
)

(6.3.10)

such that
∫ D

−D

dεaεσ = (1− Λ−1)1/2
∑

n

Λ−n/2 [anσ + bnσ] . (6.3.11)

As only this operator couples to the impurity spin, we define

f0σ ≡
√

1− Λ−1

2

∑

n

Λ−n/2 [anσ + bnσ] =
1√
2
Ψσ(0) (6.3.12)

where the 1/
√

2 has been inserted such that one gets the correct anti-commutation
relations (EXERCISE),

{f0σ, f
†
0σ′} = δσσ′ . (6.3.13)

Finally, the total model now has the following form,

HK =
1

2
(1 + Λ−1)

∑

nσ

Λ−n
(

a†nσanσ − b†nσbnσ

)

+ 2J
[

Sz
(

f †
0↑f0↑ − f †

0↓f0↓

)

+ S+f †
0↓f0↑ + S−f †

0↑f0↓

]

(6.3.14)

The Kondo-term can be written as

2J
[

Sz
(

f †
0↑f0↑ − f †

0↓f0↓

)

+ S+f †
0↓f0↑ + S−f †

0↑f0↓

]

= 2JS
∑

µν

f †
0µ~σµνf0ν ,(6.3.15)

where ~σ is the vector of the Pauli matrices.
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6.3.5 The Wilson chain

In the next step, one now tries to diagonalize the whole Hamiltonian HK directly.
Note that only the band part HB is diagonal in the an, bn basis. By transforming
the operators an and bn to new operators fn, one ideally would like to diagonalize
the band partHB. This is, however, not possible because the band electrons couple
to the impurity via f0. The best one can hope for is therefore a tridiagonal form.

Therefore, the following calculation is in fact a (unusual) analytical version of
the Lanczos method. We want to tridiagonalize a Hamiltonian

HB ≡
∑

σ

Hσ =
∑

σ

∑

n

αn

(

a†nσanσ − b†nσbnσ

)

. (6.3.16)

We start from a single reference state, i.e. one electron with spin σ at the impurity,

|0σ〉 ≡ f †
0σ|vac〉, (6.3.17)

where |vac〉 is the vacuum with zero electrons. In fact, this part is a one-electron
calculation! Also, the spin σ is not changed by HB and is therefore fixed, the label
σ is omitted.

Now, the Lanczos procedure is to write

|1〉 =
1

λ0

(H|0〉 − |0〉〈0|H|0〉) (6.3.18)

|n + 1〉 =
1

λn

([1− |n〉〈n| − |n− 1〉〈n− 1|]H|n〉) (6.3.19)

with coefficients λn to be determined. As a result, the states |n〉 form a nor-
malised basis of orthogonal vectors in which H becomes tridiagonal. The whole
calculational difficulty here is to find an analytical expression for the λn. Simple
calculation yields (EXERCISE)

〈0|H|0〉 = 0

λ2
0 ≡ 〈0|H2|0〉 =

1

4

(1 + Λ−1)2(1− Λ−1)

1− Λ−3
(6.3.20)

First of all, one can see quite easily that

〈n|H|n〉 = 0, n = 0, 1, 2, ... (6.3.21)

Going through a considerable amount of algebra, Wilson furthermore found an
analytical form for all λn (note: typo in (VII.35) there)

λn = Λ−n/2
[

1− Λ−(n+1)
] [

1− Λ−2n−1
]−1/2 [

1− Λ−(2n+3)
]−1/2 [

1 + Λ−1
]

/2

(6.3.22)
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This means that one has fermion operators f †
nσ with

f †
nσ|vac〉 = |nσ〉 (6.3.23)

which creates an electron in the n-th state of the Wilson chain. The Kondo
Hamiltonian becomes a chain,

HK = 2JS
∑

µν

f †
0µ~σµνf0ν +

∞
∑

n=0σ

λn

(

f †
nσfn+1σ + f †

n+1σfnσ

)

. (6.3.24)

Now do some re-naming,

2

1 + Λ−1
HK =

4

1 + Λ−1
JS
∑

µν

f †
0µ~σµνf0ν +

∞
∑

n=0σ

Λ−n/2ξn

(

f †
nσfn+1σ + f †

n+1σfnσ

)

ξn ≡
[

1− Λ−(n+1)
] [

1− Λ−2n−1
]−1/2 [

1− Λ−(2n+3)
]−1/2

. (6.3.25)

We write this as

2

1 + Λ−1
HK = lim

N→∞
H̃N (6.3.26)

H̃N ≡ H0 +
N−1
∑

n=0σ

Λ−n/2ξn

(

f †
nσfn+1σ + f †

n+1σfnσ

)

(6.3.27)

H0 ≡ J̃S
∑

µν

f †
0µ~σµνf0ν , J̃ ≡ 4

1 + Λ−1
J. (6.3.28)

6.3.6 Comparison with Perturbation Theory

The sequence of Hamiltonians H̃N is now defined in a way where with each ad-
ditional site on the Wilson chain acts as a small perturbation to all the previous
sites on the chain: this is simply due to the scaling factor Λ−n/2 in front of each
additional term in the sum Eq. (6.3.26), i.e., in each step the additional term is a
factor Λ−1/2 smaller than the rest.

