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Prerequisites

This lecture builds upon basic knowledge of quantum mechanics. You should therefore be familiar
with the following:

� Quantum systems are described by the Schrödinger equation

i~∂tΨ(r, t) = H(r, t)Ψ(r, t) , (1)

where H(r, t) is known as Hamilton operator and may contain spatial derivatives acting to
the right. The solution to this partial differential equation Ψ(r, t) is called wave function
and has a probability density interpretation P (r, t) = |Ψ(r, t)|2.

� We will make use of the Dirac Bra-Ket notation, where, notationally, the state of a quantum
system can be characterized by a ”ket” |Ψ(t)〉, which is a vector in a Hilbert space. Scalar
products between two kets are denoted by 〈Φ|Ψ〉, and the wave function is then given by
Ψ(r, t) = 〈r|Ψ(t)〉, with r̂ |r〉 = r |r〉 denoting the eigenstates of the position operator.
Throughout the lecture, we will use units where ~ = 1. In these units, energy has units of
inverse time, such that H · t is manifestly dimensionless. The Schrödinger equation then
reads for the state |Ψ(t)〉 simply ∣∣∣Ψ̇〉 = −iH |Ψ〉 . (2)

Here, H = H† is the Hamilton operator which can have different eigenstates.

� When H is time-independent, this equation is formally solved by

|Ψ(t)〉 = U(t) |Ψ0〉 = e−iHt |Ψ0〉 , (3)

where U(t) is known as time evolution operator and |Ψ0〉 is the initial state. It is easy
to show that it is unitary U † = U−1.

� When H is time-dependent, we can likewise introduce a time evolution operator that obeys

|Ψ(t)〉 = U(t) |Ψ0〉 . (4)

Insertion into the Schrödinger equation shows that the time evolution operator in general
obeys

d

dt
U(t) = −iH(t)U(t) . (5)
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Integrating this equation yields the expansion

U(t) = 1− i

∫ t

0

H(t1)dt1 −
∫ t

0

dt1

∫ t1

0

dt2H(t1)H(t2)± . . .

=
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtnH(t1) . . . H(tn)

≡ T
∞∑
n=0

(
−i

∫ t

0

H(t′)dt′
)n

= T exp

{
−i

∫ t

0

H(t′)dt′
}
, (6)

where T is also known as time-ordering operator. By comparing the two expressions, one
can see that T H(t1)H(t2) = H(t1)H(t2)Θ(t1 − t2) + H(t2)H(t1)Θ(t2 − t1), i.e., it sorts the
operators by their time argument.

� The Hamiltonian of any two-level system (qubit) can be represented by Pauli matrices

H = hxσ
x + hyσ

y + hzσ
z ,

σx =

(
0 1
1 0

)
, σy =

(
0 −i

+i 0

)
, σz =

(
+1 0
0 −1

)
. (7)

Since any Hamiltonian is hermitian H = H†, we have that hα ∈ R. The Pauli matrices obey
the relations [

σα, σβ
]

= 2iεαβγσ
γ ,

{
σα, σβ

}
= 2δαβ1 . (8)

� The time evolution operator for any two-level system subject to a constant Hamiltonian may
be explicitly computed

U(t) = e−iHt = e
−iht

[
hx
h
σx+

hy
h
σy+hz

h
σz
]

= exp {−ihteh · σ}
= cos(ht)1− i sin(ht)eh · σ , (9)

where we used that h =
√
h2
x + h2

y + h2
z. Thereby, if we let a constant Hamiltonian H act

for a certain time t, we can implement an arbitrary unitary operation on a two-level system.

� Upon a projective measurement of an observable O = O† with spectral decomposition

O =
∑
`

λ` |`〉 〈`| , (10)

with eigenvalues λ` and eigenstates |`〉, we can only obtain measurement results λ`, i.e., the
eigenvalues of the observable. Upon the outcome `, the state of the system instantaneously
collapses to

|Ψ〉 →
∣∣Ψ(`)

〉
=
|`〉 〈`|Ψ〉
|〈`|Ψ〉|

, (11)

and the probability of this particular outcome is given by P` = |〈`|Ψ〉|2. This means that the
measurement collapses the state of the system onto eigenstates of the observable. If we do not
allow the state to change after the measurement (which happens e.g. if we measure the energy
of the system and thereby collapse into an energy eigenstate), a subsequent measurement of
the same observable will thus always yield the same result.



Chapter 1

A brief intro to classical computation

Why should we study classical computation if we are interested in quantum computation? For the
circuit model, the answer is three-fold

� Many techniques and concepts from classical computation can be transferred to quantum
computation.

� Computer scientists have thought about the resources it takes to solve a particular problem.
They have invented classification schemes of difficult and not-so-difficult problems, and these
schemes are useful to classify quantum algorithms as well.

� From knowing classical computation, we know where quantum computers may outperform
classical ones.

1.1 The circuit model of classical computation

Even classical computers are complicated structures (if not convinced, try to build one). They can
be implemented based on different architectures, and computer scientists have found a language
that allows to abstract from a given architecture. The circuit model of computation attempts
to formalize computation on finite-size computers by circuits [1].

These circuits consist of wires and gates and process bitwise information. Wires simply pass
information in terms of classical bits, that can take the values zero or one from one place to
another. In a diagrammatic language, they are just represented by a straight line. In contrast,
a gate performs a simple computational task. By combining simple gates and wires one can
implement more gates that can perform more complicated tasks, as formalized below:

A logic gate is a function f : {0, 1}k → {0, 1}` that transforms k input bits into ` output bits.

� Both input and output bits may take all allowed values bin = (bin
1 , b

in
2 , . . . , b

in
k ) with bin

i ∈ {0, 1}
and likewise bout = (bout

1 , bout
2 , . . . , bout

` ) with bout
i ∈ {0, 1}.

� Since any configuration of input or output bits can be mapped to one of the 2k input states
or 2` output states, one can understand a logic gate also as a function on sets.

� A popular example of such sets is the binary representation of positive integers.

Some important gates are displayed in Tab. 1.1 From such simple gates, all the complex abilities of
nowadays computers can be implemented. We can explore this at the example of adding numbers
in binary representation.

9



10 CHAPTER 1. A BRIEF INTRO TO CLASSICAL COMPUTATION

Table 1.1: Simple logic gates and their graphi-
cal representation. Wires (lines) can carry one
bit of information. Conventionally, the bits en-
ter from the left and leave to the right. To avoid
inconsistencies, loops are forbidden. Thus, 2k

different input states are mapped to 2` different
output states. Figure source: Wikipedia.

gate symbol k ` bit truth table

NOT 1 1
A out
0 1
1 0

AND 2 1

A B out
0 0 0
0 1 0
1 0 0
1 1 1

NAND 2 1

A B out
0 0 1
0 1 1
1 0 1
1 1 0

OR 2 1

A B out
0 0 0
0 1 1
1 0 1
1 1 1

NOR 2 1

A B out
0 0 1
0 1 0
1 0 0
1 1 0

XOR 2 1

A B out
0 0 0
0 1 1
1 0 1
1 1 0
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AND

XOR

HA
x y (z1, z0) = (x ∧ y, x⊕ y)
0 0 (00)=̂0
0 1 (01)=̂1
1 0 (01)=̂1
1 1 (10)=̂2

Figure 1.1: Left: Half-adder gate. The gate takes two bits x and y as input and computes via
using a XOR and an AND gate from Tab. 1.1 their bitwise sum as x⊕ y and a carry bit x ∧ y. A
HA gate can be used as the first step of a bitwise adder.

HA

HA

FA

OR
x y c x ∧ y x⊕ y (x⊕ y) ∧ c (z1z0)
0 0 0 0 0 0 (00)=̂0
0 0 1 0 0 0 (01)=̂1
0 1 0 0 1 0 (01)=̂1
0 1 1 0 1 1 (10)=̂2
1 0 0 0 1 0 (01)=̂1
1 0 1 0 1 1 (10)=̂2
1 1 0 1 0 0 (10)=̂2
1 1 1 1 0 0 (11)=̂3

Figure 1.2: Full adder (FA) gate. The gate takes three input bits and outputs their sum by
computing z1 = (x ∧ y) ∨ ((x ⊕ y) ∧ c) and z0 = x ⊕ y ⊕ c. It can be constructed from two HA
gates from Fig. 1.1 and an OR gate from Tab. 1.1.

1.2 Example: Binary addition

By combining an AND and a XOR gate, we can generate a so-called half-adder (HA), see Fig. 1.1.
Mapping all possible inputs into a table, we see that the half-adder (HA) computes the sum of two
single bits.

However, if we want to compute the sum of longer digit numbers, we need to compute the sum
of three bits (convince yourself of this). If all bits are set, the maximum result of three bits is thus
3=̂11, such a full-adder will have to return two output bits, such that we are searching for a gate
with three inputs and two outputs. It can be constructed from two HA gates and an OR gate, see
Fig. 1.2.

Finally, to compute something useful, we can combine the initial HA and subsequent FA by
appropriately passing the carry bits as inputs to the next FA gates, see Fig. 1.3.

The example should demonstrate the following
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Figure 1.3: Adder circuit for adding two
four-digit binary numbers (x3x2x1x0) and
(y3y2y1y0) to generate a five-digit binary number
(z4z3z2z1z0). The circuit combines the HA gate
from Fig. 1.1 and the FA gate from Fig. 1.2 to
implement addition the usual way it is taught
in school. The generalization of the circuit to
longer binaries is straightforward.

HA

FA

FA

FA

� complex circuits may be composed from a few elementary gates

� modularization into smaller gates helps to transfer algorithms into circuits

� classically, the number of output and input bits may be different (e.g. deletion of information)

� presupposing that implementation of every gate is associated with some cost, one gets an
estimate of the algorithmic complexity simply by counting the number of elementary gates.

1.3 Going quantum?

This is unfortunately not so easy. We can surely perform quantum gates that are more powerful
than their classical counterparts and constitute the quantum advantage, but unfortunately there
are some classical operations that cannot be performed.

For example, looking a the Schrödinger equation, we noted that the time evolution operator
is unitary. This means, it can always be inverted and preserves the information of the initial
state. Quantum circuits therefore must have the same number of input and output (qu-)bits. If
for a classical algorithm the number of input and output bits differ, this may require us to start a
potential quantum algorithm with a number of so-called ancilla qubits.

Further, we cannot just copy a quantum bit into two as is e.g. done in the HA-gate in Fig. 1.1.
Quantum-mechanically, this is forbidden by a no-cloning theorem.

These problems make the design of quantum algorithms difficult. Let us start with something
simpler and consider the basic building block of computation.



Chapter 2

Qubit(s)

2.1 One qubit

A classical bit can only take the values bi ∈ {0, 1}. In contrast, a qubit (or qbit) can be in any
superposition state

|Ψ〉 = α |0〉+ β |1〉 : |α|2 + |β|2 = 1 , (2.1)

since the Schrödinger equation allows for superposition of solutions.

� Any quantum-mechanical two-level system that allows for superpositions can implement a
qubit. If transitions to other levels are strongly suppressed, we may also consider a many-
level quantum system as an approximate qubit. Likewise, the two lowest levels of a harmonic
oscillator (ground state and first excited state) can implement a qubit.

� Since any two-level system can be described by a Pauli matrix Hamiltonian, we have con-
ventionally taken the eigenstates of the Pauli σz matrix as the basis states for our qubit

σz |0〉 = + |0〉 , σz |1〉 = − |1〉 . (2.2)

This basis is conventionally called computational basis and importantly, the states are
orthogonal 〈0|1〉 = 0.

� The complex numbers α and β can be written in polar representation, which together with
the normalization condition allows us to write a qubit state as

|Ψ〉 = e+iγ

(
cos

θ

2
|0〉+ e+iφ sin

θ

2
|1〉
)

=̂ cos
θ

2
|0〉+ e+iφ sin

θ

2
|1〉 , (2.3)

where we can neglect the global phase γ since it is not observable. Thus, we can fully
characterize the state of a qubit by two angles or – alternatively – by a point on the unit
sphere. The latter is known as Bloch sphere representation. On the poles of the Bloch
sphere we have the computational basis states |0〉 and |1〉, which we could identify with
classical bits. Any state on the surface of the Bloch sphere is called pure.

� While the evolution of the state under the Schrödinger equation is deterministic, the prob-
abilistic quantum character kicks in when we want to measure the value of the qubit. This
measurement corresponds conventionally to the expectation value of the Pauli σz matrix

σz = + |0〉 〈0| − |1〉 〈1| , (2.4)

13



14 CHAPTER 2. QUBIT(S)

and from the measurement postulate we find that there will be the two measurement out-
comes 0 and 1, which occur with probabilities P0 = cos2 θ

2
and P1 = sin2 θ

2
, which add up to

unity.

� Suppose we only know that our quantum system is in a particular state with a certain
probability. This could be implemented by a situation where you get a two-level atom
repeatedly, prepared in some state like the ground state or the first excited state (or other
states) with a certain probability. Then, we can either solve the Schrödinger equation for
every initial state separately and afterwards average over the initial states. A more elegant
approach is to use a so-called density matrix or statistical operator representation, which
already includes such averaging procedures. Such a density matrix can be written as

ρ =
∑
n

Pn |Ψn〉 〈Ψn| , (2.5)

where Pn are probabilities to be in the state |Ψn〉. Density matrices are

– self-adjoint ρ = ρ†

– trace-normalized Tr {ρ} = 1

– positive semidefinite 〈Ψ| ρ |Ψ〉 ≥ 0 ∀ |Ψ〉,

and any matrix fulfilling these conditions is a valid density matrix. Expectation values of
observables are computed via the trace

〈A〉 = Tr {Aρ} = Tr {ρA} , (2.6)

and the time-dependent density matrix obeys the von-Neumann equation

ρ̇ = −i [H, ρ] . (2.7)

Note that the states |Ψn〉 can be, but need not be orthogonal 〈Ψn|Ψm〉 6= δnm. If they are,
Eq. (2.5) is just the spectral decomposition, and the Pn are the eigenvalues. However, this
is not true when 〈Ψn|Ψm〉 6= δnm. Physically, this corresponds to a situation, where one is
given the qubit e.g. with P0 = 1/3 in the state |0〉, with P1 = 1/3 in the state |1〉, and with
P→ = 1/3 in the state |→〉 = 1√

2
[|0〉+ |1〉]. A state described by a density matrix ρ is then

called pure state, if ρ2 = ρ or ρ = |Ψ〉 〈Ψ|.
Specifically for a qubit, its general state can be parametrized as a point inside or on the
Bloch sphere

ρ =
1

2
[1 + n · σ] n · n ≤ 1 ni ∈ R . (2.8)

The pure states are on the surface of the Bloch sphere, and the others inside.

� The time-dependent expectation value of some observable σα is then given by

〈σα〉t = Tr {σαρ(t)} = Tr

{
σα

1

2
[1 + n(t) · σ]

}
= nα(t) , (2.9)

where we have used that (σα)2 = 1 and that the Pauli matrices are traceless.
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2.2 Qubit control

Let us consider a qubit in some (for simplicity) pure state. We can reach any other pure state
on the Bloch sphere surface by acting with a constant Hamiltonian for a finite time. Using the
Hamiltonian H = h · σ with identity (h =

√
h2
x + h2

y + h2
z)

U(t) = e−ih·σt = cos(ht)1− i sin(ht)eh · σ , (2.10)

we can for example rotate the state |0〉 to any desired point on the Bloch sphere

U(t) |0〉 =

[
cos(ht)− i sin(ht)

hz
h

]
|0〉+

[
−i sin(ht)

hx
h

+ sin(ht)
hy
h

]
|1〉 . (2.11)

However, to ensure that afterwards the qubit remains at the target state, we have to turn on and
off the time-dependence of the Hamiltonian. If that switching process is to a good approximation
instantaneous, we can write

Ugate = e−iHcontrolTgate (2.12)

with a gate operation time Tgate. This means that our assumption of a time-independent Hamil-
tonian has to be violated at least in the beginning and in the end.

But this does not invalidate the analysis. The same gate can be implemented with a time-
dependent dimensionless envelope function g(t) fulfilling

g(t ≤ 0) = 0 , g(t ≥ Tgate) = 0 ,

∫ Tgate

0

g(t)dt = Tgate , (2.13)

when we have a control Hamiltonian of the form

H(t) = g(t)Hcontrol . (2.14)

Since this operator does commute with itself at different times [H(t), H(t′)] = 0, the time-ordering
has no effect and we can write the time evolution operator as

U(t) = exp

[
−i

∫ Tgate

0

H(t)dt

]
= Ugate . (2.15)

In fact, on the surface of the Bloch sphere this transformation can be understood as a simple
rotation.

2.3 Single qubit gates

The Pauli matrices themselves are particular unitary gates that can be applied to a qubit. We can
write them with (9) as exponentials of other matrices

X = σx = ie−iπ/2σx = eiπ/2[1−σx] ,

Y = σy = ie−iπ/2σy = eiπ/2[1−σy] ,

Z = σz = ie−iπ/2σz = eiπ/2[1−σz] , (2.16)
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Figure 2.1:
Diagramattic repre-
sentation of single qubit
gates. The state of
the input qubit (wire
from the left) is trans-
formed by applying the
respective gate trans-
formation, yielding the
output qubit (wire to
the right). In contrast to
classical gates, quantum
gates always have the
same number of input
and output qubits.

X

Y

Z
and in the exponent we could identify a Hamiltonian and a gate operation time, which we can also
represent diagramatically, see Fig. 2.1. Clearly, this is not unique, by multiplying a Hamiltonian
with an arbitrary constant and dividing the gate operation time by the same constant, the gate
action remains the same. Furthermore, since X2 = Y 2 = Z2 = 1, we could equivalently write
these gates e.g. as

X = ei3π/2[1−σx] ,

Y = ei3π/2[1−σy] ,

Z = ei3π/2[1−σz] , (2.17)

In the computational basis

|0〉 =̂
(

1
0

)
, |1〉 =̂

(
0
1

)
(2.18)

we can represent the Pauli matrices as

σx = |0〉 〈1|+ |1〉 〈0| , σy = −i |0〉 〈1|+ i |1〉 〈0| , σz = |0〉 〈0| − |1〉 〈1| . (2.19)

In this basis, we see that the X gate flips the basis state, whereas the Y gate additionally equips
it with a phase factor and the Z gate does not flip but only comes with a phase factor

X |0〉 = |1〉 , X |1〉 = |0〉 ,
Y |0〉 = i |1〉 , Y |1〉 = −i |0〉 ,
Z |0〉 = + |0〉 , Z |1〉 = − |1〉 . (2.20)

In other words, the X gate is equivalent to a NOT gate. Beyond such gates, we will also consider
the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
. (2.21)
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It transforms the computational basis states into superposition states

H |0〉 =
1√
2

[|0〉+ |1〉] . (2.22)

We have already noted that the most general unitary transformation on a two-level system can
be fully parametrized by three numbers

U = e−ith·σ = cos(ht)1− i sin(ht)
h · σ
h

. (2.23)

Rewriting this slightly, we see that this actually corresponds to a rotation on the Bloch sphere

U = e−ihteh·σ (2.24)

around the axis defined by the unit vector

eh =

 hx
h
hy
h
hz
h

 , h =
√
h2
x + h2

y + h2
z (2.25)

by an angle φ = 2ht. Note however, that this only holds up to possible phase factors, consider
e.g. the rotation around eh = ey by an angle φ = 2ht = 2π. This means that by changing the
strength of the Hamiltonian h or the gate operation time t, we can in principle perform arbitrary
rotations on the Bloch sphere. For a given experimental setup we may not be able to just provide
a desired axis eh. Then, it is helpful to realize that – just as general rotations can be decomposed
into rotations around the principal axes – an arbitrary unitary rotation can be written as

U = eiα

(
e−iβ/2 0

0 e+iβ/2

)(
cos(γ/2) − sin(γ/2)

+ sin(γ/2) cos(γ/2)

)(
e−iδ/2 0

0 e+iδ/2

)
= eiαe−iβ/2σze−iγ/2σye−iδ/2σz (2.26)

with α, β, γ, δ ∈ R. This shows that by experimentally implementing only two different Hamiltoni-
ans (here something proportional to σz and σy), we can engineer arbitrary unitary transformations
on a single qubit.