From a perturbation theory point of view, this way of arranging terms is sim-
ilar to what one does in, e.g., hyperfine-structure calculations in atomic physics.
Suppose we have a Hamiltonian of the form

H = Ha +Hb +Hc (6.3.29)

with Ha ≫ Hb ≫ Hc, where the ≫ here has not to be taken literarily but shall
just indicate that Hc is a small perturbation to Hb and Hb is a small perturbation
to Ha.
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The ‘right’ way of doing things is then not to diagonalize H directly, but to
do the diagonalisation in three steps: First diagonalise Ha, this might be already
very difficult. Say we can only obtain the lowest 1000 eigenstates of Ha to good
accuracy. We take those and then write Ha +Hb in the basis of those eigenstates,
and then diagonalise Ha +Hb. This is much smarter then diagonalising Ha +Hb

straight away which in general will lead to large relative errors because Hb is much
smaller than Ha, in particular if we wish to resolve very small energy differences
at reliable accuracy. For example, if Ha has states with a degeneracy that is lifted
by Hb, one has to proceed in this way - otherwise there is no chance to resolve the
splitting of those degenerate states by Hb at sufficient accuracy. Similarly, in the
next step one now uses the lowest eigenstates obtained from the diagonalisation
after the first step and uses those to build the matrix Ha +Hb +Hc. In this way,
the information from the previous step always fully remains as diagonal part, with
the off-diagonal stemming from the (much smaller) next Hamiltonian.

6.3.7 Re-scaled Hamiltonians

It turns out to be convenient to work with a re-scaled series of Hamiltonians HN ,

HN ≡ Λ(N−1)/2H̃N (6.3.30)

instead of working with the H̃N . With increasing N , the lowest energies of H̃N have
finer and finer level spacings on an energy scale Λ−(N−1)/2: with each additional
site of the Wilson chain, additional states come in at an energy scale that is a
factor Λ−1/2 smaller than in the previous step.

In multiplying H̃N by Λ(N−1)/2, we thus re-scale the re-fined energy spectrum:
the re-scaled energies of the low-energy part of the spectrum are then numerically
of the same order of magnitude in each step. It will in fact turn out that the
re-scaled energies then actually converge to their fixed point values for large N .

Now, for the re-scaled Hamiltonians HN one has a simple recursion (CHECK
AS EXERCISE)

HN+1 =
√

ΛHN +
∑

σ

ξN

(

f †
NσfN+1σ + f †

N+1σfNσ

)

. (6.3.31)

Note that the ξn are all of the order of one.
The recursion Eq.(6.3.31) is the central ingredient to the calculation scheme

that we discuss below. Some points:

• The recursion is a sequence of Hamiltonians, where HN+1 is obtained from
the previous HN by adding one additional site N + 1 in the chain.

• Be careful with factors 1
2

in the above derivation (definition of spin) !
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• We have

lim
N→∞

1 + Λ−1

2
Λ−(N−1)/2HN = HK . (6.3.32)

6.4 Calculation Scheme

6.4.1 Starting Point

We first numerically diagonalise H0,

H0 = U0H
d
0U

T
0 , (6.4.1)

where Hd
0 is diagonal. For the Kondo problem, H0 is a 23× 23 matrix: 2 impurity

spin states and 4 electron states (0, spin up, spin down, double). Explicitly, we
have in the basis of four electron states at n = 0, e = 0, ↑, ↓, ↑↓ times two impurity
spin states u, d,

H0 = J̃
[

Sz
(

f †
0↑f0↑ − f †

0↓f0↓

)

+ S+f †
0↓f0↑ + S−f †

0↑f0↓

]

(6.4.2)

= ... (6.4.3)

(8 by 8 matrix), EXERCISE.

6.4.2 Adding the first sites

We add the first site N = 1 of the Wilson chain

Construct the 23+2 × 23+2 matrix H1 using Eq.(6.3.31),

H1 =
√

ΛH0 +
∑

σ

ξ0

(

f †
0σf1σ + f †

1σf0σ

)

. (6.4.4)

This matrix has a tensor product structure. It is a four by four matrix (for the
four electron states on site N = 1) with elements which are 23× 23 matrices (from
the coupling to the previous site). These elements are H0 and f †

0↑ etc. in the basis
where H0 is diagonal: all these 23 × 23 matrices have to be transformed like H0,
i.e.