It seems that a qubit is much more powerful than a classical bit, since on the Bloch sphere we
have more space available. In principle, initializing the qubit in the state |0〉, we can apply a single
qubit rotation on it to generate a state

|Ψ(h, θ, φ)〉 = U(h, θ, φ) |0〉 = e−ih(sin θ cosφσx+sin θ sinφσy+cos θσz) |0〉
= [cos(h)− i sin(h) cos(θ)] |0〉+ [−i sin(h) sin(θ) cos(φ) + sin(h) sin(θ) sin(φ)] |1〉
≡ α |0〉+ β |1〉 (2.27)

on the Bloch sphere, which can be quantified by just two angles. Since these numbers may be
represented by infinitely long binary sequences, we can in principle store an infinite amount of
information in a single qubit, only limited by the resolution of the implementation of the unitary
gate. The problem however is that we cannot get back this information, since the measurement
postulate will prevent this. Suppose that we perform a final measurement of σz. Then, we can
only get out the two outcomes 0 and 1. We will get outcome 0 with probability

P0 = cos2(h) + sin2(h) cos2(θ) . (2.28)
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After this outcome, the qubit will be in the state |0〉, and the information is lost. Outcome 1 will
occur with probability

P1 = sin2(h) sin2(θ) sin2(φ) + sin2(h) sin2(θ) cos2(φ) = sin2(h) sin2(θ) , (2.29)

and we can verify P0 + P1 = 1. After this outcome, the qubit is in state |1〉, and the information
is lost. So while a qubit seems very powerful, readout is a problem.

2.4 Multiple qubits

As in the classical case, little can be achieved with one qubit. If you consider many identical qubits
(actually, without necessarily letting them interact), each of the qubits can have their individual
state on the Bloch sphere. So, the joint state of all e.g. two qubits altogether can be such that
any basis state of the first qubit can be combined with any basis state of the second qubit.

This is not exclusive to qubits but can be applied to any quantum system. The way to define a
basis for the Hilbert space of the composite system is formalized in the tensor product: Let |vi〉
denote an orthonormal basis of Hilbert space V and |wj〉 denote an orthonormal basis of Hilbert
space W . Then, a basis of Hilbert space U = V ⊗W is formed by all possible combinations of the
individual basis vectors

|uij〉 = |vi〉 ⊗ |wj〉 . (2.30)

It obeys a number of useful properties.

� Scalar factors z ∈ C can be multiplied to any of the basis states

z |vi〉 ⊗ |wj〉 = (z |vi〉)⊗ |wj〉 = |vi〉 ⊗ (z |wj〉) . (2.31)

� The tensor product is bilinear

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 ,
|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 . (2.32)

� In the composite Hilbert space, the scalar product is inherited from the local Hilbert spaces.
Since we can expand an arbitrary state in the composite Hilbert space in the composite basis,
it suffices to write the orthonormality condition for the joint basis states

〈uij|uk`〉 = (〈vi| ⊗ 〈wj|) (|vk〉 ⊗ |w`〉) = 〈vi|vk〉 〈wj|w`〉 = δikδj` . (2.33)

With this, the scalar product of arbitrary states |Ψ〉 =
∑

ij cij |uij〉 and |Φ〉 =
∑

k` c̄k` |uk`〉
can be expressed as

〈Ψ|Φ〉 =
∑
ij,k`

c∗ij c̄k` 〈uij|uk`〉 =
∑
ij

c∗ij c̄ij . (2.34)

� Arbitrary linear operators in U can be expressed as

C =
∑
α

cαAα ⊗Bα , (2.35)
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where Aα and Bα only act in V and W , respectively. On an arbitrary state, an operator C
acts as

C |Ψ〉 =
∑
ij

∑
α

cijcα (Aα |vi〉)⊗ (Bα |wj〉) , (2.36)

such that it is fully defined once its decomposition into operators of the individual Hilbert
spaces is known.

� Notationally, we note that the explicit writing of the symbol ⊗ is often omitted when it
can be guessed from the context. For example, for qubits we can follow the convention of
always writing the value of the first qubit on the first position to denote the basis states as
|z1〉 ⊗ |z2〉 = |z1〉 |z2〉 = |z1, z2〉 = |z1z2〉. Similarly, operators acting on many qubits can be
decomposed into tensor products of operators acting on individual qubits (which we know
can be represented by Pauli matrices). Therefore, we denote the Pauli matrices acting on
multiple qubits by two indices

σα → σαi : α ∈ {x, y, z} , i ∈ {1, . . . , n} . (2.37)

Since identity operators act trivially in their respective subspace, they are often omitted
notationally. For example, for two qubits one could write σx ⊗ 1 = σx1 or σx ⊗ σy = σx1σ

y
2 =

σy2σ
x
1 , which holds because operators acting on different Hilbert spaces do by construction

commute. Summarizing this, we could also write the commutation relations of Pauli matrices
as [

σαa , σ
β
b

]
= δab2iεαβγσ

γ
a . (2.38)

� While the tensor product can be used to construct a basis in the composite Hilbert space, in
general a basis of the composite Hilbert space need not be decomposable into single tensor
products of the individual Hilbert spaces. A valid orthonormal basis for two qubits, for
example is given by

{|00〉 , |01〉 , |10〉 , |11〉} . (2.39)

This is the one which follows from the tensor product (and we have omitted the tensor
symbol for brevity). However, in quantum mechanics we can form superpositions, such that
an alternative orthonormal basis is given by{

1√
2

(|00〉+ |11〉) , 1√
2

(|00〉 − |11〉) , 1√
2

(|01〉+ |10〉) , 1√
2

(|01〉 − |10〉)
}
. (2.40)

This basis is formed of the so-called Bell states. States that cannot be written as a
single tensor product are called entangled. For example, the state 1√

2
(|10〉+ |11〉) =

|1〉 ⊗ 1√
2

(|0〉+ |1〉) is not entangled while the state 1√
2

(|00〉+ |11〉) is entangled.

� The construction can be applied recursively: By combining e.g. the 4 basis states for two
qubits with the 2 basis states of another qubit, we find that there are 8 basis states for three
qubits. In general, the Hilbert space dimension of n qubits will be exponentially large

dn = 2n . (2.41)
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When computing a wave function for n qubits, this means that in general 2n complex co-
efficients have to be stored to characterized the wave function. This unfavorable scaling
demonstrates that the simulation of a quantum computer on a classical one is futile. We will
use the computational basis by using the eigenstates of the Pauli σz matrices for all the
qubits, i.e., a basis state for n qubits is denoted as

|z1z2 . . . zn〉 : zi ∈ {0, 1} . (2.42)

A convenient ordering of these basis states arises from the binary representation of the
numbers 0 . . . (2n − 1).

� The definition of the tensor product does not make any statement on the ordering of the
basis states. A particular ordering of basis states allows to represent the tensor product by
the Kronecker product: If A is an m × n matrix and B is a p × q matrix, the tensor
product of A ⊗B has in the lexicographic basis the representation (Aij denote the matrix
elements of A)

A⊗B =


A11B A12B . . . A1nB
A21B A22B A2nB

...
...

...
Am1B Am2B . . . AmnB

 . (2.43)

The dimension of the resulting matrix is mp× nq.
For example, the tensor products of basis vectors become for two qubits

|0〉 ⊗ |0〉=̂
(

1
0

)
⊗
(

1
0

)
=

 1

(
1
0

)
0

(
1
0

)
 =


1
0
0
0

 =̂ |00〉 ,

|0〉 ⊗ |1〉=̂
(

1
0

)
⊗
(

0
1

)
=

 1

(
0
1

)
0

(
0
1

)
 =


0
1
0
0

 =̂ |01〉 ,

|1〉 ⊗ |0〉=̂
(

0
1

)
⊗
(

1
0

)
=

 0

(
1
0

)
1

(
1
0

)
 =


0
0
1
0

 =̂ |10〉 ,

|1〉 ⊗ |1〉=̂
(

0
1

)
⊗
(

0
1

)
=

 0

(
0
1

)
1

(
0
1

)
 =


0
0
0
1

 =̂ |11〉 . (2.44)

An important operator is the CNOT gate: It acts on two qubits. One of these is the control
qubit (e.g. the first) and the gate performs a spin flip on the other qubit when the control
qubit is set to |1〉 and does nothing to it when the control qubit is in the state |0〉, as depicted
in Fig. 2.2. In the computational basis its matrix representation can be computed via the
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Figure 2.2: Quantum circuit symbol of a
CNOT (controlled-not) gate. The filled dot
symbolizes the control qubit, and the crossed
circle the target qubit. Roles of control and
target qubits may be interchanged.

H
Figure 2.3: Quantum circuit to create Bell
states from the computational basis states.
When fed in |00〉, the application of the
Hadamard gate first transforms the state
into 1√

2
[|00〉+ |10〉]. Acting afterwards with

a CNOT gate, the state becomes 1√
2
[|00〉 +

|11〉].

Kronecker product

CNOT12 =
1

2
[1 + σz]⊗ 1 +

1

2
[1− σz]⊗ σx

=

(
1 · 1 0 · 1
0 · 1 0 · 1

)
+

(
0 · σx 0 · σx
0 · σx 1 · σx

)
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.45)

Note that even if the CNOT gate flips the target qubit, it does not copy the state of the
control qubit. Even if we always feed in the target qubit as |0〉, the control qubit cannot be
copied in general: Although the state of the control qubit is copied into the target qubit for
the particular control qubit states |0〉 and |1〉, this does not hold for a general superposition.
Rather, for a control qubit state α |0〉+β |1〉, the joint qubits afterwards are in the entangled
state α |00〉+ β |11〉. The CNOT gate is an entangling gate.

In fact, the CNOT gate together with a single-qubit Hadamard gate can be used to create
the Bell states from the computational basis states as depicted in Fig. 2.3. This diagram is
read from left to right, such that the resulting unitary can be obtained from the product of
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a Hadamard gate on the first qubit

H1 = H ⊗ 1=̂
1√
2

(
1 · 1 1 · 1
1 · 1 −1 · 1

)
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (2.46)

and a CNOT gate

CNOT12H1 =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 . (2.47)

2.5 Quantum applications of two qubits

Entangled states are among the most intriguing features of quantum physics. Suppose we prepare
a two-qubit system in the first of the Bell states (2.40)

|Ψ〉 =
1√
2

[|00〉+ |11〉] . (2.48)

This state is evidently entangled. The two qubits are shared between two parties (conventionally
called Alice and Bob). Ideally, we assume that in the separation process, the fragile quantum
superposition is not harmed. The two parties can be extremely far apart. Now, Alice can lo-
cally measure her qubit in the computational basis. On the global system, this corresponds to a
measurement of the observable σz1. If she measures the outcome +1, the state is projected onto
the post-measurement state |Ψ′〉 = |00〉. In contrast, if she measures the outcome −1, the post-
measurement state is |Ψ′〉 = |11〉. Thereby, Bob’s qubit is immediately in the same state as Alice’s
state, independent of the distance between Alice and Bob. This spooky action at a distance led
Einstein, Podolsky and Rosen to the conjecture that quantum mechanics might be incomplete [2].
Numerous experiments have however confirmed our view that quantum mechanics is complete.

2.5.1 Bell inequalities

In 1964 John Stewart Bell published a paper on expectation values of classical observables [3]. He
derived an inequality that should be obeyed if classical common sense is correct (and accordingly,
quantum mechanics is incomplete). So let us for a moment forget about quantum mechanics and
non-commuting observables etc. The assumptions in the Bell inequalities are that

� particles have properties that exist objectively, i.e., these properties exist without the mea-
surement, a condition that is known as realism

� a local measurement of the properties on one of the particles cannot influence the measure-
ment result on the other particle, a condition that is termed locality

Together, these assumptions are known as local realism. Under these assumptions, Bell derived a
simple inequality which has experimentally shown to be violated, disproving at least one of the
assumptions.
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To simplify further, we assume that the particles can have different properties (like color and
charge) that can take two different values each, which we label ±1 (like red vs. green or positive
vs. negative). Then, the thought experiment goes as follows: A third party prepares two particles
in some way that is repeatable. The first particle goes to Alice, the second particle is sent to
Bob. Now, both Alice and Bob perform randomly one measurement of either the first property
(e.g. color) or the second property (e.g. charge) of their respective particle. Here, the particle
need not even be identical, such that the measured properties can in principle be different. What
is important however is that these measurements are performed causally disconnected (let Alice
and Bob be sufficiently far apart) and that Alice and Bob do not agree on a particular random
protocol but decide independently and randomly what measurement to perform. Alice calls the
first property Q ∈ {−1,+1} and the second property R ∈ {−1,+1} and Bob calls the first property
S ∈ {−1,+1} and the second T ∈ {−1,+1}. Then, no matter what the actual values are we find
that the quantity

QS +RS +RT −QT = (Q+R)S + (R−Q)T ∈ {−2,+2} , (2.49)

which simply follows by realizing that either (Q + R = ±2 and Q− R = 0) or (R −Q = ±2 and
Q+R = 0). Now the experiment is repeated multiple times. Let p(q, r, s, t) denote the probability
that Q = q, R = r, S = s, and T = t (due to experimental noise and the preparation procedure,
the preparation process will in general be stochastic). Then, the expectation value of the above
quantity can be upper-bounded via

E(QS +RS +RT −QT ) =
∑
qrst

p(q, r, s, t)(qs+ rs+ rt− qt) ≤ +2
∑
qrst

p(q, r, s, t) = 2. (2.50)

Likewise, we can lower-bound this via

E(QS +RS +RT −QT ) =
∑
qrst

p(q, r, s, t)(qs+ rs+ rt− qt) ≥ −2
∑
qrst

p(q, r, s, t) = −2. (2.51)

Summarizing, the Bell inequalities (or CHSH inequalities after Clauser, Horne, Shimony,
Holt) read by linearity of the expectation value

−2 ≤ E(QS) + E(RS) + E(RT )− E(QT ) ≤ +2 . (2.52)

Doing the experiment many times and recording their results together with the information what
type of measurement was performed, Alice and Bob can meet again some time in the future
and evaluate the l.h.s. of the above equation. For example E(QS) is obtained by averaging the
products of measurement results where both Alice and Bob measured their first property, and an
estimate of E(RS) can be obtained by averaging the products of measurement results where Alice
measured her first and Bob his second property. If the underlying assumption of local realism is
correct, the expectation value will lie inside the above bound. Corresponding experiments have
been performed [4], which have confirmed the violation of the Bell inequalities.

We can convince ourselves that some (not all) quantum mechanical superposition states can
break the Bell inequalities, thereby invalidating the assumption of local realism. To see this,
consider the Bell state (we can take any but might need to use different observables)

|Ψ〉 =
1√
2

[|01〉 − |10〉] (2.53)
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with the observables for Alice

Q = Z1 = σz ⊗ 1 , R = X1 = σx ⊗ 1 (2.54)

and the observables for Bob

S =
1√
2

[X2 + Z2] = 1⊗ 1√
2

[σx + σz] , T =
1√
2

[X2 − Z2] = 1⊗ 1√
2

[σx − σz] , (2.55)

where the main point is simply that Bob measures in a Basis which is rotated in comparison to
Alice basis. Note that all these observables have possible values ±1 as assumed. We get the
quantum-mechanical expectation values

〈QS〉 = 〈Ψ|σz ⊗ 1√
2

[σx + σz] |Ψ〉

=

(
1√
2

)3

[〈01| − 〈10|] [σz ⊗ σx |01〉 − σz ⊗ σx |10〉+ σz ⊗ σz |01〉 − σz ⊗ σz |10〉]

=
1

2

1√
2

[〈01| − 〈10|] [|00〉+ |11〉 − |01〉+ |10〉] = − 1√
2
. (2.56)

In a similar fashion, the other expectation values become

〈RS〉 = − 1√
2
, 〈RT 〉 = − 1√

2
, 〈QT 〉 = +

1√
2
. (2.57)

Altogether, this yields 〈QS +RS +RT −QT 〉 = −4/
√

2 = −2
√

2 which clearly breaks the Bell
inequality. Thereby, entangled states can carry stronger correlations than classically possible, and
the assumptions of local realism are wrong.

2.5.2 Superdense coding

By using entanglement, Alice can send two classical bits of information with sending only one
qubit. Suppose Alice and Bob are provided the Bell state |Ψ〉 = 1√

2
[|00〉 + |11〉]. Alice takes the

first qubit and Bob the second. When Alice is alone, she performs local operations on her qubit –
depending on the two classical bits she wants to transmit. With this, she creates all possible Bell
states:
intended bitstring applied operation by Alice resulting state

00 11
1√
2

[|00〉+ |11〉]
01 Z1

1√
2

[|00〉 − |11〉]
10 X1

1√
2

[|10〉+ |01〉]
11 Y1

i√
2

[|10〉 − |01〉]

.

To do so, Alice only needs to act on the first of the qubits. Then, she sends her qubit to Bob.
Being in possession of both qubits, Bob may now perform suitable measurements to determine

which state was sent. This is not straightforward but possible since the Bell states are all orthogonal
and can therefore be faithfully distinguished. Formally, such a measurement could be performed by
measuring a nonlocal observable such as e.g. Â =

∑
i λi |Ψi〉 〈Ψi| with |Ψi〉 denoting the Bell states

and λi arbitrary different eigenvalues. Alternatively, Bob could apply a two-qubit unitary to rotate
the sent Bell state back to one of the computational basis states and afterwards measure these in
the local σz1/2 basis. Diagramattically, this would correspond to the inverse gate of Fig. 2.3: Since
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H Figure 2.4: Circuit for the quantum telepor-
tation of a qubit from the first qubit (upper
wire) into the third qubit (lower wire). At
the meter symbols, a classical measurement
in the computational basis is performed,
such that the quantum superposition is pro-
jected onto the basis states (double lines in-
dicate classical communication). Depending
on the measurement outcome, single qubit
gates are finally performed (Mi = 1) or not
(Mi = 0).

the Hadamard gate and CNOT gates are their own inverses, the corresponding quantum circuit
simply has the order of the gates reversed. This allows Bob to extract the sent information and
– having pre-shared an entangled state – Alice can transmit two classical bits by sending only a
single qubit to Bob. In general, we can understand entangled state as a useful resource.

2.5.3 No-cloning theorem

Many classical algorithms make excessive use of copies of bits. Of course, we can just measure
the state of a qubit, project it e.g. on the states |0〉 or |1〉 and then prepare a second qubit in
the same state depending on the measurement outcome. This would yield two qubits in the same
state |00〉 or |11〉, but this procedure would not work if we want to copy a general superposition
state. Unfortunately, the laws of quantum mechanics forbid the direct copying of qubits with an
unknown state. To see this in a bit more general fashion, let us assume that we have a unitary
U that manages to copy two states |φ〉 and |ψ〉 into an ancilla qubit that is initially prepared in
some defined state |s〉

U |ψ〉 ⊗ |s〉 = |ψ〉 ⊗ |ψ〉 , U |φ〉 ⊗ |s〉 = |φ〉 ⊗ |φ〉 . (2.58)

We can already see that the initial information of the ancilla state |s〉 is gone in the final result,
such that we cannot go back with an inverse unitary, leading to a contradiction. Alternatively, we
can however also look at the inner product

〈ψ|φ〉 = [〈ψ| ⊗ 〈s|]U †U [|φ〉 ⊗ |s〉] = [〈ψ| ⊗ 〈ψ|] [|φ〉 ⊗ |φ〉] = 〈ψ|φ〉2 . (2.59)

This means that a unitary operation can only clone 2 states that are orthogonal to each other
〈φ|ψ〉 = 0 or identical 〈φ|ψ〉 = 1, but not a general quantum state.

2.5.4 Quantum teleportation

Although we cannot copy a qubit, it is possible to teleport it by using classical communication of
two bits. For this, one needs three qubits. The first qubit is the one that needs to be teleported
and is prepared in an unknown state |Ψ〉 = α |0〉+ β |1〉. The other two qubits are prepared in the
entangled state 1√

2
[|00〉+ |11〉], see Fig. 2.4. The three-qubit gate is fed with the initial state

|Ψ0〉 = [α |0〉+ β |1〉] 1√
2

[|00〉+ |11〉] =
α√
2
|000〉+

α√
2
|011〉+

β√
2
|100〉+

β√
2
|111〉 . (2.60)
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Figure 2.5: Three CNOT gates can implement a
SWAP gate, interchanging arbitrary two states
|Ψ〉 and |Φ〉.

After a CNOT12 gate, the state becomes

|Ψ1〉 =
α√
2
|000〉+

α√
2
|011〉+

β√
2
|110〉+

β√
2
|101〉 . (2.61)

Subsequently, a Hadamard gate is applied to the first qubit

|Ψ2〉 =
α

2
|000〉+

α

2
|100〉+

α

2
|011〉+

α

2
|111〉+

β

2
|010〉 − β

2
|110〉+

β

2
|001〉 − β

2
|101〉 . (2.62)

The information α, β of the qubit is now distributed between the two parties. Now, the first
two qubits are locally measured in the computational basis (that is, we measure σz1 and σz2. Four
different results can arise, for which the measurement postulate yields

|Ψ3(0, 0)〉 = α |000〉+ β |001〉 = |00〉 ⊗ [α |0〉+ β |1〉] ,
|Ψ3(0, 1)〉 = |01〉 ⊗ [α |1〉+ β |0〉] ,
|Ψ3(1, 0)〉 = |10〉 ⊗ [α |0〉 − β |1〉] ,
|Ψ3(1, 1)〉 = |11〉 ⊗ [α |1〉 − β |0〉] . (2.63)

Now, the third qubit already carries the full information of the initial state. The final conditional
single-qubit rotations merely serve to correct the relative phase or the bit flip, such that the final
state of the third qubit is always |Ψ〉

|Ψ4(0, 0)〉 = |00〉 ⊗ |Ψ〉 , |Ψ4(0, 1)〉 = |01〉 ⊗ |Ψ〉 ,
|Ψ4(1, 0)〉 = |10〉 ⊗ |Ψ〉 , |Ψ4(1, 1)〉 = |11〉 ⊗ |Ψ〉 . (2.64)

A SWAP gate can be seen as another way to transfer a state between two qubits. It is composed
from alternating CNOT gates

SWAP12 = CNOT12CNOT21CNOT12 , (2.65)

see also Fig. 2.5. To see this formally, consider that for |Ψ〉 = [α1 |0〉+ β1 |1〉] and |Φ〉 =
[α2 |0〉+ β2 |1〉]

SWAP12 |Ψ〉 ⊗ |Φ〉 = SWAP12 [α1α2 |00〉+ α1β2 |01〉+ β1α2 |10〉+ β1β2 |11〉]
= CNOT12CNOT21 [α1α2 |00〉+ α1β2 |01〉+ β1α2 |11〉+ β1β2 |10〉]
= CNOT12 [α1α2 |00〉+ α1β2 |11〉+ β1α2 |01〉+ β1β2 |10〉]
= [α1α2 |00〉+ α1β2 |10〉+ β1α2 |01〉+ β1β2 |11〉]
= [α2 |0〉+ β2 |1〉]⊗ [α1 |0〉+ β1 |1〉] . (2.66)
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However, the difference to teleportation is that in order to implement this gate, the CNOT gates
have to bridge the physical distance between the qubits, whereas in teleportation we just use
entanglement and classical communication.

2.6 The partial trace

For a given pure bipartite state |ΨAB〉 (e.g. defined on the Hilbert space of two qubits) on the
Hilbert space A⊗B, we can compute local observables O of the Hilbert space A (e.g. only referring
to the first qubit) by expectation values

〈OA〉 = 〈OA1B〉 = 〈ΨAB|O ⊗ 1 |ΨAB〉 . (2.67)

If the state is a product state (i.e., a non-entangled state) |ΨAB〉 = |ΨA〉 ⊗ |ΨB〉, this can be
easily shown to be 〈OA〉 = 〈ΨA|O |ΨA〉, i.e., in case of qubits it only depends on the state of
the first qubit. By contrast, if the state is entangled, the evaluation of a local observable can
be more involved, since all the components have to be taken into account. For example, with
|Ψ〉 = 1√

2
[|00〉+ |11〉] we get

〈Ψ|σα1 |Ψ〉 = 〈Ψ|σα ⊗ 1 |Ψ〉 =
1

2
[〈0|σα |0〉+ 〈1|σα |1〉] = 0 . (2.68)

For many qubits, this leads to significantly (exponentially) more terms as we have more and more
basis states to consider. The density matrix can also be used as a convenient tool to evaluate local
(that act only in a part of the full Hilbert space as e.g. only few of all the qubits) observables. We
know that for the pure state

ρAB = |ΨAB〉 〈ΨAB| (2.69)

we can likewise compute the local observable as 〈OA〉 = TrAB {O ⊗ 1ρAB}, which does not buy us
anything in terms of complexity. However, we can define a so-called reduced density matrix that
fully describes the statistics of subsystem A only. This works via the partial trace. Whereas a
full trace maps an operator to a number, the partial trace merely reduces the dimension of the
operator. So if |ai〉 are states in Hilbert space A and |bi〉 are states in Hilbert space B, the partial
trace over B reduces an operator from A⊗B into an operator only acting on A

TrB {|a1〉 〈a2| ⊗ |b1〉 〈b2|} ≡ |a1〉 〈a2|Tr {|b1〉 〈b2|} . (2.70)

For example, for two qubits we would have Tr2{σx1} = Tr2{σx ⊗ 1} = σxTr {1} = 2σx, which only
acts on the Hilbert space of the first qubit.

The reduced density matrix is defined via the partial trace

ρA = TrB {ρAB} . (2.71)

It has the following properties

� If ρAB is a valid density matrix in A⊗B, ρA is a valid density matrix in A.

� Specifically, if ρAB = ρA⊗ρB with valid density matrices ρA and ρB, then ρA = TrB {ρA ⊗ ρB}.
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� Expectation values of local observables can be computed with the reduced density matrix

〈OA〉 = Tr {O ⊗ 1ρAB} = Tr {OρA} , (2.72)

which is now the whole point of the procedure.

� Pure entangled states in A⊗B become mixed under the partial trace, whereas non-entangled
states remain pure. For example, we have for ΨAB = |01〉

ρA = TrB {|01〉 〈01|} = Tr2 {|0〉 ⊗ |1〉 〈0| ⊗ 〈1|} = |0〉 〈0|Tr {|1〉 〈1|} = |0〉 〈0| , (2.73)

which evidently is just a pure state. Alternatively, for ΨAB = 1√
2
[|00〉+ |11〉] we get

ρA =
1

2
TrB {|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|} =

1

2
[|0〉 〈0|+ |1〉 〈1|] , (2.74)

which is a mixed (non-pure) state.

� One can show that the partial trace is the unique mapping that preserves the measurement
statistics of local observables.



Chapter 3

The circuit model of quantum
computation

3.1 Deutsch and Deutsch-Jozsa problems

Quantum and classical computers are different in many aspects. A most prominent one is that
for a quantum computer we are able to feed in (complex-valued) superposition states, whereas
for a classical computer we could at best feed in a statistical mixture. Loosely speaking, this
allows one to evaluate many possible input states in parallel. Technically challenging, we will need
entanglement to generate some quantum speedup and unfortunately, one has to think deeply on
how to utilize measurement.

A simple example that demonstrates quantum supremacy via the parallel evaluation of many
inputs goes as follows: Let f(x) denote a function that maps {0, 1} → {0, 1}. There are four
possibilities for such a function
function values

a.) fa(0) = 0 fa(1) = 0
b.) fb(0) = 0 fb(1) = 1
c.) fc(0) = 1 fc(1) = 0
d.) fd(0) = 1 fd(1) = 1

.

For each of these functions one can show that the operation

Uf |x, y〉 = |x, y ⊕ f(x)〉 , (3.1)

where ⊕ indicates addition modulo 2, can be implemented by a unitary operation Uf depending
on the function chosen. This is summarized in this table
xy x(y ⊕ fa(x)) x(y ⊕ fb(x)) x(y ⊕ fc(x)) x(y ⊕ fd(x))
00 00 00 01 01
01 01 01 00 00
10 10 11 10 11
11 11 10 11 10

.

For example, we can write the case a.) in the table above simply as the identity and the second
colum as a CNOT gate

Ufa = 1 , Ufb = CNOT12 , Ufc = X2CNOT12 , Ufd = X2 . (3.2)

Instead of feeding in a computational basis state to the unitary Uf , we can also feed in a superpo-

29
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Figure 3.1: Quantum circuit for the Deutsch
problem. Upon evaluation of the first qubit at the
end of the algorithm, one can determine whether
the function f(x) is balanced or not with only a
single application of the quantum circuit.

sition in the first qubit and the state |0〉 in the second

UfH1 |00〉 = Uf
1√
2

[|0〉+ |1〉]⊗ |0〉 =
1√
2

[|0, 0⊕ f(0)〉+ |1, 0⊕ f(1)〉] =
1√
2

[|0, f(0)〉+ |1, f(1)〉] .

(3.3)

Thus, with only using one evaluation, the resulting state has computed the function f at two
values. Unfortunately, this is not yet useful as a classical measurement of the first qubit would
either yield f(0) or f(1), such that we would have to run the above circuit at least twice and there
would be rather a disadvantage in comparison to the classical case, where two evaluations suffice
with certainty. To turn this into something with a quantum computation advantage, we have to
slightly generalize this picture.

We note that fa(x) and fd(x) always give the same value (they are not balanced), whereas
fb(x) and fc(x) give different values on different inputs (they are called balanced). To classically
determine whether a function is balanced or not, we require two function evaluations. The Deutsch
algorithm corresponds to a quantum circuit depicted in Fig. 3.1. It demonstrates that this global
feature of the function f(x) (is it balanced or not) can be revealed with just one evaluation of the
quantum circuit [5]. The initial Hadamard gates yield the state

H1H2 |01〉 =
1

2
[|0〉+ |1〉]⊗ [|0〉 − |1〉] =

1

2
[|00〉 − |01〉+ |10〉 − |11〉] . (3.4)

Afterwards, application of the unitary implies

UfH1H2 |01〉 =
1

2
[|0, f(0)〉 − |0, 1⊕ f(0)〉+ |1, f(1)〉 − |1, 1⊕ f(1)〉]

=

{
1√
2
[|0〉+ |1〉]⊗ 1√

2
[|f〉 − |1⊕ f〉] : f(0) = f(1) = f

1√
2
[|0〉 − |1〉]⊗ 1√

2
[|f(0)〉 − |1⊕ f(0)〉] : f(1) = 1⊕ f(0)

=

{
± 1√

2
[|0〉+ |1〉]⊗ 1√

2
[|0〉 − |1〉] : f(0) = f(1) = f

± 1√
2
[|0〉 − |1〉]⊗ 1√

2
[|0〉 − |1〉] : f(1) = 1⊕ f(0)

, (3.5)

where in the last line we have used that 1⊕f is always just the other state for f ∈ {0, 1}, just that we
may at most get a sign factor. Importantly, the two possible states of the first qubit are orthogonal
and depend on the global property whether the function is balanced f(1) = 1 ⊕ f(0) = 1 − f(0)
or not f(0) = f(1) = f ∈ {0, 1}. The purpose of the final Hadamard gate is simply to rotate back
to the computational basis

H1UfH1H2 |01〉 =

{
± |0〉 ⊗ 1√

2
[|0〉 − |1〉] : f(0) = f(1) = f

± |1〉 ⊗ 1√
2
[|0〉 − |1〉] : f(1) = 1⊕ f(0)

. (3.6)
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Figure 3.2: The Deutsch-Jozsa quantum circuit is
a generalization of the Deutsch quantum circuit
from Fig. 3.1 to many input qubits. The upper
wire marks n qubits with parallel identical actions
performed on.

Now, measurement of the first qubit yields with certainty the global property of the function f
(balanced or not) with a single run of the circuit only. A corresponding classical circuit would
have to be run twice.

The previous example serves as a proof of principle but is not very impressive. There is only
a speedup of a factor of two, which is beaten by the additional effort to implement a quantum
computer by orders of magnitude. However, the Deutsch problem can be generalized to many
qubits, where one can see that the scaling of the computational complexity is different on a classical
and on a quantum computer.

In the Deutsch-Jozsa problem, one considers the problem of a function of many bits f :
{0, 1}n → {0, 1}. Additionally, one is given the promise that the function f(x) = f(x1, . . . , xn) is
either constant f(x) = const for all 2n different values of x or balanced, that is for 2n−1 values of
x it yields 0 and for the other 2n−1 values it yields 1. An example for a balanced function could
be whether the number of ones in the input x is even (assign 0) or odd (assign 1)

f(x) = (−1)x1+x2+...+xn . (3.7)

Given that the function is either balanced or constant, to find out whether the function f is
actually balanced or constant, one would classically have to sample it at least 2 times and at most
2n−1 + 1 times: If we get two different values as the first two results, we know that the function is
balanced. If we get equal values until the (2n−1 + 1)st result we know that the function must be
constant. Clearly, by sampling stochastically, one would pretty soon know whether the function
is balanced or not, but in the worst case, one could get 2n−1 similar results although the function
is actually balanced, which would be revealed by the next measurement then. So the worst-case
classical complexity is 2n−1 + 1 function evaluations.

A corresponding quantum circuit could actually achieve this in a single run, i.e., with an
exponential speedup, which is exemplified by the Deutsch-Jozsa problem [6]. Given a unitary
acting on n+ 1 qubits

Uf |x1, . . . , xn, y〉 = Uf |x, y〉 = |x, y ⊕ f(x)〉 , (3.8)

which leaves the first n qubits invariant and imprints the result of the function f(x) on the n+ 1st
qubit, the Deutsch algorithm from Fig. 3.1 can be generalized in a straightforward way, see Fig. 3.2.
After the application of the initial n+ 1 Hadamard gates the state is
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H1 . . . Hn+1 |0 . . . 0, 1〉 =
1√
2

[|0〉+ |1〉]⊗ . . .⊗ 1√
2

[|0〉+ |1〉]⊗ 1√
2

[|0〉 − |1〉]

=
1

2n/2

1∑
x1=0

. . .
1∑

xn=0

|x1 . . . xn〉 ⊗
1√
2

[|0〉 − |1〉]

=
1

2n/2

2n−1∑
x=0

|x〉 ⊗ 1√
2

[|0〉 − |1〉] . (3.9)

Here, we have simply used that the Hadamard transform on the state |0 . . . 0〉 of the first n qubits
simply yields all computational basis states for n qubits. After applying the unitary that computes
the function, we obtain

UfH
⊗(n+1) |0, 1〉 =

1

2n/2

2n−1∑
x=0

|x〉 ⊗ 1√
2

[|f(x)〉 − |1⊕ f(x)〉]

=
1

2n/2

2n−1∑
x=0

(−1)f(x) |x〉 ⊗ 1√
2

[|0〉 − |1〉] , (3.10)

such that now the information of the function is stored in the first n qubits. Here, we have simply
used that a sign occurs only if f(x) = 1. Now, we only have to apply the final n Hadamard gates.
For a single qubit, we have

H |x〉 =
1√
2

1∑
z=0

(−1)x·z |z〉 , (3.11)

which we can generalize for n qubits as

H⊗n |x1 . . . xn〉 =
1

2n/2

n∑
z1=0

. . .
n∑

zn=0

(−1)x1z1+...+xnzn |z1 . . . zn〉 ≡
1

2n/2

2n−1∑
z=0

(−1)x·z |z〉 . (3.12)

Applying this for the first n qubits of our state, we eventually get

H⊗nUfH
⊗(n+1) |0, 1〉 =

1

2n

2n−1∑
z=0

[
2n−1∑
x=0

(−1)x·z+f(x)

]
|z〉 ⊗ 1√

2
[|0〉 − |1〉] . (3.13)

Now, the prefactor in square brackets can be analyzed depending on f(x). To determine whether
the function is balanced or not, we measure the first n qubits. Particularly, the amplitude for the
state |0 . . . 0〉 is

∑
x(−1)f(x)/2n. When now f(x) is constant, this amounts to a phase of ±1,

whereas all other amplitudes have to vanish – the state needs to remain normalized. In contrast,
when f(x) is balanced, the amplitude of |0 . . . 0〉 will vanish. Therefore, measurements of the first
n qubits will

� yield always 0 when f(x) is constant

� yield 1 in at least one case when x is balanced.

Summarizing, the algorithm shows that one can obtain an exponential speedup in comparison
to the classical case provided the function Uf can be implemented with polynomial effort in the
problem size. Unfortunately, the Deutsch-Jozsa problem has no known applications except quite
constructed problems. However, it poses the question which unitaries on a quantum computer can
actually be implemented and what the associated cost is.
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Figure 3.3: Circuit symbol for the CCNOT
(Toffoli) gate. The control qubits (upper two
wires) are not affected, but the target qubit
(lower wire) is flipped when both control
qubits are set. The gate is its own inverse.

3.2 Backward compatibility

We have stated that the NAND gate is universal for classical computation. Provided we have a
quantum computer, one may wonder whether it is possible to implement classical circuits on it.
Of course, some adaptations may be necessary since quantum circuits must have as many output
qubits as they have input qubits. Therefore, one will generally need to make use of ancilla qubits
that are initially set to a defined state. Then, one can think of gates that can implement e.g.
a classically universal NAND gate for certain inputs. The simplest of these gates is the Toffoli
gate. It acts on three qubits, leaves the first two invariant and flips the third if the first two are
both in the state |1〉

Toffoli123 =
1

2
[1− σz]⊗ 1

2
[1− σz]⊗ σx +

1

2
[1 + σz]⊗ 1

2
[1− σz]⊗ 1

+
1

2
[1− σz]⊗ 1

2
[1 + σz]⊗ 1 +

1

2
[1 + σz]⊗ 1

2
[1 + σz]⊗ 1

=
1

4
[1− Z1 − Z2 + Z1Z2]X3 +

1

4
[3 · 1 + Z1 + Z2 − Z1Z2] . (3.14)

It can also be seen as a controlled-controlled-NOT (CCNOT) gate, see Fig. 3.3. The truth table
of the Toffoli gate
input output
000 000
001 001
010 010
011 011
100 100
101 101
110 111
111 110

reveals by its matrix representation that the gate is a unitary transformation and in particular
that if the third input qubit is in the state |1〉, the third output qubit will encode the NAND gate
on the first two qubits (bold symbols in the table above)

Toffoli123 |z1z2〉 ⊗ |1〉 = |z1z2〉 ⊗ |NAND(z1, z2)〉 . (3.15)
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Figure 3.4: Replacement circuit for the Toffoli (CCNOT) gate from Fig. 3.3. CNOT operations
and single-qubit gates like Hadamard, phase gate and π/8-gate suffice to implement the Toffoli
gate.

Likewise, we can argue that by setting the first input qubit in state |1〉 and the last input qubit
in state |0〉, the third output qubit will become a copy of the second (red numbers in the table
above). Note that this can only copy classical bits but not a qubit, compare Sec. 2.5.3. So in effect,
universal quantum computers are backward compatible, provided one can work with a sufficient
number of ancilla qubits.

The Toffoli gate can be implemented with a sequence of particular single-qubit gates like the
Hadamard gate (2.21), the phase gate

S =

(
1 0
0 i

)
(3.16)

and the π/8 gate

T =

(
1 0
0 eiπ/4

)
=

(
1 0
0 1√

2
[1 + i]

)
= eiπ/8

(
e−iπ/8 0

0 e+iπ/8

)
(3.17)

and CNOT gates (2.45), as exemplified in Fig. 3.4.

3.3 Controlled operations

We have introduced the CNOT gate as a particular controlled operation that is performed if the
control qubit is in state |1〉. Alternatively, we could imagine to perform a general controlled unitary
operation

C(U)12 =
1

2
[1 + σz]⊗ 1 +

1

2
[1− σz]⊗ U , (3.18)

which applies a general single qubit unitary to the target qubit when the control qubit is in state
|1〉 and does nothing if it is in the state |0〉. One can understand that any single qubit unitary can
be decomposed as

U = eiαAXBXC : ABC = 1 , (3.19)

with other single-qubit unitaries A, B, C, a global phase α and the bitflip gate X = σx. We
can always choose C = B−1A−1, and B̄ = XBX can be understood as just another unitary,
such that there is actually nothing to prove but only to accept that we express the unitary U
by a sequence of rotations. From this decomposition one can deduce that the circuit in Fig. 3.5
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Figure 3.5: A controlled unitary operation can
be implemented by CNOT gates and single qubit
gates. If the control qubit is in |0〉, nothing hap-
pens due to ABC = 1. To the contrary, for a
set control qubit, the circuit maps |1〉 ⊗ |Ψ〉 to
eiα |1〉 ⊗ AXBXC |Ψ〉 = |1〉 ⊗ UΨ.

Figure 3.6: Multi-qubit controlled unitaries can
be implemented from single-qubit controlled uni-
taries and Toffoli gates – both can be imple-
mented with CNOT and single qubit gates as
depicted in Fig. 3.5 and Fig. 3.4. The example
shows a C3(U) operation and requires two ancil-
las. The final Toffoli gates just serve to bring
back the two ancilla qubits back to their initial
state.

implements a controlled unitary operation by means of CNOT gates and single qubit unitaries. If
the control qubit is in state |0〉, the X gates are not applied and the target qubit is left untouched
due to ABC = 1. By contrast, if the control qubit is in the state |1〉 the circuit by construction
implements the desired unitary operation on the target qubit.

Now, a multi-qubit controlled operation Cn(U) is executed iff all n control qubits are in the
state |1〉 and it is not executed when just one of them is in the state |0〉, see Fig. 3.6. They can be
implemented with Toffoli gates and a single controlled unitary operation, which means that with
some ancilla qubits, multi-qubit controlled unitaries can be implemented with a number of CNOT
gates and single-qubit rotations (for the Toffoli gates) and a controlled unitary operation.