H0 → UT
0 H0U0 ≡ Hd

0 (6.4.5)

f0↑ → UT
0 f0↑U0 ≡ fd

0↑ (6.4.6)

etc. Explicitly,

H1 =











√
ΛHd

0 ξ0(f
d
0↑)

† ξ0(f
d
0↓)

† 0

ξ0f
d
0↑

√
ΛHd

0 0 ξ0(f
d
0↓)

†

ξ0f
d
0↓ 0

√
ΛHd

0 −ξ0(fd
0↑)

†

0 ξ0f
d
0↓ −ξ0fd

0↑
√

ΛHd
0











(6.4.7)
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The electron annihilator f0↑ is a 23 × 23 matrix in the Hilbert space of the
N = 0 site, therefore f d

0↑ is again an 8 × 8 matrix. One has to take care with
the minus signs in the matrices f0↑ etc. (fermions!). Denoting the diagonalized 8
by 8 matrix Hd

0 by a0(., .), I get for the creation operators (f d
0σ)† something like

(CHECK!)

!!!!!!!! Newly transformed creation operators (8 by 8 matrix)

n = 8 !!!! Size of first matrix

DO 150 i=1,n

DO 140 j=1,n

f0up(i,j) = a0(2,i)*a0(1,j) + a0(6,i)*a0(5,j)

# + a0(4,i)*a0(3,j) + a0(8,i)*a0(7,j)

f0down(i,j) = a0(3,i)*a0(1,j) + a0(7,i)*a0(5,j)

# - a0(4,i)*a0(2,j) - a0(8,i)*a0(6,j)

140 CONTINUE

150 CONTINUE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Now diagonalise H1,

H1 = U1H
d
1U

T
1 . (6.4.8)

We add the second site N = 2 of the Wilson chain

Construct the 23+2+2×23+2+2 matrix H2 using Eq.(6.3.31). As before, this matrix
has a tensor product structure as a four by four matrix (the four states for site
N = 2) with elements which are 23+2 × 23+2 matrices from the coupling to the
previous sites N = 0 and N = 1. These elements are H1 and f †

1↑ etc. in the basis
where H1 is diagonal: as before, these have to be transformed like H1, i.e.

f1↑ → UT
1 f1↑U1 ≡ fd

0↑ (6.4.9)

etc. using the eigenvectors of the previous diagonalisation step.
For example, the electron annihilator f1↑ is a 23+2× 23+2 matrix in the Hilbert

space of the first two sites N = 0, 1, therefore f d
1↑ is a 32× 32 matrix. Again one

has to take care with the minus signs in the matrices f1↑ etc. (fermions!).
Now diagonalise H2,

H2 = U2H
d
2U

T
2 . (6.4.10)
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Adding more and more sites of the Wilson chain

This works well for the first few sites which can be diagonalised exactly in this
way. The matrix size, however, is increased by a factor of 4 in each step, i.e. HN

is a 23+2N × 23+2N matrix. After adding a few sites, an exact diagonalisation of
HN is therefore completely out of the question even on big computers or with
advanced algorithms. For example, for N = 20 the dimension of the matrix would
be ≈ 8.8× 1012.

6.4.3 Truncation

Wilson’s key idea was to make progress by truncating the Hilbert space such that
one works with matrices that have manageable sizes. As a concrete example,
consider the iteration after a few steps, say N = 3 with dim(H3) = 512. The
matrix H4 in the next step would be dim(H3) = 512× 4 = 2048 which one might
decide to be too big (the actual number plays no role here, one could discuss this
at larger N - the point is that it simply becomes too large beyond some N).

Now we decide that we only want to diagonalise up to 512×512 matrices. The
truncation then leaves us with the lowest 128 eigenvalues from the diagonalisa-
tion of the previous H3. These we take as the diagonal input in constructing the
truncated matrix H4. For the off-diagonals, we need the transformed f3 operators
which we first construct as 512×512 matrices and then truncate down to 128×128
when including them into H4. In all the following steps we then work with dimen-
sion 512 but effectively truncate to dimension 128. Of course, these numbers are
examples and one can do the scheme with keeping a larger number of eigenvalues.

6.4.4 Exploiting Symmetries

There are some conserved quantum numbers such as the total spin S or the total
charge Q. Taking these into account renders the matrices as blockdiagonal and
allows one to go to larger matrix sizes.

6.4.5 A First Look at the Results

A typical, still ‘unpolished’ result of a (small) numerical calculation looks like the
one in Fig. (6.4.3).
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Figure 6.3: Excited state energies (y-axis, ground state energy subtracted) as a function

of iterations N (x-axis) for the Kondo-model with parameters J̃ = 0.25 and Λ = 2.

6.5 Understanding and Interpreting the Results

6.5.1 Wilsons ‘Railroad track’ Analogy

First let us consider two special cases: J = 0 (decoupled impurity) and J = ∞
(infinitely strongly coupled impurity). In these cases, the procedure described
above leads to energy levels after n steps that fulfill a simple scaling relation to
those after n + 2 steps (except very small n). In renormalisation group (RG)
language, J = 0 and J = ∞ are fixed points, the corresponding fixed points
Hamiltonians are denoted as

H∗
N(J = 0), H∗

N(J =∞). (6.5.1)

Now we consider small positive J > 0 corresponding to weak anti-ferromagnetic
coupling in our notation (Wilson defines his Kondo model with −J with J < 0):
in this case, the procedure leads (after a sufficiently large number n of iterations)
to a cross-over from a spectrum that resembles the J = 0 case, to a spectrum that
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Figure 6.4: Wilsons ‘Railroad track’ analogy, from Wilson (1975).

(in its low-energy part) very much resembles the J = ∞ case. In RG language,
the systems ‘flows’ from the J = 0 towards the J =∞ fixed point.

The excitations about the ground state for the fixed point Hamiltonians are
calculated by a simple (numerical) diagonalisation. For J = 0, one simply has the
Wilson chain decoupled from the impurity. For large N and Λ = 2, the excitation
energies then are (numerically) calculated as

0, ± 1.297, ±2.827...± 2n−1
√

2, N even (6.5.2)

± 0.6555, ±1.976...± 2n−1, N odd. (6.5.3)

For J = ∞, the impurity is coupled with the first site of the chain and both
are effectively decoupled from the rest of the chain. The low energy excitations of
HN(J =∞) are therefore those of HN−1(J = 0).

6.5.2 Moving Along the Wilson Chain

The energy resolution in the N -th step of the iteration along the Wilson chain is
∝ Λ−(N−1)/2, i.e. increasing step by step. The sequence of Hamiltonians HN are
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Figure 6.5: Magnetic impurity susceptibility for the Kondo model: comparison between
the exact result (Bethe Ansatz, line) and the NRG calculation (dots). From the textbook
by A. C. Hewson.

effective Hamiltonians that describe physical properties, derived from the spectrum
of HN , at a temperature scale kBT or energy scale E with kBT,E ∼ Λ−(N−1)/2.

When we fix the temperature T at a certain value, we have to terminate the
iteration along the Wilson chain at that N that gives kBT ∼ Λ−(N−1)/2. Any
further step along the chain towards larger N would lead to an even finer energy
resolution and, due to the truncation, to a loss of parts of the spectra in the subse-
quent HN+1 etc. which are important to describe the physics at kBT . Conversely,
terminating too early, i.e. at a too small N , means that we have not reached the
necessary energy resolution yet.

In practice, one will do numerical runs along the chain and then use the data to
evaluate quantities at different temperatures, or at different energies, for example
in the spectral function A(ω).

As one example, the magnetic impurity susceptibility for the Kondo model
is shown in Fig. 6.5.2, where results from an exact calculation (Bethe Ansatz)
are compared with an NRG calculation (the exact solution was found later in the
1980s).

6.5.3 Outlook

We do not discuss further details here and just conclude this chapter by remarking
that the Numerical Renormalisation Group has nowadays become an important
theoretical tool in the analysis of complicated many-body problems, like the Kondo
problem. It has been very successfully applied recently for calculations of, e.g.,
quantum dots at low temperatures. For further reading, cf. Wilson’s original
article, the textbook by A. C. Hewson, and recent research papers.



7. CLASSICAL ELECTROLYTES

7.1 Model

We consider a system of point charges, i.e. particles (ions) of charge qα at position
rα, in a three-dimensional medium with dielectric constant ǫ(r). Here, α labels the
particle species of which there are M . The system charge density ρS(r) at position
r (three-dimensional vector) is

ρS(r) =

M
∑

α=1

Nα
∑

kα

qαδ(r− rkα
), (7.1.1)

where Nα is the number of particles of species α. We also assume that there are
additional, fixed particles at a density σ(r) so that the total charge density ρ(r) is

ρ(r) =

M
∑

α=1

Nα
∑

kα=1

qαδ(r− rkα
) + σ(r). (7.1.2)

The total electrostatic (interaction) energy E of the system due to the Coulomb-
interaction between the particles is given by

E =
1

2

∫

drρ(r)φ(r), (7.1.3)

where the potential φ(r) obeys Poisson’s equation: we use Maxwell’s equation for
the electric displacement D(r),

∇D(r) = 4πρ(r), (7.1.4)

where we note that all charges are ‘true’ charges and not polarization charges.
Then with D(r) = ǫ(r)E(r) and the electric field E(r) = −∇φ(r), we find

−∇ǫ(r)∇φ(r) = 4πρ(r). (7.1.5)

The associated Green’s function to this problem fulfills

− 1

4π
∇ǫ(r)∇G0(r, r

′) = δ(r− r′). (7.1.6)
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We obtain the potential, neglecting boundary terms,

φ(r) =

∫

dr′G0(r, r
′)ρ(r′), boundary terms neglected. (7.1.7)

(Neglecting the boundary terms is not quite without any problems, see below).
The energy of the electrostatic field can then be written entirely in terms of

the charge distribution

E =
1

2

∫

drdr′ρ(r)G0(r, r
′)ρ(r′) (7.1.8)