Sometimes, it may be required to execute a controlled operation not conditioned on the state
|1〉 but conditioned on the state |0〉. In quantum circuits, this is just symbolized with a white dot
instead of a black one, see Fig. 3.7 This way, controlled single qubit operations may be applied to
two individual computational basis states only.

3.4 Universality of quantum computation

One may wonder about the necessary building blocks to implement universal quantum compu-
tation, i.e., what are the necessary building blocks to implement the most general unitary. The
reasoning is split into three steps.
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Figure 3.7: Controlled (multi-qubit) unitaries
conditioned on the state |0〉 rather than on the
state |1〉 – symbolized by white circles – can be
implemented with bitflip gates X.

� First, we show that a general d× d unitary matrix can be exactly expressed by products of
d× d unitary matrices that act non-trivially only on two components.

� Second, we show that these unitary matrices with two non-trivial components can be exactly
represented by the CNOT gate and continuous single-qubit rotations.

� Finally, we show that with using a discrete set of single-qubit gates, one can approximate
arbitrary continuous single-qubit unitaries to arbitrary precision.

These constructions do not fix the efficiency of the implementation, they altogether just state that
it is possible to implement arbitrary unitaries by using a discrete set of gates only, of which only
one (CNOT) is entangling.

3.4.1 Decomposition of d-level unitaries into 2-level unitary matrices

A general d × d unitary matrix U can be multiplicatively decomposed into products of d × d
two-level unitary matrices

U = V1 · . . . · Vk : k ≤ d(d− 1)/2 . (3.20)

For example, the most general 4× 4 unitary for two qubits can be decomposed into products of at
most 6 two-level unitaries.

So see this, we first consider the case d = 3 as an example and write the most general 3-level
unitary as

U =

 u11 u12 u13

u21 u22 u23

u31 u32 u33

 . (3.21)
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The first step is now to find a two-level unitary U1, such that the product U1U has a vanishing
(2,1) component (we assume that u21 6= 0 from the beginning, otherwise we can just skip this and
choose U1 as identity). In fact, this can be achieved by

U1 =
1√

|u11|2 + |u21|2

 u∗11 u∗21 0
u21 −u11 0
0 0 1

 . (3.22)

The matrix U1 is evidently unitary and exemplifies what is meant by a 3× 3 two-level matrix: It
acts non-trivially only on the first two components. Explicit evaluation of the product yields

U1U =

 u′11 u′12 u′13

0 u′22 u′23

u′31 u′32 u′33

 (3.23)

where we have just not written the primed values explicitly. In the second step, we seek for another
two-level unitary such that U2U1U has a vanishing (3,1) component (again, if u′31 = 0, we may
choose an even simpler U2). In full analogy, we choose

U2 =
1√

|u′11|
2 + |u′31|

2

 u′11
∗ 0 u′31

∗

0 1 0
u′31 0 −u′11

 , (3.24)

which is yet another 3× 3 two-level unitary matrix. Explicit evaluation yields now that both the
(2,1) and (3,1) components vanish, and in fact even more

U2U1U =

 1 u′′12 u′′13

0 u′′22 u′′23

0 u′′32 u′′33

 =

 1 0 0
0 u′′22 u′′23

0 u′′32 u′′33

 , (3.25)

where the second equality follows by reasoning that products of unitaries remain unitary, and
columns as well as rows of unitary matrices must be normalized. Finally, we choose to find a
two-level unitary such that in U3U2U1U the (3,2) component vanishes

U3 =
1√

|u′′22|
2 + |u′′32|

2

 1 0 0
0 u′′22

∗ u′′32
∗

0 u′′32 −u′′22

 . (3.26)

Possibly equipping the last column with a phase, we eventually obtain

U3U2U1U = 1 , (3.27)

or – alternatively U = U †1U
†
2U
†
3 , such that we can identify Vi = U †i . Altogether, the recursive

building of the procedure is quite analogous to Householder or Givens rotations [7] – the difference
is that here the unitary only acts from the left.

The generalization to d × d unitary matrices is analogous: For the elimination of the first
column off-diagonals we need d − 1 unitaries, for the next d − 2, then d − 3 and so on until only
one off-diagonal is left. The total number of unitaries is thus

k =
d−1∑
j=1

j =
d(d− 1)

2
. (3.28)
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One should keep in mind however that for n qubits, d = 2n, such that an exponential number of
two-level matrices may be needed in the worst case, so this is actually the most expensive step in
the implementation of a general unitary. Fortunately, for many specific unitaries there exist much
more efficient decompositions.

3.4.2 Decomposition of 2-level unitaries into single qubit and CNOT

Knowing that every unitary can be written as a product of two-level unitaries, we want to show
that any two-level unitary can be implemented with single qubit rotations and CNOT gates. So let
us assume that we have a two-level unitary U , such that there are two states in the computational
basis

|t〉 = |t1 . . . tn〉 , |s〉 = |s1 . . . sn〉 (3.29)

with nontrivial matrix elements

〈t|U |t〉 , 〈t|U |s〉 , 〈s|U |t〉 , 〈s|U |s〉 (3.30)

and the remaining trivial matrix elements 〈z|U |z′〉 = δzz′ . The main idea is now to perform
swap operations of computational basis states such that differ in only one digit. To find a sequence
of suitable swap operations, we first find a Gray code connecting |s1 . . . sn〉 and |t1 . . . tn〉. This
is a sequence of of states that differ by exactly one bit. Since two arbitrary states can differ by at
most n bits for an n bit system, one can always find such a Gray code with m ≤ n elements. For
example, the n = 6 bit states |s〉 = |010010〉 and |t〉 = |111011〉 are connected via the Gray code

state bitwise decomposition
|s〉 = |g1〉 |010010〉
|g2〉 |010011〉
|g3〉 |011011〉

|t〉 = |g4〉 |111011〉
Now, the agenda is to swap |g1〉 ↔ |g2〉, then |g2〉 ↔ |g3〉, and so on until |gm−2〉 ↔ |gm−1〉,
effectively transporting the computational basis state |s〉 to differ by |t〉 in only bit. The purpose
of the Gray code construction is that this can be done without changing the order of the other
states by applying controlled unitaries that are conditioned on the bits where |gi〉 and gi+1 are
equal and that flip the bit where they differ. Eventually, we have Uswap |s〉 and Uswap |t〉 = |t〉
being direct neighbours in the sense that they differ only by one bit. On this bit, we apply a
controlled single-qubit unitary operation, where the control qubits are set to the qubits where |t〉
and |gm−1〉 are equal and the target qubit is the one where they differ. Afterwards, we order the
computational basis states back to the original order by applying the same controlled operations
again – just in the reverse order, see Fig. 3.8. There are at most 2n + 1 such controlled unitaries
to perform, each of them can be implemented by O (n) CNOT gates and single qubit rotations.
With the result from the previous section, the total complexity to implement an arbitrary unitary
requires

O
(
n24n

)
(3.31)

operations. It proves that universal quantum computation is possible using a finite number of gen-
eral single-qubit rotations and CNOT gates. However, in general this can be extremely inefficient,
using an exponential number of gates in the number of qubits shows that quantum computers
need not be more efficient than classical ones. Good quantum algorithms must use significantly
less gates (e.g. only polynomially many in the number of qubits). The decomposition of the Toffoli
gate – which is an 8× 8 unitary in Fig. 3.4 requires significantly less gates than 32 ∗ 43 = 576.
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Figure 3.8: A general two-level unitary connect-
ing the states |010010〉 and |111011〉 can be im-
plemented by (multi-qubit) controlled NOT gates
and a (multi-qubit) controlled single qubit op-
eration, such that an overall O (n2) number of
CNOT and single-qubit gates is required to im-
plement a general two-level unitary. The first
gate swaps that states |010010〉 ↔ |010011〉,
wheras it leaves all other states in the compu-
tational basis invariant. The second gate then
swaps states |010011〉 ↔ |011011〉. Then, the
controlled unitary only acts nontrivially on the
states |011011〉 and |111011〉, after which the ba-
sis re-ordering is reversed. The individual 6-qubit
controlled operations (either with U or X) can be
individually implemented with the decomposition
of Fig. 3.7 and Fig. 3.6.

3.4.3 Approximating single-qubit and CNOT by discrete gates

The previous two sections demonstrate that with general single-qubit rotations and CNOT gates
one can implement general unitary rotations with O (n24n) gates. This is already quite inefficient
for most unitaries. Even worse, on a realistic system such gates cannot be performed accurately.
Control errors and decoherence will lead to imprecise gates, and quantum error correction codes
will need to be used to account for this. Error correction codes have been developed to make
the quantum algorithms work even in presence of imperfection, but they only function for a finite
universal set of gates. Such sets are called universal set of gates. The standard universal
set of gates consists of single qubit gates like the phase gate (3.16), the Hadamard gate (2.21),
the π/8-gate (3.17), and the CNOT gate (2.45) as the only entangling contribution.

We will show that with sufficiently many Hadamard gates and π/8 gates, all general single-qubit
rotations can be implemented. The proof goes as follows: First, it is shown that by using Hadamard
gates H and π/8 gates T , a particular unitary around a particular axis can be constructed. With
using that

T = eiπ/8

(
e−iπ/8 0

0 e+iπ/8

)
= eiπ/8e−iπ/8Z (3.32)

and further

e−iπ/8HTH = e−iπ/8X , (3.33)

where the global phase in front of the l.h.s. is irrelevant. Combining the two operations we get

T (HTH) ∝ e−iπ/8Ze−iπ/8X = [cos(π/8)1− i sin(π/8)Z] [cos(π/8)1− i sin(π/8)X]

= cos2(π/8)1− i sin(π/8) [cos(π/8)X + sin(π/8)Y + cos(π/8)Z] .
(3.34)

The points to recognize here are that
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� this is a rotation around the axis defined by

n =
1√

1 + cos2(π/8)

 cos(π/8)
sin(π/8)
cos(π/8)

 (3.35)

� by an angle defined by

cos(θ0/2) = cos2(π/8) . (3.36)

Importantly, the angle θ0 defined by the above relation is an irrational multiple of 2π! This ir-
rationality implies that by re-iterating the above rotation a number of times, we can reach any
point on circles around the Bloch sphere that are perpendicular to the vector n and go through
the initial state. By contrast, if θ0 was a rational multiple of 2π, i.e., θ̄0 = P/Q2π with integers P
and Q, we would see that after Q iterations, no new points would be added along the circle. More
formally, it allows us to approximate any rotation

Rn(θ) = exp

{
−i
θ

2
n · σ

}
= cos

(
θ

2

)
1− i sin

(
θ

2

)
n · σ : n · n = 1 (3.37)

now for arbitrary θ 6= θ0 just with H and T gates.
Unfortunately, this construction so far does not allow to switch between different circles. To

cover the rest of the Bloch sphere surface, we use that with

HXH = Z , HY H = −Y , HZH = X (3.38)

we generate a rotation about another axis

HRn(θ)H = Rm(θ) : m =
1√

1 + cos2(π/8)

 cos(π/8)
− sin(π/8)
cos(π/8)

 . (3.39)

Since m and n are not aligned, this generates a rotation around a different axis, and by combining
the rotations Rn and Rm we can eventually cover the whole Bloch sphere. More formally, this can
be written in the statement that any unitary single-qubit transformation (disregarding an overall
phase) can be written as

U = Rn(θ)Rm(φ)Rn(γ) : m ·m = n · n = 1,m 6= an , (3.40)

compare e.g. Eq. (2.26) for an example with n = ez and m = ey.
The construction rather proves feasability of approximating arbitrary unitaries by the discrete

ones H and T rather than efficiency. In fact, the construction is quite inefficient as the number
of discrete gates required to approximate a gate to a desired error ε increases exponentially like
O
(
21/ε
)

with the inverse error. However, it is actually possible to do this much more efficient (see
e.g. the Solovay Kitaev theorem in App. 3 of [1]) with a complexity that is only O (lnc(1/ε)) with
c ≈ 2, which is acceptable.

So why do we need in addition a phase gate? This is not really required for universality, but is
required to make the computation fault-tolerant. The whole necessity of discrete quantum gates
comes from the possibility of making the considered universal set of gates fault tolerant.
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3.5 Quantum Fourier Transform

The classical discrete Fourier transform (DFT) takes N complex numbers xj as input and
generates N complex numbers yk as output

yk =
1√
N

N−1∑
j=0

xje
+2πijk/N ,

xj =
1√
N

N−1∑
k=0

yke
−2πijk/N . (3.41)

The DFT has many applications e.g. in pattern recognition or image compression (e.g. in the
well-known jpg format). When we write it in matrix form yk =

∑
j Ukjxj, one can see that the

transformation matrix is actually unitary, e.g. via

∑
j

UkjU
†
j` =

∑
j

UkjU
∗
`j =

∑
j

1

N
e+2πijk/Ne−2πi`j/N = δk` . (3.42)

Therefore, we know that there must exist a quantum algorithm implementing the quantum
Fourier transform (QFT), which when applied to a computational basis state |j〉 yields

QFT |j〉 =
1√
N

N−1∑
k=0

e2πijk/N |k〉 . (3.43)

From Sec. 3.4 we know that this must be implementable by CNOT gates and single qubit opera-
tions. The QFT is built upon the observation that the above definition can be written in product
form once the binary decomposition of the computational basis state is made explicit for an n-qubit
system

|j〉 = |j1j2 . . . jn〉 , |k〉 = |k1k2 . . . kn〉 , (3.44)

for which we have N = 2n basis states. For the numbers denoting the computational basis states,
we can write

k = k12n−1 + k22n−2 + . . .+ kn−121 + kn20 =
n∑

α=1

kα2n−α . (3.45)
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We get just by splitting the sum over all computational basis states into the individual qubit sums

QFT |j〉 =
1

2n/2

2n−1∑
k=0

exp

{
2πij2−n

n∑
α=1

kα2n−α

}
|k1 . . . kn〉

=
1

2n/2

1∑
k1=0

. . .
1∑

kn=0

n⊗
α=1

exp
{

2πijkα2−α
}
|kα〉

=
1

2n/2

n⊗
α=1

[
1∑

kα=0

exp
{

2πijkα2−α
}
|kα〉

]

=
1

2n/2

n⊗
α=1

[
|0〉+ exp

{
2πi

j

2α

}
|1〉
]

=
|0〉+ e2πij/2 |1〉√

2
⊗ |0〉+ e2πij/4 |1〉√

2
⊗ . . .⊗ |0〉+ e2πij/2n−1 |1〉√

2
⊗ |0〉+ e2πij/2n |1〉√

2
.

(3.46)

Now, using that the exponential function is periodic, we can fully discard the integer contribution
of j/2α

e2πij/2α = exp

{
2πi

n∑
β=1

jβ2n−β−α

}
= exp

{
2πi

n∑
β=n−α+1

jβ2n−β−α

}
= exp

{
2πi
[
jn−α+12−1 + jn−α+22−2 + . . .+ jn2n−α

]}
≡ e2πi0.jn−α+1jn−α+2...jn−1jn , (3.47)

where the notation

0.ja . . . ja+b ≡ ja
1

2
+ . . .+ ja+b

1

2b+1
(3.48)

is understood. Thereby, we write the QFT as

QFT |j〉 =
|0〉+ e2πi0.jn |1〉√

2
⊗ |0〉+ e2πi0.jn−1jn |1〉√

2
⊗ . . .

⊗ |0〉+ e2πi0.j2...jn−1jn |1〉√
2

⊗ |0〉+ e2πi0.j1j2...jn−1jn |1〉√
2

. (3.49)

Here, we see that the QFT is just generated by a superposition of all computational basis states,
where the FT is encoded in a phase factor of the amplitudes. This product decomposition leads
us to introduce the phase gate

Rk =

(
1 0

0 e2πi2−k

)
: R2 = S , R3 = T , (3.50)

which we apply as a controlled unitary operation

Rnm
k = (Rk)n

(
1

2
(1− σz)

)
m

+ (1)n

(
1

2
(1 + σz)

)
m

, (3.51)
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n gates n-1 gates

n/2 SWAPs

Figure 3.9: Circuit representation for the QFT algorithm, based on a controlled application of
phase gates (3.50) and Hadamard gates (2.21) and final SWAP gates (2.65) reversing the order of
qubits. In total, O (n2) gates are required, thus rendering the QFT exponentially faster than the
Fast Fourier Transform O (n2n) or the naive DFT O (4n).

as discussed in Sec. 3.3 together with a Hadamard gate. The quantum circuit in Fig. 3.9 implements
the QFT [8]. To see that this yields the QFT, we consider the operations on the first qubit

R1n
n . . . R12

2 H1 |j1j2 . . . jn〉 =
1√
2
R1n
n . . . R12

2 [|0〉+ (−1)j1 |1〉]⊗ |j2 . . . jn〉

=
1√
2
R1n
n . . . R12

2 [|0〉+ e2πi0.j1 |1〉]⊗ |j2 . . . jn〉

=
1√
2
R1n
n . . . R13

3 [|0〉+ e2πi0.j1j2 |1〉]⊗ |j2 . . . jn〉

=
1√
2

[|0〉+ e2πi0.j1j2...jn |1〉]⊗ |j2 . . . jn〉 , (3.52)

compare the first vertical dashed line in Fig. 3.9. After the operations on the second qubit, the
state is

R2n
n−1 . . . R

23
2 H2R

1n
n . . . R12

2 H1 |j1 . . . jn〉 =
1√
2

[|0〉+ e2πi0.j1j2...jn |1〉]⊗ 1√
2

[|0〉+ e2πi0.j2...jn |1〉]⊗ |j3 . . . jn〉 ,

(3.53)

and so on until all Hadamard and controlled phase gates have been applied, yielding

Hn . . . H1 |j1 . . . jn〉 =
|0〉+ e2πi0.j1j2...jn |1〉√

2
⊗ . . .⊗ |0〉+ e2πi0.jn |1〉√

2
, (3.54)

compare the second and third vertical dashed lines in Fig. 3.9, respectively. This corresponds
to (3.49), but the order of qubits is reversed. Correcting this with dn/2e SWAP gates, we see
that the QFT circuit exactly reproduces (3.49), validating the quantum circuit. The circuit can
be reversed by reversing the order of gates and simultaneously reverting the controlled phase gates
via Rk → R†k, such that likewise, the inverse QFT can be computed. Now, knowing how QFT acts
on a basis state of the computational basis, we can equivalently apply the QFT to superposition
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states

QFT
∑
j

xj |j〉 =
∑
j

xjQFT |j〉 =
∑
k

yk |k〉 . (3.55)

This is the most impressive quantum speedup known so far: An algorithm that uses exponential
time in the input size classically (e.g. O (n2n) for the Fast Fourier Transform or even O (4n) for
the naive Fourier transform) could be performed in O (n2) time on a quantum computer – given
that each gate can be performed with a maximum cost. Additionally, one has to think deeply how
to use the QFT as upon a measurement of the final qubits, the state will be collapsed, as in any
quantum algorithm.

Simulating the QFT on a classical computer will require exponential resources. However, we
can use the QFT circuit to even speed up the classical computation of the DFT. To see this, we
first note that multiplying an N ×N unitary matrix to an N -dimensional vector – where N = 2n

– requires N2 multiplications, such that the naive DFT complexity scales as O (N2) = O (4n) in
the size of the bit length n y0

...
y2n−1

 =

 u0,0 . . . u0,2n−1
...

...
u2n−1,0 . . . u2n−1,2n−1


 x0

...
x2n−1

 . (3.56)

This computes the entries of the Fourier transform in an inefficient way. The product representation
of the QFT has the additional advantage that by adding a qubit before the first one

|j〉 = |j1 . . . jn〉 → |j0j1 . . . jn〉 , (3.57)

we see that in Eq. (3.49) this amounts to adding another qubit behind the last one

QFT |j0j1 . . . jn〉 =
|0〉+ e2πi0.jn |1〉√

2
⊗ |0〉+ e2πi0.jn−1jn |1〉√

2
⊗ . . .

⊗ |0〉+ e2πi0.j2...jn−1jn |1〉√
2

⊗ |0〉+ e2πi0.j1j2...jn−1jn |1〉√
2

⊗ |0〉+ e2πi0.j0j1j2...jn−1jn |1〉√
2

= [QFT |j1 . . . jn〉]⊗
|0〉+ e2πi0.j0j1j2...jn−1jn |1〉√

2
. (3.58)

Classically, the last bit however just signifies whether a number is even or odd. Having computed
all the DFT components for n bits y

(n)
k , we can therefore store this result with a factor of 1/

√
2

in the even components of y
(n+1)
k and the same result with a factor of e2πi0.j0j1...jn/

√
2 in the odd

components of y
(n+1)
k . By doing so, we have to do O (n2n) operations in this step, where the

exponential comes from iterating through the 2n components of y
(n)
k and the correction n from

the determination of the phase factor e2πi0.j0j1...jn . Applying this recursively, the total complexity
requires

O

(
n∑
i=1

i2i

)
= O

(
2 + (n− 1)2n+1

)
= O (n2n) (3.59)

operations, which is a lot faster than the naive matrix-matrix multiplication and which is actually
used a lot in signal processing algorithms.
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The most prominent application of the QFT is Peter Shor’s factoring algorithm that was
introduced in 1994 [9]. It is built on the use of the QFT in phase estimation and order finding
and takes a composite number N = N1N2 as an input with unknown factors Ni and returns as an
output one of the previously unknown factors. Classically, finding the factors of a number scales
in the worst case exponentially in the number of input bits (or in the number of digits of that
number). Quantum-mechanically, Shor’s algorithm requires O ((lnN)3) operations, i.e., it scales
polynomially in the number of input bits. This has raised a lot of attention to quantum computers
as many of our encryption protocols such as the RSA public-key cryptosystem rely on factoring.
Therefore, quantum computers could actually break this kind of cryptography. Currently, we
do not have a working quantum computer that could compete with classical computers on the
factoring problem. Nevertheless, a proof-of principle has been provided for the factoring algorithm
by factoring 15 = 5 ∗ 3 on a quantum computer [10].

3.6 Quantum search

The quantum search algorithm has been suggested by Lov Grover in 1995 [11]. Grover’s algorithm
makes use of the ability to recognize a solution to a problem instead of the ability to find it. In
the Grover search algorithm, this ability is hidden in a unitary called oracle. For many problems,
such an oracle can be built without knowing the solution to a problem. For example, given a
biprime (a product of two prime numbers) it will in general take you a long time to find the prime
factors if the biprime is just sufficiently large. Instead, if somebody gives you two potential prime
factors, it is very simple in terms of a computational complexity scaling only polynomially in the
length of the prime factors to find out whether their product equals the biprime or not.

A typical search problem for which such an oracle can be relevant is the search in an unsorted
database, e.g. imagine being given a telephone number without a name and try to find a name in
the phone book. Whereas classically, given N entries in the phone book and the promise that at
least one name matches the number in the book, we would have to consult the phone book in the
worst case N −1 times to find the solution. To be more concrete, for a database with N items and
M < N solutions to the search problems, the promise of Grovers search algorithm is that we only

need to consult the oracle O
(√

N
M

)
times to find one solution. That is not as impressive as the

QFT speedup but is more generally applicable as the cost is hidden in the basic building block –
the construction of the oracle. Formally, the oracle performs the unitary operation

O |x〉 ⊗ |q〉 = |x〉 ⊗ |q ⊕ f(x)〉 , (3.60)

just as in the Deutsch- and Deutsch-Jozsa algorithms. The function f(x) by definition returns

f(x) =

{
1 : x is a solution to the search problem
0 : else

(3.61)

This means that the oracle flips its qubit q ⊕ f(x) if the fed-in state x = x1 . . . xn is a solution to
the search problem and leaves it invariant otherwise. Usually, the initial oracle state is chosen as

1√
2
[|0〉 − |1〉], such that

O |x〉 ⊗ 1√
2

[|0〉 − |1〉] = |x〉 1√
2

[|0⊕ f(x)〉 − |1⊕ f(x)〉] = (−1)f(x) |x〉 ⊗ 1√
2

[|0〉 − |1〉] . (3.62)
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Figure 3.10: Quantum circuit of the Grover algo-
rithm. The initial Hadamard gates simply gen-
erate a superposition of all computational basis
states. Depending on the number of solutions
and search items, only a fixed number of Grover
iterations is necessary.

final measurement

oracle workspace

This is just an overall phase, and the oracle qubit remains invariant, such that we do not even
need to make the action of the oracle explicit

Ō |x〉 = (−1)f(x) |x〉 . (3.63)

The effective action of the oracle on its workspace qubits is simply to mark a solution by a phase
factor.

Thinking in terms of a control Hamiltonian that is diagonal in the computational basis

Horacle =
∑
z
Ez |z〉 〈z| =

∑
z1

. . .
∑
zn

Ez1...zn |z1〉 〈z1| ⊗ . . .⊗ |zn〉 〈zn| (3.64)

and operates for a gate operation time Toracle, one could implement an oracle Hamiltonian if e.g.
the eigenvalue of the solution z̄ vanishes Ez̄ = 0 whereas all other eigenvalues have unit value
Ez 6=z̄ = 1. Then, the oracle operation could be expressed with Toracle = π

Ō = e−iπ[1+Horacle] , (3.65)

and we would have Ō |z̄〉 = − |z̄〉 and Ō |z 6= z̄〉 = + |z〉. Importantly, for many problems such
Hamiltonians can be constructed without knowing the solution z̄ in advance. For example, the
Hamiltonian

Horacle = 1− (ẑ1 + ẑ2 + ẑ3) + 2(ẑ1ẑ2 + ẑ1ẑ3 + ẑ2ẑ3)− 3ẑ1ẑ2ẑ3 : ẑi =
1

2
[1− σzi ] (3.66)

assigns with ẑi |z1z2z3〉 = zi |z1z2z3〉 an eigenvalue 0 only to the three solution states |001〉, |010〉,
and |100〉 and eigenvalue 1 to the other 5 states in the computational basis of three qubits. It can
be used for an oracle marking the solution to the question ”Which states have in total only one
bit set?”

The quantum search algorithm is modularized into some initial Hadamard gates that generate
superpositions of computational basis states

H⊗n |0 . . . 0〉 =
1

2n/2

1∑
z1=0

. . .

1∑
zn=0

|z1〉 ⊗ . . . |zn〉 =
1

2n/2

2n−1∑
z=0

|z〉 ≡ |S〉 , (3.67)

and the repeated application of so-called Grover iterations as in Fig. 3.10. The purpose of the
initial Hadamard gates is simply to generate a superposition of all basis states, such that this
superposition can be evaluated at once. In this circuit, each call of the Grover iteration G can
be further decomposed into an oracle call, Hadamard transforms, and conditional phase shifts as
depicted in Fig. 3.11. The oracle call will come with an associated cost, which we assume to be
constant or only mildly scaling with the problem size (e.g. polynomial in n). Additionally, the
Hadamard gates correspond to 2n operations, and the controlled phase gate can be written as
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oracle workspace

=
oracle

Figure 3.11: Single application of the Grover it-
eration. The cost of the oracle call is assumed to
be independent of the database size (number of
qubits) or to scale only polynomially in the num-
ber of qubits n = log2N . Both the Hadamard
gates as well as the controlled phase gate require
O (n) gates.

a multi-qubit controlled operation. Such controlled operations require with Sec. 3.3 again O (n)
operations, such that the cost of one Grover iteration is O (n) plus the cost of the oracle call.

Discarding the action of the oracle on its workspace, the effect of the Grover iteration can be
written as

G = H⊗n [2 |0 . . . 0〉 〈0 . . . 0| − 1]H⊗nO = [2 |S〉 〈S| − 1]O , (3.68)

where we have used Eq. (3.67) and the fact that H2 = 1. To analyze in detail what a Grover
iteration does to the superposition of all states, we define for a search problem with N items
and 1 ≤ M < N solutions the superposition of all non-solutions |α〉 and the superposition of all
solutions |β〉, respectively

|α〉 =
1√

N −M

∑
x′′:f(x′′)=0

|x′′〉 , |β〉 =
1√
M

∑
x′:f(x′)=1

|x′〉 . (3.69)

By construction, they are orthonormal 〈α|α〉 = 〈β|β〉 = 1 and 〈α|β〉 = 0, and we can decompose
the total superposition state

|S〉 =

√
N −M
N

|α〉+

√
M

N
|β〉

≡ cos
θ

2
|α〉+ sin

θ

2
|β〉 , (3.70)

where θ is some angle defined for the moment for convenience. By construction, we can write the
action of the oracle as

O |α〉 = + |α〉 , O |β〉 = − |β〉 , (3.71)

or O |S〉 = cos θ
2
|α〉 − sin θ

2
|β〉. This means that the application of the oracle O reflects the state

|S〉 about the state |α〉. Likewise, the operator [2 |S〉 〈S|−1] performs a reflection about the vector
|S〉. Since G is a product of two reflections then, it can be interpreted as a rotation. Formally, we
find

G |S〉 = [2 |S〉 〈S| − 1]O |S〉 = [2 |S〉 〈S| − 1]

[
cos

θ

2
|α〉 − sin

θ

2
|β〉
]

= cos
3θ

2
|α〉+ sin

3θ

2
|β〉 , (3.72)

which demonstrates that by the application of G, we do not leave the plane spanned by |α〉 and
|β〉. Computing the action of the Grover iteration on the individual components

G |α〉 = . . . = cos θ |α〉+ sin θ |β〉 , G |β〉 = . . . = − sin θ |α〉+ cos θ |β〉 , (3.73)
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Figure 3.12: Visualization of the Grover itera-
tion in the plane spanned by the vectors of non-
solution superpositions |α〉 and solution superpo-
sitions |β〉. One Grover iteration (blue) can be
composed from a reflection about |α〉 and a re-
flection about |S〉 and effectively implements a
rotation by an angle θ. The goal of the Grover
iterations is to rotate the initial state vector |S〉
to the solution vector |β〉.

we see that in the |α〉 and |β〉 plane, the Grover iteration performs a rotation by the angle θ, which
is determined by the number of items and the number of solutions

cos
θ

2
≡
√
N −M
N

, (3.74)

see Fig. 3.12. We can now ask how many iterations G of the oracle call are necessary to rotate
the initial state |S〉 to the solution vector |β〉. If the denote the number of Grover iterations by R,
this is defined by (

R +
1

2

)
θ ≈ π

2
. (3.75)

Which we can solve for integer R as

R = d π

4 arccos
√

N−M
N

e . (3.76)

If the number of solutions is significantly less than the number of items (which is the typical range
of application) M � N , we can expand the above formula yielding

R = dπ
4

√
N

M
e . (3.77)

Grover iterations will suffice to rotate near the solution, which yields a quadratic speedup compared
to the classical oracly query complexity of O (N/M). Since in general we can be off by an angle

θ/2 ≈
√

M
N

, the error probability in a subsequent measurement would be Perr ≈ M/N , such that

the Grover rotations are quite useful. The most intriguing advantage of the Grover iteration is
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oracle workspace

Figure 3.13: Example of a Grover iteration for
a 4-qubit system with a single qubit oracle
workspace. The first Hadamard on the ora-
cle workspace simply generates an antisymmet-
ric state with respect to a bitflip, such that the
first CCCCNOT operation will generate a sign for
the unique solution |0011〉. Additionally, the or-
acle workspace is re-used to implement the phase
flip 2 |0000〉 〈0000| − 1 by acting with X on the
workspace and the second controlled CCCCNOT
gate. The final Hadamard serves to recover the
ancilla state.

however that it is modularized in an abstract way and can be combined with any oracle function
to optimize quantum search. Counting the total complexity, we see that if the oracle costs are

only polynomial in Poracle(n), the total complexity of Grover search is O
(√

N
M
Poracle(log2N)

)
.

An example of a Grover iteration G with an oracle conditioned on recognizing the unique
solution |0011〉 is presented in Fig. 3.13. In this example, the oracle ’recognizes’ the solution to the
trivial question ”What computational basis state has the binary decomposition 0011”. In the figure,
the first Hadamard and the CCCCNOT gate implement the oracle operation O, which simply yields
a sign when the solution |0011〉 is fed in and does nothing otherwise on the work qubits. Counting
the number of gates, we see that this particular Grover iteration can be implemented with O (n)
gates. As written, we would need to know the solution beforehand to implement the oracle, but
one can imagine a situation where the oracle scans a global property of the state (like e.g. the
number of 1s). This suggests that R ≈ 2.6 ≈ 3 iterations of the oracle should suffice to find the
correct solution out of 16 states. To run a search algorithm with a different search question, we
simply have to use a different oracle. In figure 3.13 we could for example discard the constaint on
the second qubit in the oracle, reducing the number of solutions to two.

In general, one can prove that the Grover search algorithm is optimal, i.e., given an oracle

problem one cannot do the quantum search problem faster than with O
(√

N
M

)
oracle calls.

3.7 Control errors

Unfortunately, we do never have perfect control over the qubits of a quantum computer. When
performing a single qubit rotation, this can in principle be corrected by performing additional
rotations since merely the direction of the control Hamiltonian is slightly off the intended direction.
This however becomes more difficult if one has undesired couplings to additional components (e.g.
other qubits).

As an example, we can investigate what happens when we intend to perform a Hadamard gate
on the first qubit of a two-qubit system

UH,1 =
1√
2

(σx1 + σz1) = eiπ/2e
−iπ/2 1√

2
(σx1+σz1)

, (3.78)
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Figure 3.14: Bloch sphere representation of the evolution of two different initial states |0〉 (red)
and |1〉 (green) under a Hadamard gate H in presence of a non-vanishing coupling to a second
qubit that is initialized in state |0〉. From left to right, the coupling strength is increased from
λ/Ω ∈ {0, 0.01, 0.1, 1.0}, such that the leftmost panel shows the intended gate operation. The blue
arrow shows the direction of the intended control Hamiltonian H0(t).

which should work with a control Hamiltonian of the form (the global phase factor can be neglected)

H0(t) = Θ(t)Θ
(π

Ω
− t
) Ω

2

1√
2

(σx1 + σz1) . (3.79)

If additionally however we are coupled to a second qubit with undesired coupling strength λ

H(t) = H0(t) + λσx1σ
x
2 , (3.80)

the actual dynamics will deviate from the intended one, see Fig. 3.14. We see that moderate
coupling strength leads to non-pure states, but the gate operation roughly remains the same.
Although the two qubits evolve unitarily, and pure states remain pure under unitary evolution,
this only holds for the joint state of both qubits. The reduced density matrix of the first qubit
ρ1 = Tr2 {ρ12} will appear mixed ρ2

1 6= ρ1, or alternatively the expectation values of Pauli matrices
may be inside the Bloch sphere 〈σx〉2 + 〈σy〉2 + 〈σz〉2 < 1. For strong couplings however, the gate
function is lost completely (rightmost panel).



Chapter 4

Open quantum systems

The previously discussed quantum algorithms would work nicely if we could arbitrarily well ma-
nipulate our qubits and turn on and off certain Hamiltonians at will. This is unfortunately not
the case. By driving a parameter in the Hamiltonian in a time-dependent fashion we also couple
it to the outside world – the quantum system is no longer closed but should be considered open.
This coupling can not always be neglected and may have strong detrimental effects on the perfor-
mance of the quantum computer. To treat an open quantum system, one has to go beyond the
Schrödinger equation description but consider the density matrix formalism. The starting point is
then a decomposition of the total Hamiltonian into system, interaction and reservoir parts

H = HS(t) +HI +HB , (4.1)

where HS(t) could be the control Hamiltonian governing the qubit dynamics, HI denotes the
system-reservoir interaction and HB the Hamiltonian of the reservoir. For weak system-reservoir
coupling one may then use a perturbative treatment of the dynamics and trace out the reservoir
degrees of freedom to obtain an effective evolution equation for the system only. We provide
a simplified discussion here, for a more detailed treatment see e.g. [12] or the lecture notes on
quantum transport.

4.1 An exactly solvable model of decoherence

Since a reservoir typically involves an infinite number of degrees of freedom, open systems are
typically not exactly solvable. An exception to this is the spin-boson pure dephasing model, which
describes the interaction of a spin with a bosonic environment

HS =
Ω

2
σz , HB =

∑
k

ωkb
†
kbk ,

HI = σz ⊗
∑
k

[
hkbk + h∗kb

†
k

]
, (4.2)

where Ω denotes the splitting of the system Hamiltonian and b† creates a boson with frequency ωk
in the reservoir.

We can apply the so-called polaron transformation (also: Lang-Firsov) to the whole Hamil-
tonian

U = exp

{
−σz

∑
k

(
hk
ωk
bk −

h∗k
ωk
b†k

)}
. (4.3)

51
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We note the following relations

UσzU † = σz ,

Uσ±U † = e
±2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
σ± ,

UbkU
† = bk −

h∗k
ωk
σz . (4.4)

While the first is evident, the other can be demonstrated by application of the Baker-Campbell-
Hausdorf formula. From this we conclude that the unitary decouples system and reservoir

UHU † =
Ω

2
σz + σz

∑
k

(
hkbk + h∗kb

†
k − 2

|hk|2

ωk
σz

)
+
∑
k

ωk

(
b†k −

hk
ωk
σz
)(

bk −
h∗k
ωk
σz
)

=
Ω

2
σz −

∑
k

|hk|2

ωk
+
∑
k

ωkb
†
kbk . (4.5)

Consequently, we can e.g. compute the expectation value of σα via

〈σα〉 = Tr
{
e+iHtσαe−iHtρ0

}
= Tr

{
U †Ue+iHtU †UσαU †Ue−iHtU †Uρ0

}
= Tr

{
U †e+iUHU†tUσαU †e−iUHU†tUρ0

}
= Tr

{
U †e+iΩt/2σze+i

∑
k ωktb

†
kbkUσαU †e−i

∑
k ωktb

†
kbke−iΩt/2σzUρ0

}
. (4.6)

For α = + we further calculate〈
σ+
〉

= Tr

{
U †e+i

∑
k ωktb

†
kbke

2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
e−i

∑
k ωktb

†
kbke+iΩ/2tσzσ+e−iΩ/2tσzUρ0

}

= e+iΩtTr

{
U †e

2
∑
k

(
h∗k
ωk
b†ke

+iωkt− hk
ωk
bke
−iωkt

)
UU †σ+Uρ0

}

= e+iΩtTr

{
e

2
∑
k

(
h∗k
ωk

(b†k+
hk
ωk
σz)e+iωkt− hk

ωk
(bk+

h∗k
ωk
σz)e−iωkt

)
e
−2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
σ+ρ0

}

= e+iΩtTr

{
e

4i
∑
k
|hk|2
ω2
k

sin(ωkt)σ
z

σ+ρ0
S

}
Tr

{
e

2
∑
k

(
h∗k
ωk
b†ke

+iωkt− hk
ωk
bke
−iωkt

)
e
−2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
ρ̄B

}

= e+iΩtTr

{
e

4i
∑
k
|hk|2
ω2
k

sin(ωkt)σ
z

σ+ρ0
S

}
B(t) , (4.7)

where we have used initial factorization ρ0 = ρ0
S ⊗ ρ̄B. Using that eXeY = eX+Y+[X,Y ]/2 when

[X, [X, Y ]] = [Y, [X, Y ]] = 0, we can further evaluate the decoherence factor resulting from the
reservoir

B(t) = Tr

{
exp

{
2
∑
k

[
h∗k
ωk
b†k
(
e+iωkt − 1

)
− hk
ωk
bk
(
e−iωkt − 1

)]}
ρ̄B

}
e
−4i

∑
k
|hk|2
ω2
k

sin(ωkt)

= Tr

{
exp

{
+2
∑
k

h∗k
ωk
b†k
(
e+iωkt − 1

)}
exp

{
−2
∑
k

hk
ωk
bk
(
e−iωkt − 1

)}
ρ̄B

}
×

× e
−4
∑
k
|hk|2
ω2
k

[1−cos(ωkt)+i sin(ωkt)]
. (4.8)
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Now, we can use that for a thermal reservoir ρ̄B = e−βHB/Tr
{
e−βHB

}
we have expressions like

Tr

{
e+αkb

†
ke−α

∗
kbk
e−βωkb

†
kbk

Zk

}
=

∞∑
n,m=0

(+αk)
n(−α∗k)m

n!m!
Tr

{
(b†k)

nbmk
e−βωkb

†
kbk

Zk

}

=
∞∑
q=0

q∑
n=0

(−|αk|2)n

(n!)2
(1− e−βωk)e−βωkq q!

(q − n)!

= e−|αk|
2nB(ωk) (4.9)

with |αk|2 = 8|hk|2/ω2
k[1− cos(ωkt)]. This then implies for the decoherence factor

B(t) = exp

{
−4
∑
k

|hk|2

ω2
k

[1− cos(ωkt)][1 + 2nB(ωk)]

}
exp

{
−4i

∑
k

|hk|2

ω2
k

sin(ωkt)

}
. (4.10)

Eventually, it follows that the populations remain unaffected and that the coherences decay in the
long-term limit, i.e., leading to decoherence. In the interaction picture we can simply write

ρ(t) =

(
ρ00(0) ρ01(0)e−f(t)

ρ10(0)e−f(t) ρ11(0)

)
t→∞−→

(
ρ00(0) 0

0 ρ11(0)

)
,

f(t) = 8
∑
k

|hk|2
sin2(ωkt/2)

ω2
k

coth

(
βωk

2

)
=

4

π

∫ ∞
0

J(ω)
sin2(ωt/2)

ω2
coth

(
βω

2

)
dω ≥ 0 , (4.11)

where we have used the spectral density J(ω) = 2π
∑

k |hk|
2δ(ω − ωk). This result holds in a

similar fashion also for multiple qubits as long as all the interactions do mutually commute [13].
For later comparison, we note that the above solution is also the solution of the exact master
equation

ρ̇ = +ḟ(t)
e−f(t)

2
(σzρσz − ρ) , (4.12)

and that ḟ < 0 may occur for specific times, depending on the specific form of J(ω). The qualitative

effect of this exact master equation for the simplified case where ḟ(t) e
−f(t)

2
≈ γ is constant and

positive over the time interval is depicted in Fig. 4.1. It exemplifies that in order to remain with
a pure state representation, quantum gates have to be performed significantly faster than the
decoherence rate.