The expression for the energy given above contains contribution from the inter-
action of each ion with itself — the self-energy. Subtracting this term from the
energy, we write

E ′ =
1

2

∫

drdr′ρ(r)G0(r, r
′)ρ(r′)− 1

2

∑

α,k

q2
αG0(rkα

, rkα
) (7.1.9)

We also assume that there are external potentials uα(r) acting on particles of
type α. The total classical Hamilton function of the system is then

H =

M
∑

α=1

Nα
∑

kα

[

p2
kα

2mα
+ uα(rkα

) + E ′{rkα
}
]

. (7.1.10)

7.2 Thermodynamics

7.2.1 Grand Partition Sum

Thermodynamical quantities of the system are best obtained from the grand par-
tition sum ZG in the grand-canonical ensemble at fixed temperature

kBT ≡ β−1 (7.2.1)

and chemical potentials µα for particles of type α. The grand partition sum ZG is
obtained from the partition sum Z(N1, ..., NM) of the canonical ensemble at fixed
temperature and fixed particle numbers N1, ..., NM of species α = 1, ...,M ,

ZG =
∞
∑

N1=0

· · ·
∞
∑

NM=0

M
∏

α=1

eβµαNαZ(N1, ..., NM). (7.2.2)

In classical physics, the kinetic and potential energy terms in the Hamiltonian
commute. The partition sum therefore contains the (trivial) contribution from the
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kinetic energy in the form of products of thermal wave lengths Λα, and the Gibbs
correction factor in oder to account for the fact that particles of the same species
are ‘indistinguishable’. One therefore has

ZG =
∞
∑

N1=0

· · ·
∞
∑

NM =0

M
∏

α=1

eβµαNα

Nα!Λ3Nα
α

∫ M
∏

α=1

Nα
∏

kα=1

d3rkα
e−β[

P

α,k uα(rkα)+E′{rkα]. (7.2.3)

7.2.2 Hubbard-Stratonovich Transformation

The key idea now is to get rid of the term

e−
1

2
β

R

drdr′ρ(r)G0(r,r′)ρ(r′) (7.2.4)

which comes from the interaction energy E ′, Eq. (7.1.9). This can be done at the
expense of introducing additional Gaussian integrations over auxiliary fields, in
very much the same way as we did in thermodynamics for the partition sum of the
Ising model (see Lecture Notes), and in the chapter on Double Path Integrals in
these Lecture Notes when we derived the function integral for the Fokker-Planck
equation.

This Hubbard-Stratonovich transformation is best carried out by first ‘dis-
cretizing’

∫

drdr′ρ(r)G0(r, r
′)ρ(r′)→

n
∑

i,j

ρiGijρj (7.2.5)

and using the Gaussian identity

e−
1

2
βε2

Pn
i,j ρiGijρj =

(

det(βG0)
−1

(2π)n

)
1

2
∫

dΨ1...dΨne
− 1

2β
ε2

Pn
i,j Ψi

1

ε2
G−1

ij Ψj−iε
P

i ρiΨi .

(7.2.6)

In the limit ε→ 0, this yields

e−
1

2
β

R

drdr′ρ(r)G0(r,r′)ρ(r′) =
1√

detG0

∫

DΨ(r)e−
1

2β

R

drdr′Ψ(r)G−1
0

(r,r′)Ψ(r′)−i
R

drρ(r)Ψ(r).

(7.2.7)

Here, the path integral measure is defined as

DΨ(r) = lim
n→∞

(2πβ)−n/2dΨ1...dΨn. (7.2.8)
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Now we insert this expression into the grand partition sum ZG,

ZG =
1√

detG0

∫

DΨ(r)e−
1

2β

R

drdr′Ψ(r)G−1
0

(r,r′)Ψ(r′)e−i
R

drσ(r)Ψ(r) (7.2.9)

×
∞
∑

N1=0

· · ·
∞
∑

NM=0

M
∏

α=1

eβµαNα

Nα!Λ3Nα
α

∫ M
∏

α=1

Nα
∏

kα=1

d3rkα
e−β

P

α,k[uα(rkα )+ i
β

qαΨ(rkα)− 1

2
q2
αG0(rkα ,rkα)]

(7.2.10)

The term e−i
R

drσ(r)Ψ(r) comes from the fixed external charge density, σ(r).
The second line can now be drastically simplified: consider that terms like

∫

∏

k1

d3rk1
e
−β

PN1
k1=1

u1(rk1
)
=

[
∫

dre−βu1(r)

]N1

(7.2.11)

simply are powers of integrals over the coordinates of one particle. This means

∞
∑

N1=0

· · ·
∞
∑

NM =0

M
∏

α=1

eβµαNα

Nα!Λ3Nα
α

∫ M
∏

α=1

Nα
∏

kα=1

d3rkα
e−β

P

α,k uα(rkα ) =

∞
∑

N1=0

· · ·
∞
∑

NM =0

M
∏

α=1

eβµαNα

Nα!Λ3Nα
α

[
∫

dre−βuα(r)

]Nα

=

M
∏

α=1

exp

[

Λ−3
α

∫

dreβµα−βuα(r)

]

(7.2.12)

This is actually nothing but the grand partition sum of a gas of M particle species
α = 1, ...,M at chemical potential µα and inverse temperatur β in one-particle
potentials uα(r),

Zref
G [{γα}] ≡ exp

[

M
∑

α=1

Λ−3
α

∫

dreγα(r)

]

, γα(r) ≡ β [µα − uα(r)] , (7.2.13)

where the notation {γα} denotes a functional dependence on γ1(r), ..., γM(r).
The full grand partition sum ZG of the interacting system can now be written

in a very elegant form,

ZG =
1√

detG0

∫

DΨ(r)e−
1

2β

R

drdr′Ψ(r)G−1
0

(r,r′)Ψ(r′)e−i
R

drσ(r)Ψ(r) (7.2.14)

(7.2.15)

× Zref
G [{γα − iqαΨ +

βq2
α

2
G0}]. (7.2.16)
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This expression now also gives rise to a very intuitive interpretation: the interacting
grand partition sum is an average over fields Ψ(r) of the grand partition sum of a
non-interacting gas of particles (M species) subject to a combination of the fixed,
external chemical potentials µα and potentials uα and the additional, fluctuating
field Ψ(r). The average is performed with a Gaussian weight factor (and the term
e−i

R

drσ(r)Ψ(r)), and it is done in ‘path-integral’ form over all possible configurations
of the fluctuating field.

7.2.3 Mean-Field Solution

This consists in replacing the functional integral for ZG by the value of the inte-
grand at an extremum Ψ̄(r),

ZMF
G = e−

1

2β

R

drdr′Ψ̄(r)G−1
0

(r,r′)Ψ̄(r′)−i
R

drσ(r)Ψ̄(r)+ln Zref
G

[{γα−iqαΨ̄}], (7.2.17)

where here and in the following we no longer include the self-interaction term
βq2

α

2
G0 in Zref

G . The mean field solution, i.e. the extremum Ψ̄(r), is found by a
functional derivative

δZMF
G

δΨ̄(r)
= 0, (7.2.18)

which we find as

− 1

β

∫

dr′G−1
0 (r, r′)Ψ̄(r′) +

δ lnZref
G [γα − iqαΨ̄]

δΨ̄(r)
− iσ(r) = 0. (7.2.19)

For the derivative of lnZref
G we use its explicit form,

lnZref
G [γα − iqαΨ̄] =

∑

α

Λ−3
α

∫

dreγα−iqαΨ̄ (7.2.20)

 
δ lnZref

G [γα − iqαΨ̄]

δΨ̄(r)
= −i

∑

α

Λ−3
α qαe

γα−iqαΨ̄(r) (7.2.21)

In the following, we assume a constant dielectric functon,

ǫ(r) = ǫ. (7.2.22)

We then use
∫

dr′′G−1
0 (r, r′′)G0(r

′′, r) = δ(r− r′) (7.2.23)
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and the fact that G0 solves Poisson’s equation, which leads to (EXERCISE)

∆riΨ̄(r) = −4π

ǫ

[

∑

α

Λ−3
α qαe

γα−iqαΨ̄(r) + σ(r)

]

. (7.2.24)

Re-defining the imaginary potential Ψ into a real potential Φ,

Φ(r) ≡ i

β
Ψ̄(r), (7.2.25)

we finally obtain the desired mean-field equation,

∆rΦ(r) = −4π

ǫ

[

∑

α

Λ−3
α qαe

β[µα−uα(r)−qαΦ(r)] + σ(r)

]

. (7.2.26)

This is the Poisson-Boltzmann equation: a second order PDE for the unknown
potential Φ(r) due to a distribution of point charges in the grand-canonical ensem-
ble at fixed inverse temperature β, chemical potentials µα, fixed external potentials
uα, and a fixed exernal charge density σ(r). The term on the r.h.s of the Poisson-
Boltzmann (minus σ(r)) is in fact just the charge density of a non-interacting gas
of charges in a potential uα(r) + qαΦ(r),

ρ̄(r) =
∑

α

Λ−3
α qαe

β[µα−uα(r)−qαΦ(r)]. (7.2.27)

This density is, of course, nothing but a version of the barometric formula (barometrische
Höhenformel).

The inhomogeneous term on the r.h.s. of the Poisson-Boltzmann is thus non-
linear in Φ(r) which makes even the solution on mean field level non-trivial in
general.

7.2.4 Expansion around Mean-Field

Before we discuss the Poisson-Boltzmann equation in the next section, some re-
marks:

• the Poisson-Boltzmann equation can be derived much easier in a phenomeno-
logical way, simply by inserting the thermodynamic equilibrium density ρ̄(r)
of a gas in a potential φ(r) (given by the Boltzmann factors) into the Poisson
equation: that is the origin of the name of that equation.