4.2 Lindblad master equation: Microscopic derivation

The previous example was a very specific decoherence model because the energy of the system was
kept constant all the time. To model the loss of coherence in a more general fashion, we take HS

as generic but assume it to be constant in the time of the gate duration. For simplicity (this can
be generalized in a straightforward way) we also assume a generic single-operator interaction of
the form

HI = S ⊗
∑
k

(
hkbk + h∗kb

†
k

)
≡ S ⊗B , (4.13)
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Figure 4.1: Bloch sphere representation of the evolution of two different initial states 1√
2
[|0〉 ± |1〉]

(red/green) under the Hamiltonian HS = Ω
2
σz (blue arrow) in presence for time t ∈ [0, π/Ω] of a

pure-dephasing master equation ρ̇ = −i[HS, ρ] + γ [σzρσz − ρ] for constant γ. From left to right,
the coupling strength is increased from γ/Ω ∈ {0, 0.01, 0.1, 1.0}.

where S is a generic system operator and hk denote spontaneous emission amplitudes of bosonic
modes bk and a harmonic oscillator reservoir

HB =
∑
k

ωkb
†
kbk , (4.14)

characterized by oscillator frequencies ωk > 0. In an ion-trap quantum computer the bosonic
modes could represent vibrations (phonons) of trapped ion clouds and the Pauli matrices describe
two selected internal levels of an ion. The evolution of the full universe density matrix σ is then
described by

σ̇ = −i [HS +HI +HB, σ] . (4.15)

In order to obtain a perturbative expression in the system-reservoir coupling strength, we transform
into an interaction picture with respect to system and reservoir Hamiltonians (bold symbols)

σ̇ = −i [HI(t),σ] , (4.16)

where

HI(t) = e+i(HS+HB)tHIe
−i(HS+HB)t = S(t)⊗B(t) (4.17)

denotes the interaction Hamiltonian in the interaction picture. The advantage of this representa-
tion is that we can now treat the Hamiltonian perturbatively. Formally integrating both sides of
the von-Neumann equation yields

σ(t)− σ(0) = −i

∫ t

0

[HI(t′),σ(t′)] dt′ , (4.18)

which we can solve for σ(t) on the l.h.s. and re-insert the result into Eq. (4.16)

σ̇ = −i [HI(t), σ(0)]−
∫ t

0

dt′ [HI(t), [HI(t′),σ(t′)]] . (4.19)
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This equation is still exact and still concerns the density matrix of the total universe. To obtain
a density matrix for the system only, we perform the partial trace over the reservoir degrees of
freedom

ρ(t) ≡ TrB {σ(t)} , (4.20)

which yields

ρ̇ = −iTrB {[HI(t), σ(0)]} −
∫ t

0

dt′TrB {[HI(t), [HI(t′),σ(t′)]]} . (4.21)

This equation is still exact but impossible to solve since the r.h.s. still depends on σ. Now, we
have to apply approximations to transform this equation into a practical evolution equation for the
system density matrix. Having in mind that the interaction is small HI = O (λ) and the reservoir
is large and that initially, system and reservoir are not yet coupled, it is reasonable to assume that
system and reservoir remain approximately in some tensor product form, where the reservoir is
hardly influenced by the system. The Born approximation does just this

σ(t) = ρ(t)⊗ ρ̄B +O (λ) = ρ(t)⊗ e−βHB

TrB {e−βHB}
+O (λ) , (4.22)

where we have assumed that the reservoir is in a canonical equilibrium state characterized by
inverse temperature β. Inserting it in the previous equation we find that now we obtain a closed
but complicated integro-differential equation

ρ̇ = −iS(t)ρ(0)TrB {B(t)ρ̄B}+ iρ(0)S(t)TrB {ρ̄BB(t)}

−
∫ t

0

dt′TrB {[S(t)B(t), [S(t′)B(t′),ρ(t′)ρ̄B]]}+O
(
λ3
)
. (4.23)

Now, we can make the interaction picture time-dependence of the coupling operators explicit

S(t) = e+iHStSe−iHSt =
∑
a,b

Sabe
+i(Ea−Eb)t |a〉 〈b| ,

B(t) = e+iHBtBe−iHBt =
∑
k

(
hkbke

−iωkt + h∗kb
†
ke

+iωkt
)
, (4.24)

where Sab = 〈a|S |b〉 are the matrix elements of the coupling operator in the energy eigenbasis of
the system

HS |a〉 = Ea |a〉 . (4.25)

With this, one can see that the first terms involving only linear expectation values of B are not
problematic since with

TrB

{
bke
−βωkb†kbk

}
= TrB

{
b†ke
−βωkb†kbk

}
= 0 (4.26)

it follows that

TrB {Bρ̄B} = TrB {Bρ̄B} =
∑
k

[
hk
Zk

Tr
{
bke
−βωkb†kbk

}
+
h∗k
Zk

Tr
{
b†ke
−βωkb†kbk

}]
= 0 . (4.27)
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We are left with the non-Markovian master equation

ρ̇ =

∫ t

0

[
− S(t)S(t′)ρ(t′)TrB {B(t)B(t′)ρ̄B}+ S(t)ρ(t′)S(t′)TrB {B(t)ρ̄BB(t′)}

+ S(t′)ρ(t′)S(t)TrB {B(t′)ρ̄BB(t)} − ρ(t′)S(t′)S(t)TrB {ρ̄BB(t′)B(t)}
]

+O
(
λ3
)

=

∫ t

0

C(t− t′) [S(t′)ρ(t′),S(t)] dt′ + h.c.+O
(
λ3
)
, (4.28)

where we have introduced the reservoir correlation function

C(t− t′) = TrB {B(t)B(t′)ρ̄B} = TrB {B(t− t′)Bρ̄B} = C∗(t′ − t) . (4.29)

The above master equation can only be solved for a few special cases, since it has a memory delay
kernel. It does not necessarily yield a proper system density matrix: Although it preserves trace
and hermiticity, one may get non-positive density matrices.

The explicit evaluation of the correlation function is tedious, but it can be related to the
expectation values of quadratic bosonic observables in a thermal state

C(τ) =
∑
kq

Tr
{[
hkbke

−iωkτ + h∗kb
†
ke

+iωkτ
] [
hqbq + h∗qb

†
q

]
ρ̄B

}
=
∑
k

|hk|2
(
e−iωkτ

〈
bkb
†
k

〉
+ e+iωkτ

〈
b†kbk

〉)
=
∑
k

|hk|2
(
e−iωkτ [1 + nB(ωk)] + e+iωkτnB(ωk)

)
, (4.30)

where

nB(ω) =
1

eβω − 1
(4.31)

is the Bose-Einstein distribution function and we have used that

Tr
{
b†kbqρ̄B

}
= δkqnB(ωk) , Tr {bkbqρ̄B} = Tr

{
b†kb
†
qρ̄B

}
= 0 (4.32)

together with the bosonic commutation relations [bk, b
†
q] = δkq. To be able to treat the continuum

reservoir limit we introduce the spectral coupling density

J̄(ω) = 2π
∑
k

|hk|2δ(ω − ωk) , (4.33)

which parametrizes the coupling strength and frequency distribution of the reservoir energy modes.
Since ωk ≥ 0, the original spectral density must vanish at negative frequencies. Analytically
continuing the spectral density for negative frequencies as an odd function

J(|ω|) = J̄(|ω|) , J(−ω) = −J(ω) (4.34)

allows us with nB(−ω) = −[1 + nB(ω)] to write the correlation function as

C(τ) =
1

2π

∫ ∞
0

J(ω)
(
e−iωτ [1 + nB(ω)] + e+iωτnB(ω)

)
dω

=
1

2π

∫ +∞

−∞
dωJ(ω)[1 + nB(ω)]e−iωτ . (4.35)
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From this, we can read off the Fourier transform of the reservoir correlation function

γ(ω) ≡
∫
C(τ)e+iωτdτ = J(ω)[1 + nB(ω)] . (4.36)

We observe that for a thermal reservoir, the correlation functions (here, their Fourier transforms)
obey additional thermal properties

γ(−ω)

γ(+ω)
=
J(−ω)

J(+ω)

1 + nB(−ω)

1 + nB(+ω)
=

nB(+ω)

1 + nB(+ω)
= e−βω , (4.37)

which are known as Kubo-Martin-Schwinger relations.
The specific behaviour now depends on what model is chosen for a spectral density. For

example, many reservoirs are well described by an ohmic spectral density that grows linearly at
small frequencies and has some cutoff at large frequencies

J(ω) = J0
ω

ωc

e−|ω|/ωc , (4.38)

and we see that for small frequencies ω � ωc and large temperatures βω � 1 we have that the
Fourier transform of the correlation function does not vary much

lim
ω→0

J(ω)[1 + nB(ω)] =
J0

ω
ωc

βω
=

J0

βωc

. (4.39)

In turn this means that when the Fourier transform is flat, the correlation function is a rapidly
decaying function of time. Revisiting Eq. (4.28) with this insight, we can replace ρ(t′) → ρ(t),
which is known as first Markov approximation. This yields the Redfield-I equation

ρ̇ =

∫ t

0

C(t− t′) [S(t′)ρ(t),S(t)] dt′ + h.c.

=

∫ t

0

C(τ) [S(t− τ)ρ(t),S(t)] dτ + h.c. , (4.40)

where we have replaced τ = t − t′. It preserves hermiticity and trace (though not necessarily
positivity) but as a practical drawback has some time-dependent coefficients. With essentially
the same reasoning that the reservoir correlation function C(τ) decays very fast, we may as well
extend the upper integration bound to ∞, which is known as second Markov approximation
and yields the Redfield-II equation

ρ̇ =

∫ ∞
0

C(τ) [S(t− τ)ρ(t),S(t)] dτ + h.c. . (4.41)

When we introduce the half-sided Fourier transform

Γ(ω) =

∫ ∞
0

C(τ)e+iωτdτ , (4.42)

it follows that we can absorb the integration over τ into a coefficient

ρ̇ =
∑
ab

SabΓ(Eb − Ea)
[
e+iHSt |a〉 〈b| e−iHStρ(t),S(t)

]
+ h.c. , (4.43)
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from which it follows that after transforming back to the Schrödinger picture, one obtains a time-
independent master equation with constant coefficients

ρ̇ = −i [HS, ρ] +

(∑
ab

SabΓ(Eb − Ea) [|a〉 〈b| ρ(t), S] + h.c.

)
, (4.44)

which preserves trace and hermiticity of the density matrix but not necessarily positivity. To
obtain a generator that preserves all density matrix properties, it is necessary to apply yet another
approximation. Making the time-dependencies explicit, we can write (4.41) in the form

ρ̇ =
∑
abcd

Γ(Eb − Ea)SabScdei(Ea−Eb+Ec−Ed)t [|a〉 〈b|ρ, |c〉 〈d|] + h.c. (4.45)

If the system splittings are sufficiently large, the oscillatory terms will average out, such that the
secular approximation consists in keeping only the terms satisfying the resonance condition
Ea − Eb + Ec − Ed = 0. After some rewriting and renaming of indices and with Lab ≡ |a〉 〈b| we
can write the master equation as

ρ̇ =
∑
abcd

δEb−Ea,Ed−EcSabSdc

[
Γ(Eb − Ea)

(
LabρL

†
cd − ρL

†
cdLab

)
+ Γ∗(Eb − Ea)

(
LabρL

†
cd − L

†
cdLabρ

)]
.

(4.46)

This equation preserves all density matrix properties since it is of Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) form [14, 15]. To see that, we split the half-sided Fourier transforms into real
and imaginary part (this would generalize to hermitian and anti-hermitian parts for many coupling
operators)

Γ(ω) =
1

2
γ(ω) +

1

2
σ(ω) (4.47)

with γ(ω) ∈ R and σ(ω) ∈ iR such that σ∗(ω) = −σ(ω). Indeed one finds that

γ(ω) = Γ(ω) + Γ∗(ω) =

∫
C(τ)e+iωτdτ ,

σ(ω) = Γ(ω)− Γ∗(ω) =

∫
C(τ)sgn(τ)e+iωτdτ . (4.48)

Inserting it all, we get the Born-Markov-secular master equation

ρ̇ = −i

[∑
ab

δEa,EbScbSac
σ(Eb − Ec)

2i
Lab,ρ

]

+
∑
abcd

δEb−Ea,Ed−EcSabSdcγ(Eb − Ea)
[
LabρL

†
cd −

1

2

{
L†cdLab,ρ

}]
. (4.49)

This equation has many interesting properties

� It is of GKSL form and thereby preserves all density matrix properties. Specifically, this
can be seen by showing that HLS =

∑
ab δEa,EbScbSac

σ(Eb−Ec)
2i

Lab = H†LS is hermitian and that
γab,cd = δEb−Ea,Ed−EcSabSdcγ(Eb−Ea) is a positive semidefinite matrix (i.e.,

∑
ab,cd x

∗
abγab,cdxcd ≥

0).
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� The correction to the control Hamiltonian commutes with the control Hamiltonian.

� For a non-degenerate system, it decouples populations and coherences in the system energy
eigenbasis. Specifically, the populations obey a rate equation, the so-called Pauli master
equation

ρ̇aa =
∑
b

γab,abρbb −
∑
b

γba,baρaa : γab,ab = |Sab|2γ(Eb − Ea) (4.50)

� For a thermal reservoir ρ̄B ∝ e−βHB , the system will thermalize with the reservoir tempera-
ture, i.e., ρ̄S ∝ e−βHS is a stationary state of the master equation.

The thermalization can be seen by considering the ratio of rates between two energy eigenstates

γab,ab
γba,ba

=
γ(Eb − Ea)
γ(Ea − Eb)

Eb<Ea=
nB(Ea − Eb)

1 + nB(Ea − Eb)
= e−β(Ea−Eb) . (4.51)

Specifically for a qubit with two non-degenerate levels |−〉 and |+〉 defined by the eigenstates of
the control Hamiltonian, equation (4.49) becomes in the Schrödinger picture

ρ̇ = −i [HS + σ−− |−〉 〈−|+ σ++ |+〉 〈+| , ρ]

+ |S−+|2γ(E+ − E−)

[
L−+ρL

†
−+ −

1

2

{
L−+L

†
−+, ρ

}]
+ |S−+|2γ(E− − E+)

[
L+−ρL

†
+− −

1

2

{
L+−L

†
+−, ρ

}]
. (4.52)

The effect of the Hamiltonian correction (Lamb-shift) term is merely a shift of the system energy
levels which induces a different splitting and effectively introduces an irrelevant global phase and
changes the gate operation time. The dissipative term however severly affects the dynamics, as it
drags the system to a mixed stationary state and thereby destroys coherences. Exemplifying this
for a Hadamard gate

HS =
Ω√
2

(σx + σz) Tgt =
π

Ω
, (4.53)

one can see that strong dissipation inhibits the intended gate operation, see Fig. 4.2. To analyze
the fixed point of the master equation dynamics with the thermal state, it is helpful to note that
for n · n = 1

e−βΩ/2n·σ = cosh

(
βΩ

2

)
1− sinh

(
βΩ

2

)
n · σ , (4.54)

from which it follows that

〈σα〉th = − tanh

(
βΩ

2

)
nα . (4.55)

For high temperatures β → 0, this just tends towards the center of the Bloch sphere. Since all
trajectories converge to the thermal state of the system Hamiltonian, the information about the
initial state is lost.
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Figure 4.2: Bloch sphere representation of the evolution of two different initial states |0〉 (red)
and |1〉 (green) under a Hadamard gate H in presence of decoherence due to a generic coupling
operators S and neglecting a dephasing channel J(0) = 0. From left to right, the dissipation
strength is increased from γ/Ω ∈ {0, 0.01, 0.1, 1.0}, where γ = J(Ω)|〈−|S |+〉|2, such that the
leftmost panel shows the intended gate operation. The blue arrow shows the direction of the
control Hamiltonian, and the blue dot shows the expectation value of the thermal state of the
control Hamiltonian, to which for strong dissipation or slow gates all states decay. The Lamb-shift
has been neglected. Other parameters: βω = 1.0.

4.3 Lindblad master equation: General properties

We have written the Lindblad equation so far in the form

ρ̇ = −i [H, ρ] +
∑
αβ

γαβ

[
LαρL

†
β −

1

2

{
L†βLα, ρ

}]
, (4.56)

where H = H† is a self-adjoint operator (which usually is given by the system Hamiltonian of the
isolated quantum system plus some Lamb-shift corrections due to the system-reservoir interactions)
and γαβ = γ∗βα is a hermitian and positive semidefinite matrix∑

αβ

x∗αγαβxβ ≥ 0 (4.57)

with positive semidefinite eigenvalues. In the previous section, we have expressed these summations
by double summations over energy eigenstates, i.e.,

∑
α fα=̂

∑
ab fab.

From this form, it is immediately evident that trace and hermiticity of the density matrix ρ are
preserved. To see that the above equation also preserves the positive definiteness of ρ, one may
use that a hermitian density matrix has a spectral decomposition

ρ =
∑
ã

ρã(t) |ã(t)〉 〈ã(t)| , (4.58)

where ρã are the eigenvalues and the tilde is used to emphasize that the eigenstates of the density
matrix need not coincide with the eigenstates of the system Hamiltonian. By evaluating the
evolution of the eigenvalues, we get from

〈
˙̃a|ã
〉

+
〈
ã| ˙̃a
〉

= d
dt
〈ã|ã〉 = 0 (eigenstates are normalized)

that the eigenvalues of the density matrix obey a rate equation

ρ̇b̃ =
∑
ã

(∑
αβ

γαβ

〈
b̃ |Lα| ã

〉〈
ã
∣∣∣L†β∣∣∣ b̃〉

)
ρã −

(∑
ã

∑
αβ

γαβ

〈
b̃
∣∣∣L†β∣∣∣ ã〉〈ã |Lα| b̃〉

)
ρb̃

=
∑
ã

Rã→b̃ρã −
∑
ã

Rb̃→ãρb̃ , (4.59)
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and in particular the requirement of positive definiteness leads to the insight that the transition
rates are positive

Rã→b̃ =
∑
αβ

〈
ã
∣∣L†α∣∣ b̃〉∗γαβ〈ã ∣∣∣L†β∣∣∣ b̃〉 ≥ 0 . (4.60)

Trace-preserving rate equations with positive transition rates however always preserve positivity
of the eigenvalues ρã: If one of the eigenvalues approaches zero (while the others are still positive),
its change will always be positive, such that its value can no longer decrease.

One can write the Lindblad equation in an even simpler form: By writing Lα =
∑

ᾱ uαᾱK̃ᾱ

with unitary uαᾱ we can choose to diagonalize the dampening matrix, yielding

ρ̇ = −i [H, ρ] +
∑
α

γα

[
K̃αρK̃

†
α −

1

2

{
K̃†αK̃α, ρ

}]
(4.61)

with γα ≥ 0 representing the eigenvalues of the positive definite density matrix. Even more, we
can absorb the dampening coefficient in the jump operators Kα =

√
γαK̃α, yielding the simplest

form of a Lindblad equation

ρ̇ = −i [H, ρ] +
∑
α

[
KαρK

†
α −

1

2

{
K†αKα, ρ

}]
≡ Lρ , (4.62)

where the calligraphic notation is conventionally used to mark a superoperator.
Specifically, Lindblad master equations that have a thermal stationary state [16]

ρ̄ =
e−βHS

Tr {e−βHS}
(4.63)

are sometimes also called Lindblad-Davies maps. Beyond the preservation of positivity, Lindblad
equations obey a Spohn inequality

σ = −Tr {(Lρ) [ln ρ− ln ρ̄]} ≥ 0 , (4.64)

where Lρ̄ = 0 defines a stationary solution. Specifically, when ρ̄ = e−βHS/ZS is thermal, the above
inequality allows an interpretation as the second law via

σ =
d

dt
Ssys +

d

dt
Sres ≥ 0 , (4.65)

such that σ can also be interpreted as entropy production rate.
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Chapter 5

Adiabatic quantum computation

The previous approaches to quantum computation worked well when the system was isolated
from its environment. One can try to make the gates significantly faster than the effects of
decoherence and to use quantum error correction to compensate the coherence losses. This will
presumably require enormous resources. Alternatively, one may try to engineer the interaction
with the reservoir in a way that the environment even assists to bring the system into a desired
state. For example, the stationary state of the Lindblad master equation could be a pure state with
some desired properties. Unfortunately, the specifics of the interaction can hardly be controlled.
Nevertheless, we have seen that at least under specific conditions (weak coupling, large system
energy splitting, Markovian reservoir such that the Born-, Markov-, and secular approximations
are applicable) the reservoir generically induces thermalization of the system. This allows for the
solution of computational problems by encoding them into the ground state of a quantum system.
When the reservoir temperature is low in comparison to the energy gap above the ground state
βΩ � 1, the system will be mainly in the ground state. For an N -dimensional Hilbert space we
can estimate the thermal ground state occupation probability as

P0 = 1− P1 − . . .− PN−1 ≥ 1− (N − 1)P1 = 1− (N − 1)e−βΩP0 , (5.1)

from which we get a lower bound

P0 ≥
1

1 + (N − 1)e−βΩ
. (5.2)

Thereby, to achieve a sufficiently large occupation of the ground state, e.g. P0 ≥ 1/2, the inverse
temperature in the worst case needs to scale only logarithmically in the Hilbert space dimension
βΩ ≥ ln(N − 1) (or linearly in the number of qubits).