• however, the derivation via the field theory (functional integration, Hubbard-
Stratonovich transformation) has the big advantage that one can calculate
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corrections to mean field, i.e., corrections to the Poisson-Boltzmann equation.
These come from fluctuations of the fields Ψ(r) around their mean-field value
Ψ̄(r). These fluctuations can be very important, e.g. in cases were the
solution of the Poisson-Boltzmann equation is simply zero.

• The fluctuations can be calculated ‘loop-wise’ by expanding the functional
integral around Ψ̄(r) in very much the same way as one does for the Gaussian
fluctuations around Mean-Field theory for other models, e.g. the Ising Model
(cf. lecture notes Thermodynamics).

7.3 Poisson-Boltzmann Theory

Here, we follow the Review Article by D. Andelman in ‘Handbook of Biological
Physics’, Vol. 1, ed. R. Lipowsky and E. Sackmann (Elsevier, 1995).

We are concerned with solutions of the Poisson-Boltzmann equation

∆rΦ(r) = −4π

ǫ

[

∑

α

Λ−3
α qαe

β[µα−uα(r)−qαφ(r)] + σ(r)

]

(7.3.1)

that we derived in as mean-field approximation to the electrolyte problem in the
previous section. Here, we are interested in situations involving boundaries in
order to model, for example, membranes. The dielectric constant ǫ is the one for
water if we are interested in a model for ion solutions in water, where the water
just acts as a background medium.

7.3.1 Reference densities, classification for M = 1, M = 2

In the following, we consider σ(r) = 0 and uα(r) = 0 (no external charges, no
external potentials). There is only the potential Φ(r) generated by the fluctuating
ions. The Poisson-Boltzmann equation then reads

∆rΦ(r) = −4π

ǫ

[

∑

α

Λ−3
α qαe

β[µα−qαΦ(r)]

]

≡ −4π

ǫ

∑

α

qαnα(r), (7.3.2)

where

nα(r) = Λ−3
α eβ[µα−qαΦ(r)] (7.3.3)

are the mass densities of particle type α. We introduce the particle densities nα

(reference densities) at zero potential Φ(r) = 0,

n0,α ≡ Λ−3
α eβµα , (7.3.4)
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which means that we can write

nα(r) = n0,αe
−βqαΦ(r) (7.3.5)

and the Poisson-Boltzmann equation can be written as

∆rΦ(r) = −4π

ǫ

∑

α

qαn0,αe
−βqαΦ(r). (7.3.6)

Each ion mass density thus obeys a Boltzmann distribution with a potential Φ(r)
determined by the Poisson-Boltzmann equation.

Classification M = 1

For M = 1, there is only one type of ions, e.g. positive ions such that

∆rΦ(r) = −4π

ǫ
q+n0,+e

−βq+Φ(r). (7.3.7)

Overall charge neutrality is usually guaranteed by charges on the boundaries of the
system. For example, such a boundary can be a negatively charged membrane with
an adjacent solution of positive ions. The positive ions are then called counterions
because they counter-balance the charge of the membrane.

Classification M = 2, symmetric electrolyte n0,+ = n0,− = n0, q+ = −q− = q > 0

In this case, one has two types of ions (positive and negative) with charge neutrality

∑

α

qαn0,α = 0 (7.3.8)

guaranteed by all the ions themselves. The Poisson-Boltzmann equation then reads

∆rΦ(r) = −4π

ǫ
qn0

[

e−βqΦ(r) − eβqΦ(r)
]

=
8πqn0

ǫ
sinh βqΦ(r) (7.3.9)

7.3.2 Linearized symmetric case, Debye-Hückel length

This is obtained by linearising theM = 2 symmetric electrolyte Poisson-Boltzmann
according to

∆rΦ(r) =
8πqn0

ǫ
sinh βqΦ(r) ≈ 8πqn0

ǫ
βqΦ(r), βqΦ(r)≪ 1. (7.3.10)
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The r.h.s. of this equation then naturally defines a length scale,

∆rΦ(r) = λ−2
D Φ(r), βqΦ(r)≪ 1 (7.3.11)

λD ≡
(

8πn0q
2

ǫkBT

)− 1

2

, Debye-Hückel length. (7.3.12)

EXERCISE: check the numbers given by Andelman, i.e. λD ≈ 3Å for 1M NaCl
solution, and λD ≈ 1µm for pure water at pH 7 and room temperature.

7.3.3 Single, charged membrane and solution with M = 1 ion type

We consider a surface z = 0 with a constant negative surface charge density σ < 0,
and a solution of positive ions with charge q+ in the half space z > 0. The positive
ions are called counterions.

There is no external potential;

∆rΦ(r) = −4π

ǫ
Λ−3

+ q+e
β[µ+−q+Φ(r)], (7.3.13)

and as mentioned above the external charge density σ(r) is not included here:
instead, the negative surface charge density σ < 0 is regarded as part of the
boundary. We write this equation as

∆rΦ(r) = −4πq+
ǫ

n0e
−βq+φ(r), n0 ≡ Λ−3

+ q+e
βµ+ , (7.3.14)

where n0 is the mass density of the ions at zero potential φ = 0.
The geometry of the problem immediately shows that we only have to deal

with a one-dimensional problem in z-direction,

Φ′′(z) = −4πq+
ǫ

n0e
−βq+Φ(z), (7.3.15)

because the potential must not depend on the x and the y direction. We then obvi-
ously need two boundary conditions in order to solve this equation as a boundary
value problem. These conditions come from fixing the value of the electric field
E(z) = −Φ′(z) (which points in z-direction),

E(z =∞) = 0 (7.3.16)

E(z = 0) = −Φ′(z = 0) =
4π

ǫ
σ. (7.3.17)

The last condition comes from applying Gauss’ law on a box very closely around
the plane z = 0 and the requirement that

E(z < 0) = 0, (7.3.18)
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which means that there is no electric field in the other half-space without ions (we
could, e.g., demand that z < 0 consists of an infinitely thick metal).

We write an Ansatz

Φ(z) = a ln(z + b) + c Φ′(z) =
a

z + b
 

a

b
= −4π

ǫ
σ(7.3.19)

 Φ′′(z) = − a

(z + b)2
= −4πq+

ǫ
n0e

−βq+(a ln(z+b)+c) (7.3.20)

= −4πq+
ǫ

n0

[

e−βq+c(z + b)−βq+a
]

(7.3.21)

 −4πq+
ǫ

n0e
−βq+c = −a, βq+a = 2. (7.3.22)

This leads to the solution

Φ(z) =
2

βq+
ln(z + b) + Φ0 (7.3.23)

b ≡ ǫ

2π|σ|βq+
, Gouy-Chapman length (7.3.24)

Φ0 ≡
−1

βq+
ln

[

ǫ

2πq+n0βq+

]

(7.3.25)

We can re-write this as

Φ(z) =
2kBT

q+
ln
z + b

2λD
(7.3.26)

λD ≡
(

8πn0q
2
+

ǫkBT

)− 1

2

, Debye-Hückel length. (7.3.27)

The counterion density n+(z) is obtained from the r.h.s. of the Poisson.Boltzmann
equation,

Φ′′(z) = −4πq+
ǫ

n(z), n(z) ≡ n0e
−βq+Φ(z) (7.3.28)

and thus by inserting

n(z) = n0e
−βq+

2

βq+
ln z+b

2λD = n0
4λ2

D

(z + b)2
=
ǫkBT

2πq2
+

1

(z + b)2
(7.3.29)

which again we re-write, introducing a third length-scale,

n(z) =
1

2πl

1

(z + b)2
, l ≡ q2

+

ǫkBT
=

1

8πn0λ2
D

, Bjerrum length. (7.3.30)
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We just summarize these results,

Φ(z) =
2kBT

q+
ln
z + b

2λD

potential (7.3.31)

n(z) =
1

2πl

1

(z + b)2
counterion density (7.3.32)

b ≡ kBTǫ

2π|σ|q+
, Gouy-Chapman length (7.3.33)

λD ≡
(

8πn0q
2
+

ǫkBT

)− 1

2

, Debye-Hückel length (7.3.34)

l ≡ q2
+

ǫkBT
=

1

8πn0λ
2
D

, Bjerrum length. (7.3.35)

7.3.4 Length scales in the Single-Surface Problem

Gouy-Chapman length

Consider the modulus of the electric field Eσ generated in both directions by an
infinite plate with charge surface density σ embedded into a homogeneous medium
with dielectric constant ǫ (no ions),

Eσ =
2π|σ|
ǫ

(7.3.36)

(again from Gauss’ law). Then, the Gouy-Chapman length b is given by

bq+Eσ = kBT, (7.3.37)

which is the length over which a point charge q+ has to move in the constant field
Eσ in order to aquire the energy kBT .

Furthermore, the Gouy-Chapman length measures the thickness of the coun-
terion layer close to the surface in the above single-membrane problem, where
we have overall charge neutrality (EXERCISE). Then, the integrated counterion
density (per area) attracted to the surface from z = 0 to z = b is exactly −σ/2
(EXERCISE).

Bjerrum length

Consider the electrostatic potential φl generated by a single point charge q+ at a
distance r,

φr =
q+
ǫr
. (7.3.38)
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The Bjerrum length l is the distance r = l such that the potential energy q+φr of
a second point charge q+ equals kBT ,

q2
+

ǫl
= kBT. (7.3.39)

Note that the Bjerrum length is a ‘fixed’ quantity when q+, T , and ǫ are regarded
as fixed. In particular, there is no dependence on surface charges (as in the Gouy-
Chapman length) and no ‘geometrical’ interpretation.