It is therefore believed that a quantum computer encoding the solution to some computational
problem in its well-gapped ground state could be less vulnerable to decoherence. With a Hamilto-
nian encoding the solution to some problem in its ground state, one could simply connect to a low
temperature reservoir and wait until the system has cooled down. This however is not expected
to be efficient in the weak-coupling limit where the master equations apply. Instead, it has been
proposed to use the adiabatic theorem for computation, which works also in absence of dissipation:

� prepare the system in the ground state of a simple Hamiltonian (which can be easily reached
by e.g. dissipative relaxation)

� slowly deform the simple Hamiltonian into the problem Hamiltonian

63
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� measure the state properties and thereby get the solution.

To see how this works, we revisit the adiabatic theorem.

5.1 The adiabatic theorem for closed systems

We consider the time-dependent Schrödinger equation∣∣∣Ψ̇〉 = −iH(t) |Ψ(t)〉 . (5.3)

Here, |Ψ(t)〉 denotes the normalized wave function, where the normalization is preserved as long
as the system Hamiltonian H(t) = H†(t) is self-adjoint. In this sense, the results in this section
apply to all time-dependent first order ODEs with a self-adjoint generator, which can be written
in the form of Eq. (5.3).

Thanks to the hermiticity of H(t), we can at each instant in time define an orthonormal energy
eigenbasis of the instantaneous Hamiltonian

H(t) |n(t)〉 = En(t) |n(t)〉 . (5.4)

Since the basis is complete
∑

n |n(t)〉 〈n(t)| = 1, we can always expand the state vector in this
energy eigenbasis

|Ψ(t)〉 =
∑
n

an(t) exp

{
−i

∫ t

0

En(t′)dt′
}
|n(t)〉 , (5.5)

where an(t) ∈ C obey
∑

n |an(t)|2 = 1 and where the exponential integral factor has just been
introduced for convenience. The coefficients an(t) tell us the distribution of the state vector
over the different energy eigenstates. For example, the energy of the state is given by 〈E〉 =∑

nEn(t)|an(t)|2.
Inserting this in the Schrödinger equation one directly obtains a coupled system of ordinary

differential equations for the coefficients

ȧm = −
∑
n

an(t) exp

{
−i

∫ t

0

[En(t′)− Em(t′)] dt′
}
〈m(t)|ṅ(t)〉 . (5.6)

Since we aim at an expression quantifying the transitions between different energy eigenstates, we
pull the term with n = m to the l.h.s., yielding

ȧm + am 〈m(t)|ṁ(t)〉 = −
∑
n:n6=m

an(t) exp

{
−i

∫ t

0

[En(t′)− Em(t′)] dt′
}
〈m(t)|ṅ(t)〉

= −
∑
n:n6=m

an(t) exp

{
−i

∫ t

0

[En(t′)− Em(t′)] dt′
}
〈m(t)| Ḣ |n(t)〉
En(t)− Em(t)

. (5.7)

In the last step, we have assumed that the system is non-degenerate, i.e., En(t) 6= Em(t), which
enables one to obtain the used relation from the time derivative of equation (5.4). Multiplying
both sides with e−iγm(t) with the Berry phase

γm(t) = i

∫ t

0

〈m(t′)|ṁ(t′)〉 dt′ , (5.8)
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we can also write this as

d

dt

(
ame

−iγm
)

= −
∑
n:n6=m

an(t)e−iγm(t) exp

{
−i

∫ t

0

[En(t′)− Em(t′)] dt′
}
〈m(t)| Ḣ |n(t)〉
En(t)− Em(t)

. (5.9)

Assuming that the r.h.s. is small (slow evolution), we aim at solving the equation perturbatively
for slow evolutions. First, we formally integrate the equation, yielding

am(t)e−iγm(t) − a0
m = −

∑
n:n 6=m

∫ t

0

dt′an(t′)e−iγm(t′) exp

{
−i

∫ t′

0

[En(t′′)− Em(t′′)] dt′′

}
×

× 〈m(t′)| Ḣ(t′) |n(t′)〉
En(t′)− Em(t′)

= −i
∑
n:n6=m

∫ t

0

dt′
〈m(t′)| Ḣ(t′) |n(t′)〉
[En(t′)− Em(t′)]2

an(t′)e−iγm(t′)×

× d

dt′
exp

{
−i

∫ t′

0

[En(t′′)− Em(t′′)] dt′′

}
, (5.10)

which we can solve for am(t) on the l.h.s. and iteratively insert this on the r.h.s. However, provided
that the adiabaticity condition ∣∣∣〈m(t′)| Ḣ(t′) |n(t′)〉

∣∣∣
[En(t′)− Em(t′)]2

� 1 (5.11)

holds for all times 0 < t′ < t, the evolution is adiabatic at all times, and we can completely neglect
the r.h.s. above. In this case, the adiabatic evolution yields

am(t) ≈ a0
me

+iγm(t) . (5.12)

Therefore, we see that for such slowly driven systems (in comparison to the energy gap), the
coefficient am(t) just acquires a phase factor, and effectively, the system remains in its instantaneous
energy eigenstate. This is the essence of the adiabatic theorem: Slowly driven quantum systems
that are initially in a particular energy eigenstate remain in the corresponding instantaneous energy
eigenstate. In terms of a time-evolution operator, we could therefore approximate

U(t) ≈ Uad(t) =
∑
n

e−i
∫ t
0 En(t′)dt′e+iγn(t) |n(t)〉 〈n(0)| , (5.13)

with the Berry phase γn(t) and dynamical phase
∫ t

0
En(t′)dt′. This decomposition however

also shows that superpositions of initial energy eigenstates need not remain the same because the
relative phase can change.

5.2 Adiabatic qubit control

For a qubit, parametrized by the time-dependent Hamiltonian

H(t) =
ω(t)

2
n(t) · σ : n =

 sin θ(t) cosφ(t)
sin θ(t) sinφ(t)

cos θ(t)

 , (5.14)
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Figure 5.1: Bloch sphere evolution of specific initial states under the evolution parametrized by a
time-dependent Hamiltonian (blue). From left to right, the evolution time is increased as ωT ∈
{0.1, 1.0, 10.0, 100.0}, such that the rightmost panel in the top row indicates the adiabatic limit
with the desired flip operation |0〉 ↔ |1〉, and the leftmost panels indicate highly non-adiabatic
evolution where the system cannot follow the Hamiltonian at all. The bottom row shows however
that superpositions of eigenstates may pick up a relative phase even in the adiabatic limit, such
that this adiabatic gate does not perform an X-gate operation.

we can directly compute the time-dependent energy eigenstates n ∈ {−,+}

E−(t) = −ω(t)

2
, |−(t)〉 =

cos θ(t)− 1√
2− 2 cos θ(t)

|0〉+
e+iφ(t) sin θ(t)√

2− 2 cos θ(t)
|1〉 ,

E+(t) = +
ω(t)

2
, |+(t)〉 =

e−iφ(t) sin θ(t)√
2− 2 cos θ(t)

|0〉+
1− cos θ(t)√
2− 2 cos θ(t)

|1〉 . (5.15)

The Berry phases become

γ−(t) = −
∫ t

0

cos2

(
θ(t′)

2

)
φ̇(t′)dt′ = −γ+(t) . (5.16)

Considering the specific realization

ω(t) = ω , θ(t) = π
t

T
, φ(t) = 0 , (5.17)

such that H(0) = ω
2
σz and H(T ) = −ω

2
σz. With |+(0)〉 = |0〉 and |−(0)〉 = |1〉 and |+(T )〉 ∝ |1〉

and |−(T )〉 ∝ |0〉, we see that a sufficiently slow evolution transforms |0〉 → |1〉 and vice versa
as shown in Fig. 5.1. However, care should be taken when one considers superpositions of energy
eigenstates. These may pick up relative geometric and dynamical phase factors. In this case, the
resulting dynamical phase yields in the adiabatic limit the solutions Ψ(T ) ≈ 1√

2

[
|0〉 ± e−iωT |1〉

]
.
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5.3 Adiabatic control in presence of thermal dissipation

For a time-dependent Hamiltonian, an exact master equation is not so simple to get, since already
the transformation into the interaction picture is non-trivial. However, explicit forms can be
derived when the evolution is adiabatic. The transformation into the interaction picture can in
the adiabatic limit be written as

HI(t) = U †ad(t)e+iHBtHIe
−iHBtUad(t) = U †ad(t)SUad(t)⊗ e+iHBtBe−iHBt , (5.18)

with the adiabatic time evolution operator (5.13). Provided that the slow driving does not increase
the effective system-reservoir coupling nor speed up the system dynamics, Born- and Markov ap-
proximations can be performed in analogy, since the evolution of bath coupling operators B(t)
is fully analogous to the undriven case. We therefore directly start from the Redfield-II equa-
tion (4.41) in the interaction picture

˙̃ρ =

∫ ∞
0

C(+τ) [S(t− τ)ρ(t)S(t)− S(t)S(t− τ)ρ(t)] dτ

+

∫ ∞
0

C(−τ) [S(t)ρ(t)S(t− τ)− ρ(t)S(t− τ)S(t)] dτ . (5.19)

Now inserting the adiabatic time evolution operator

S(t) = U †ad(t)SUad(t) =
∑
ab

e+i
∫ t
0 [Ea(t′)−Eb(t′)]dt′e−i[γa(t)−γb(t)]〈a(t) |S| b(t)〉 · |a(0)〉 〈b(0)| ,

S(t− τ) =
∑
cd

e+i
∫ t−τ
0 [Ec(t′)−Ed(t′)]dt′e−i[γc(t−τ)−γd(t−τ)]〈c(t− τ) |S| d(t− τ)〉 · |c(0)〉 〈d(0)|

=
∑
cd

e+i
∫ t
0 [Ec(t′)−Ed(t′)]dt′e−i

∫ t
t−τ [Ec(t′)−Ed(t′)]dt′e−i[γc(t)−γd(t)]e+i2

∫ t
t−τ [〈c(t′)|ċ(t′)〉−〈d(t′)|ḋ(t′)〉]dt′×

× 〈c(t− τ) |S| d(t− τ)〉 · |c(0)〉 〈d(0)|

≈
∑
cd

e+i
∫ t
0 [Ec(t′)−Ed(t′)]dt′e−iτ [Ec(t)−Ed(t)]e−i[γc(t)−γd(t)]〈c(t) |S| d(t)〉 · |c(0)〉 〈d(0)| , (5.20)

where in the last line we have performed approximations similar to a third Markov approximation,
meaning that the dominant contribution to the integral arises always when τ is small: Then, we
can write

∫ τ
t−τ Ec(t

′)dt′ ≈ τEc(t),
∫ t
t−τ 〈c(t

′)|ċ(t)〉 dt′ ≈ 0, and |c(t− τ)〉 ≈ |c(t)〉. The secular
approximation can now be performed in a similar fashion, yielding the neglect of all terms where
a t-dependence remains [17]. Upon transferring back to the Schrödinger picture, we get the same
master equation (4.49), just in the time-dependent system energy eigenbasis

ρ̇ = −i

[
HS(t) +

∑
ab

δẼa(t),Ẽb(t)
Scb(t)Sac(t)

σ(Eb(t)− Ec(t))
2i

Lab(t), ρ

]

+
∑
abcd

δẼb(t)−Ẽa(t),Ẽd(t)−Ẽc(t)Sab(t)Sdc(t)γ(Eb(t)− Ea(t))
[
Lab(t)ρL

†
cd(t)−

1

2

{
L†cd(t)Lab(t), ρ

}]
.

(5.21)

Here, the ˜ symbols just mark that the averaging procedure is over the more complicated expo-
nential factors. The net effect is that we get the conventional BMS equation, just with the time-
dependent parameters of the Hamiltonian inserted a posteriori. Nevertheless, the above derivation
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Figure 5.2: Evolution under the same time-dependent Hamiltonian like in Fig. 5.1, but now for
fixed runtime ωT = 100 (adiabatic limit) and low temperature βω = 10 and from left-to right
increasing dissipation strength γ = |S−+(t)|2γ(E+(t) − E−(t)) ∈ {0, 0.01, 0.1, 1.0}ω. Whereas
the low-temperature dissipation improves the ground state (green) fidelity, it quickly destroys the
fidelity of the excited state (red).

is not really rigorous, one could have performed the approximations in a slightly different fashion
and would end up with a different master equation. For just two levels the above master equation
would become

ρ̇ = −i [HS(t) + σ−−(t) |−(t)〉 〈−(t)|+ σ++(t) |+(t)〉 〈+(t)| , ρ]

+ |S−+(t)|2γ(E+(t)− E−(t))

[
L−+(t)ρL†−+(t)− 1

2

{
L−+(t)L†−+(t), ρ

}]
+ |S−+(t)|2γ(E−(t)− E+(t))

[
L+−(t)ρL†+−(t)− 1

2

{
L+−(t)L†+−(t), ρ

}]
. (5.22)

The qualitative effect of this is that at low temperatures, the evolution of the ground state is
protected against thermal dissipation, whereas the excited state evolution is not, see Fig. 5.2. It
follows that under a thermalizing dissipator, only a (well-gapped) ground state can be protected
against the influence of decoherence. So instead of trying to apply unitary gates to a fragile quan-
tum state, can be encode the solution to difficult problems into the ground state of an interacting
Hamiltonian? The answer is affirmative, but what is the scaling behaviour of such an adiabatic
quantum computer? We shall try to understand this below.

5.4 The adiabatic Grover search

There is an adiabatic analogue of the Grover search algorithm, and it also makes use of an oracle
Hamiltonian

HF = Ω[1− |W 〉 〈W |] , (5.23)

where |W 〉 marks a superposition of all solutions to a search problem and Ω is some global energy
scale. Like before, we stress that by merely writing this Hamiltonian in a projector form, we do not
require the state |W 〉 to be known beforehand. Rather, we know certain properties of the solution,
and the above projector gives an eigenvalue 0 to the solution and assigns an energy penalty +Ω
to all non-solutions. The adiabatic Grover search [18] consists of a linear interpolation

H(t) = [1− s(t)]HI + s(t)HF (5.24)
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between the final (problem) Hamiltonian and some initial Hamiltonian

HI = Ω[1− |S〉 〈S|] , (5.25)

where |S〉 is the superposition of all computational basis states, with variable speed, expressed by
the function

s(t) : s(0) = 0 = 1− s(T ) . (5.26)

The implementation of such projection operators may require many-qubit interactions, as is visible
via

|S〉 〈S| = 1

2
[1 + σx]⊗ . . .⊗ 1

2
[1 + σx] ,

|W 〉 〈W | = 1

2
[1 + (−1)W1σz]⊗ . . .⊗ 1

2
[1 + (−1)Wnσz] . (5.27)

By analyzing the spectrum of the complete model, we will see that we will need to adapt the
time-dependent evolution speed. The spectrum in turn can be computed analytically, where we
first note that

〈W |S〉 =

√
M

N
≡
√
α , (5.28)

where N is the dimension of the (Hilbert) search space and M is the number of solutions. We can
introduce the orthonormal basis {|W 〉 , |W⊥〉 , . . .}, where the first non-trivial vector is given by

|W⊥〉 =
|S〉 − 〈W |S〉 |W 〉√

1− |〈W |S〉|2
, (5.29)

and the remaining basis vectors are chosen orthonormal in some arbitrary order (this is known
as Gram-Schmidt orthonormalization procedure). Like in Eq. (3.70), we can also express the full
superposition state by solution states |W 〉 and non-solution states |W⊥〉

|S〉 =

√
1− M

N
|W⊥〉+

√
M

N
|W 〉 . (5.30)

With this, we can write the total Hamiltonian with α ≡ M
N

as

H(s)/Ω = 1− (1− s) |S〉 〈S| − s |W 〉 〈W |
= 1− ((1− s)α + s) |W 〉 〈W | − (1− s)(1− α) |W⊥〉 〈W⊥|
− (1− s)

√
α(1− α) [|W⊥〉 〈W |+ |W 〉 〈W⊥|] . (5.31)

In the new basis, the Hamiltonian has the matrix representation

H(s)/Ω =


1− [(1− s)α + s] −(1− s)

√
α(1− α)

−(1− s)
√
α(1− α) 1− (1− s)(1− α)

1
. . .

1

 , (5.32)
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Figure 5.3: Spectrum of the adiabatic Grover
Hamiltonian (5.31) as a function of the interpo-
lation parameter s for n = 8 qubits leading to a
search space dimension of N = 2n = 256 and a
single solution M = 1.
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and we see that only the top 2 × 2 block creates non-trivial eigenvalues (black spaces indicate
zeroes)

E±(s) =
Ω

2

[
1±

√
1− (1− α)4s(1− s)

]
, (5.33)

whereas the remaining eigenvalues remain at Erest = Ω. From this, we find that there is an avoided
crossing at s = 1/2 with a minimum energy gap

gmin = E+(1/2)− E−(1/2) = Ω
√
α = Ω

√
M

N
, (5.34)

see also Fig. 5.3. This shows, that to remain adiabatic, the evolution speed needs to be adapted
near the position of the minimum energy gap. In a more detailed fashion, for a general interpolation
speed s(t) we get

d

dt
H(s(t)) = Ωṡ(t) [|S〉 〈S| − |W 〉 〈W |]

= Ωṡ
[
(1− α) |W⊥〉 〈W⊥|+ (α− 1) |W 〉 〈W |+

√
α(1− α) (|W⊥〉 〈W |+ |W 〉 〈W⊥|)

]
.

(5.35)

A more detailed analysis of the eigenvectors now shows that at the critical point

〈E−(s)| Ḣ |E+(s)〉 |s=1/2 = Ωṡ(1/2)
√

1− α . (5.36)

This means that with a constant speed interpolation with adiabatic runtime T

s(t) =
t

T
(5.37)

we need – to satisfy the adiabaticity condition (5.11) also in the vicinity of the minimum gap – to
scale the adiabatic runtime as

T ∝ N

M
. (5.38)

Therefore, for constant interpolation speed there is no speedup in comparison to classical search
algorithms.
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Figure 5.4: Plot of interpolation functions s(t)
vs. dimensionless time t/T . The black line cor-
responds to a ramp with constant speed, whereas
the red curve is defined by (5.39) for α = 1/28

and σΩ = 1.0.

Another approach considers a variable interpolation speed, given by the solution to the differ-
ential equation

ṡ = σg2(s) = σΩ2 [1− (1− α)4s(1− s)] : s(0) = 0 , (5.39)

with a small constant σ and the adiabatic runtime implicitly defined via s(T ) = 1. This has the
advantage that in the adiabaticity condition (5.11), the dependence on the energy gap cancels.
However, to reach s(T ) = 1, we have to satisfy the condition (separate the variables in the above
equation) ∫ 1

0

ds

1− (1− α)4s(1− s)
= σΩ2T =

arctan(
√

1/α− 1)√
α(1− α)

≈ π

2

1√
α
. (5.40)

Therefore, the adiabatic runtime will need to scale as

T ∝
√
N

M
, (5.41)

which reproduces the original Grover search scaling with an adiabatic algorithm. Effectively, this
just requires slow speeds near the minimum energy gap to maintain the adiabaticity and fast speeds
in regions where the gap is large to obtain a short overall runtime, compare Fig. 5.4.

5.5 Adiabatic approaches to an NP-complete problem

The previous example of Grover search may seem a bit hard to implement, considering that to
implement the projection operators, one requires n-qubit interactions, whereas physically realistic
models have at most two-body interactions. Nevertheless, they can be understood as effective
Hamiltonians. An example where it is quite straightforward to construct a final problem Hamilto-
nian with only few-body interactions that nevertheless encode a solution to some non-trivial prob-
lem in their ground state is the problem class 3-SAT. The 3-SAT problem (from 3-satisfiability)
is a search problem for an n-bit bitstring b1 . . . bn with bi ∈ {0, 1} that fulfills a set of constraints
(clauses) that involve three bits each. These constraints can be of very different nature, and given
a set of constraints, it is classically extremely hard to find a solution satisfying all the constraints
(which do of course overlap). However, given a candidate solution bitstring, it is a matter of O (m)
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1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.5: Example EC3 problem for 20 bits (boxes) and 13 clauses involving three different bits
each (spheres with legs). There exists only a unique satisfying solution for all clauses (right), where
the sum of bits belonging to every clause equals one. This solution however is very hard to find
and essentially requires brute force methods with exponential runtime in the number of bits. In
general, there is no known classical algorithm that finds solutions to such problems in a time that
scales polynomially in the number of bits.

operations to check whether the bitstring fulfils the search problem. The problem is part of the
problem class NP (for non-deterministic polynomial). Even more, it is even NP-complete, meaning
that any problem in NP (e.g. factoring) can be mapped to 3-SAT with a polynomial overhead.
This implies that if an efficient (scaling polynomially in the size of the problem) algorithm for an
NP-complete problem was known, all other problems in the NP problem class could be solved with
polynomial effort.

To make things simpler, we consider only a special case of a 3-SAT problem called EC-3 (from
exact-cover 3), which is also NP-complete. It is defined by

� m intersecting conditions on an unknown n-bit bitstring b1 . . . bn : bi ∈ {0, 1}

� each condition Ci (1 ≤ i ≤ m) involves three (different) bits Ci = (p1
i , p

2
i , p

3
i ) : 1 ≤ i ≤ m

with 1 ≤ pαi ≤ n

� problem: find the bitstring that fulfils for all constraints

bp1i + bp2i + bp3i = 1 (5.42)

The problem seems trivial if one has only three bits b1b2b3. In this case, there are 8 possible states,
there is only one clause C1 = (1, 2, 3) and there are three solutions 100, 010, 001. However, things
become difficult for larger problems when the clauses overlap. For a 20 bits with 13 clauses, this
is exemplified in Fig. 5.5. One may now wonder how to encode the solution to such a problem in
the ground state of a Hamiltonian. Since it is part of the problem class NP, this does not require
to know the solution, we just need to know its local properties, i.e., for an EC3 problem we need
to know the clauses that the solution has to satisfy. With this knowledge, we can build an energy
penalty Hamiltonian with just two-body spin-spin interactions [19]

HF =
m∑
c=1

Ω
[
1− ẑp1c − ẑp2c − ẑp3c

]2
=

m∑
c=1

Ω

[
1− 1

2

(
1− σzp1c

)
− 1

2

(
1− σzp2c

)
− 1

2

(
1− σzp3c

)]2

= Ω

[
m1−

n∑
i=1

ni
2
σzi +

n∑
i,j=1

nij
4
σzi σ

z
j

]
, (5.43)
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where m is the total number of clauses, ni is the number of clauses that involve the ith bit, and
nij is the number of clauses that involve the bits i and j. These parameters can be determined
in polynomial time. The ground state of the Hamiltonian violates the fewest constraints since the
individual terms are positive semidefinite. Actually, if solution(s) exist, the ground state manifold
will violate no constraint at all. If no solutions exist, the ground state manifold will be composed
of states that violate the smallest number of constraints. For a violation of a clause, one gets
an energy penalty of either Ω (for the configurations 000, 011, 101, 110) or even 4Ω (for the
configuration 111), so one knows that the ground state is well-gapped by at least Ω from the
excited states. If there exists a solution to the search problem, it will violate no clause and will
end up at energy zero. Known classical minimization algorithms are not efficient and will get stuck
in local minima.

The adiabatic quantum computing approach in contrast only requires an initial Hamiltonian
whose ground state can be easily prepared

HI = Ω
n∑
i=1

1

2
[1− σxi ] . (5.44)

The ground state of this Hamiltonian is just the superposition state of all states in the computa-
tional basis

|S〉 =
1√
2

[|0〉+ |1〉]⊗ . . .⊗ 1√
2

[|0〉+ |1〉] , (5.45)

By interpolating with a constant speed interpolation between such Hamiltonians

H(t) = [1− s(t)]HI + s(t)HF : s(t) =
t

T
, (5.46)

a seminal numerical study [20] did reveal quite favorable scaling behaviours. The way such an
adiabatic algorithm works is depicted in Fig. 5.6. One can see that during the evolution, there exists
a minimum energy gap, and to remain adiabatic all the time, we have to satisfy the adiabaticity
condition also at the minimum gap. From the maximum eigenvalues of the Hamiltonians we get
the bound∣∣∣〈En(t)| Ḣ |Em(t)〉

∣∣∣ ≤ ṡ|〈En(t)|HI |Em(t)〉|+ ṡ|〈En(t)|HF |Em(t)〉| ≤ ṡΩ(n+ 4m) =
(n+ 4m)Ω

T
,

(5.47)

which shows that the scaling of the matrix element in the adiabatic condition (5.11) is not very
dramatic. Solving for the runtime, we get

T � (n+ 4m)Ω

g2
min

, (5.48)

where gmin denotes the minimum energy gap encountered during the evolution (which also scales
as Ω). The main obstacle is therefore how the minimum energy gap scales with the problem size
n. In particular, for the naive approach it has been argued that at least for some problems one
may always encounter an exponentially small energy gap in the system size [22].
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Figure 5.6: Left: Typical spectrum for an EC3 problem with 10 qubits, adapted from Ref. [21].
For initial and final Hamiltonian, there is a well-gapped ground state, but in between the evolu-
tion, there exists a smaller energy gap that determines the complexity of the adiabatic algorithm.
Right: Plot of the corresponding overlap between state |Ψ(t)〉 and the corresponding instantaneous
eigenstate of the time-dependent Hamiltonian |En(t)〉. The dotted curve shows the overlap with
the final ground state |E0(T )〉.

5.6 An adiabatic adder

To engineer an adiabatic algorithm that encodes the sum of two given binary numbers x1 . . . xn
and y1 . . . yn with n digits in the ground state of a multi-qubit Hamiltonian, we can consider the
binary summation scheme as shown in the table below:

x1 . . . xn−1 xn
y1 . . . yn−1 yn

c1 c2 . . . cn
z1 z2 . . . zn zn+1

.

Here, z1 . . . zn+1 encode the bits of the result of the summation, and c1 . . . cn the possible carries.
These carries can for example be represented by auxiliary bits. Accordingly, we have to fulfil the
equations

zn+1 = xn + yn − 2xnyn = xn + yn − 2cn ,

cn = xnyn ,

...

z` =
1

2
[1− (1− 2x`−1)(1− 2y`−1)(1− 2c`)] : 2 ≤ ` ≤ n ,

c`−1 = x`−1y`−1 + [x`−1 + y`−1 − 2x`−1y`−1]c` : 2 ≤ ` ≤ n ,

...

z1 = c1 . (5.49)

We see immediately that it would be straightforward to eliminate some of the carries, but for
illustrational purposes we will keep them. To promote this into an adiabatic ground state search
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Figure 5.7: Sketch of the required two-body inter-
actions (lines) between qubits (dots) for n = 5 to
implement the problem Hamiltonian for an adia-
batic adder.

problem, we advance the carry bits and the solution bits to operators

z` → ẑ` =
1

2
[1− σz` ] ,

c` → ĉ` =
1

2

[
1− σzn+1+`

]
(5.50)

while x` and y` remain numbers that are defined by the integers we would like to add. The
(unique) solution is found by fulfilling all the above 2n+ 1 equations. If a particular combination
{z`, c`} violates any of these equations, it is no solution. Therefore, to construct an energy penalty
Hamiltonian for violating an equation, we write the above summation equations into the form
0 = fi({xj, yj, ẑj, ĉj}) and – since fi is a hermitian observable with real eigenvalues – we get a
positive semidefinite Hamiltonian by adding the appropriate penalties as

HF(x, y) = Ω [ẑn+1 − xn − yn + 2ĉn]2 + Ω [ĉn − xnyn]2

+ . . .+ Ω

[
ẑ` −

1

2
[1− (1− 2x`−1)(1− 2y`−1)(1− 2ĉ`)]

]2

+ Ω [ĉ`−1 − x`−1y`−1 − [x`−1 + y`−1 − 2x`−1y`−1]ĉ`]
2

+ . . .+ Ω [ẑ1 − ĉ1]2

= Ω [ẑn+1 + 2ĉn − xn − yn]2 + Ω [ĉn − xnyn]2 + Ω [ẑ1 − ĉ1]2

+ Ω
n∑
`=2

[
ẑ` − (1− 2x`−1)(1− 2y`−1)ĉ` −

1

2
[1− (1− 2x`−1)(1− 2y`−1)]

]2

+ Ω
n∑
`=2

[ĉ`−1 − [x`−1 + y`−1 − 2x`−1y`−1]ĉ` − x`−1y`−1]2 , (5.51)

where Ω is some energy scale. This construction yields a final Hamiltonian that consists of two-
body interactions at most (i.e., of terms linear and quadratic in the Pauli matrices) and comes with
the promise that any non-solution gets an energy penalty of at least Ω. The interaction topology
of the above penalty Hamiltonian is sketched in Fig. 5.7. It follows that for an adiabatic adder,
as the number of qubits is increased, only neighbouring qubits need to be coupled to each other.
When we combine this with the same initial Hamiltonian as used before

HI =
2n−1∑
i=1

1

2
[1− σxi ] , (5.52)

a straight-line interpolation between the two Hamiltonians

H(t) = [1− s(t)]HI + s(t)HF : s(t) =
t

T
(5.53)
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Figure 5.8: Adiabatic performance of an adder algorithm computing the sum of 1001 + 1011 =
10100. The left panel shows only a very mild gap reduction during the course of the computation.
The right panel shows the evolution of 〈zj〉 =

〈
1
2
[1− σzj ]

〉
for the first five qubits 1 ≤ j ≤ 5 (which

encode the solution) in the adiabatic limit ΩT = 100. Altogether, we need 9 qubits (5 encoding
the solution and 4 for the carry bits). The initial ground state is |S〉, and the final ground state
for this example is |10100|1011〉.

reveals a smoothly varying spectrum, see Fig. 5.8 left panel. Accordingly, when we prepare the sys-
tem in the initial ground state |S〉 and evolve adiabatically the time, at the end of the computation
the system will be in the final ground state

|Ψ0(t = T )〉 = |z|c〉 , (5.54)

and a measurement of σzj would reveal the solution and the carry bits.

5.7 An adiabatic multiplier

In a similar way one can proceed if one would like to multiply two binary numbers x1 . . . xn and
y1 . . . ym, where without loss of generality we can assume that m ≤ n. Then, one can use that
bitwise multiplication can be reduced to single-bit multiplication and subsequent addition, as
exemplified by the bitwise multiplication table for mulitplying two four-bit numbers:
1 0 0 1 · 1 0 1 1
1 0 0 1

0 0 0 0
1 0 0 1

1 0 0 1
1 1 0 0 0 1 1

Here, we first multiply the n bits of the first number with the bit yi of the second number, yielding
in total m numbers with n bits each

z1 = (x1y1, x2y1, . . . , xny1) ,

... (5.55)

zm = (x1ym, x2ym, . . . , xnym) . (5.56)
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Afterwards, the result is obtained by just adding these m numbers, appropriately shifted by one
digit

z = 2m−1z1 + 2m−2z2 + . . .+ 2zm−1 + zm . (5.57)

Since the multiplication with 2α is just a shift, this can be broken up into m − 1 additions, e.g.
for the previous example these would be written as
1 0 0 1 · 1 0 1 1
1 0 0 1

0 0 0 0
1 0 0 1 0

1 0 0 1
1 0 1 1 0 1

1 0 0 1
1 1 0 0 0 1 1

The first addition concerns an n-bit and an n + 1-bit number, so we write it as the sum of
two n + 1 bit numbers, which requires with the previous section (n + 2) + (n + 1) = 2n + 3
bits (intermediate result of the sum and the carries). The next addition concerns two n + 2-bit
numbers, requiring 2n + 5 bits, and so on. Altogether, one can see that the number of auxiliary
bits required to implement multiplication scales quadratically. To convert this into an adiabatic
quantum algorithm, we leave x1 . . . xn and y1 . . . ym as numbers and promote the unknown ancillas
(intermediate results and carry bits) to operators. It is then straightforward to write down explicit
quadratic expressions that fine a violation of an equation with an energy penalty of at least Ω. The
final Hamiltonian then enodes the solution of all ancillas and the final product in its multi-qubit
ground state, and in total, it can be implemented with two-body interactions only (i.e., involving
only products of at most two Pauli matrices at once).

Finally, we also note that the problem can be reversed to approach the factoring problem [21].
If we are given a biprime z1 . . . zn, we have the promise that it can be written as the product of
just two integers. Thereby we can first choose the partition z = x · y with an n− k-digit number
x and a k-digit number y and set up the factorization equations as before. The only difference is
now that zi remain numbers and xi and yi become operators.

5.8 The 1d quantum Ising model in a transverse field

The quantum Ising model in a transverse field for n spins

H = −g
n∑
i=1

σxi − J
n∑
i=1

σzi σ
z
i+1 , n even (5.58)

where g ∝ B describes the coupling to an external magnetic field in x-direction, J the inter-
chain coupling to nearest neighbors, and periodic boundary conditions are assumed σzn+1 ≡ σz1 is
a paradigmatic model to describe quantum-critical behaviour [23]. Although rather a technical
constraint, we note explicitly that we consider here only the case where n is even. The model is
analytically diagonalizable for finite n and displays a second order quantum phase transition at
g = J . One can distinguish easily the behaviour in the simple cases where one coefficient vanishes

� When J = 0, the model behaves either paramagnetic or diamagnetic, depending on how the
magnetic field enters the constant g.
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� When g = 0, the model may describe ferromagnetic behaviour when J > 0 (in the ground
state, all spins are aligned) or anti-ferromagnetic behaviour when J < 0 (all spins tend to
anti-align)

We will just consider the paramagnetic-ferromagnetic transition here by assuming g ≥ 0 and J ≥ 0.
We can introduce a dimensioless phase parameter by fixing Ωs = J and Ω(1 − s) = g with

energy scale Ω

H(s) = −Ω(1− s)
n∑
i=1

σxi − Ωs
n∑
i=1

σzi σ
z
i+1 = (1− s)HI + sHF . (5.59)

Another interpretation of this Hamiltonian is that of an adiabatic algorithm, where the initial
ground state is unique

|Ψ0(s = 0)〉 = |→〉 ⊗ . . .⊗ |→〉 = |S〉 , (5.60)

whereas the final ground state is two-fold degenerate

|Ψ0(s = 1)a〉 = |0 . . . 0〉 ,
∣∣Ψ0(s = 1)b

〉
= |1 . . . 1〉 . (5.61)

However, one can also check that both HI/F commute with the bitflip parity operator flipping
all bits

Σx =
n⊗
`=1

σx` , (5.62)

which can be explicitly seen from[
σzi σ

z
i+1, σ

x
i σ

x
i+1

]
= σxi

[
σzi σ

z
i+1, σ

x
i+1

]
+
[
σzi σ

z
i+1, σ

x
i

]
σxi+1

= σxi σ
z
i (2iσyi+1) + (2iσyi )σ

z
i+1σ

x
i+1

= (−iσyi )(2iσyi+1) + (2iσyi )(+iσyi+1) = 0 . (5.63)

It follows that the full Ising model Hamiltonian commutes with the operator, such that the bitflip
parity is actually a conserved quantity. Since the eigenvalues of Σx are just ±1, we conclude
that it must be possible to classify the eigenvalues of the Hamiltonian into two groups of even
(+) and odd (−) bitflip parity. Furthermore, since the initial ground state is even under bitflip
Σx |Ψ0(s = 0)〉 = + |Ψ0(s = 0)〉, an adiabatic evolution between HI and HF would actually prepare
the even superposition ∣∣Ψ0

ad(s = 1)
〉

=
1√
2

[|0 . . . 0〉+ |1 . . . 1〉] , (5.64)

which is actually a Schrödinger cat state.

5.8.1 Exact Diagonalization

Apart from these qualitative considerations, the Ising Hamiltonian can be diagonalized exactly also
for finite spin numbers n. The successive application of Jordan-Wigner, Fourier-, and Bogoliubov
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transforms maps the system Hamiltonian into two mutually commuting parts H = H− + H+ of
non-interacting fermions

H± =
∑
k

ε±k γ
†
k±γk± + σ±1 (5.65)

with fermionic annihilation operators γk that describe quasi-particles and shifts σ±. Here, the
quasi-momentum k may assume discrete values only, and the single-particle excitation energies –
that correspond to excitation energies of the full model – can be explicitly computed. The standard
path to diagonalize the Ising model can be broken down into three steps.

Jordan-Wigner transform

The Jordan-Wigner transform (JWT)

σx` = 1− 2c†`c` , σz` = −(c` + c†`)
`−1∏
m=1

(
1− 2c†mcm

)
(5.66)

maps the spin-1/2 Pauli matrices non-locally to spinless fermionic operators cm obeying fermionic
anticommutation relations {cm, c†`} = δm` and {cm, c`} = 0. For reference, we also note that
this implies

σy` = i(c†` − c`)
`−1∏
m=1

(
1− 2c†mcm

)
. (5.67)

Additionally, it may also be useful to note the inverted JWT

c` = −1

2
[σz` − iσy` ]

`−1∏
m=1

σxm , (5.68)

which (possibly after some convenient single-qubit rotations) can be used to co construct fermionic
annihilation and creation operators from the Pauli matrices.

Inserting the JWT into the Ising Hamiltonian, one has to treat the boundary term with special
care

H = −g
n∑
`=1

(1− 2c†`c`)− J
n−1∑
`=1

(c` + c†`)(c`+1 + c†`+1)(1− 2c†`c`)

− J(cn + c†n)

[
n−1∏
`=1

(1− 2c†`c`)

]
(c1 + c†1)

= −g
n∑
`=1

(1− 2c†`c`)− J
n−1∑
`=1

(c†` − c`)(c
†
`+1 + c`+1)

+ J(c†n − cn)(c†1 + c1)

[
n∏
`=1

(1− 2c†`c`)

]
, (5.69)
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where we have extensively used the fermionic anticommutation relations. Introducing the projec-
tion operators on the subspaces with even (+) and odd (-) total number of fermion quasiparticles

P± ≡ 1

2
[1± Σx] =

1

2

[
1±

n∏
m=1

(1− 2c†mcm)

]
, (5.70)

we may also write the Hamiltonian (5.69) as H = (P+ + P−)H(P+ + P−). It is straightforward
to see that terms with different projectors and with ` < n vanish

0 = P+(1− 2c†`c`)P
− = P−(1− 2c†`c`)P

+ ,

0 = P+(c†` − c`)(c
†
`+1 + c`+1)P− = P−(c†` − c`)(c

†
`+1 + c`+1)P+ . (5.71)

For the boundary terms one finds similarly

(P+ + P−)(c†n − cn)(c†1 + c1)

[
n∏
`=1

(1− 2c†`c`)

]
(P+ + P−)

= (P+ + P−)(c†n − cn)(c†1 + c1)(2P+ − 1)(P+ + P−)

= P+(c†n − cn)(c†1 + c1)P+ − P−(c†n − cn)(c†1 + c1)P− . (5.72)

The prefactor of the last term with the P− is negative as it should be, but the first is positive.
We can correct for this by demanding anti-periodic boundary conditions in the even subspace.
Eventually, we can write the Hamiltonian (5.69) as the sum of two non-interacting parts with
either an even or an odd total number of fermionic quasiparticles

H = P+H+P+ + P−H−P−

= P+

[
−g

n∑
`=1

(1− 2c†`c`)− J
n∑
`=1

(c†` − c`)(c
†
`+1 + c`+1)

]
P+

+ P−
[
−g

n∑
`=1

(1− 2c†`c`)− J
n∑
`=1

(c†` − c`)(c
†
`+1 + c`+1)

]
P− . (5.73)

Although the Hamiltonians in the brackets look formally identical, we stress that to arrive at this
expression, we need to demand antiperiodic boundary conditions in the even (+) subspace and
periodic boundary conditions in the odd (-) subspace

cn+1,(+) ≡ −c1,(+) , cn+1,(−) ≡ +c1,(−) . (5.74)

Even subspace diagonalization

We first seek to diagonalize the even part of the Hamiltonian

H+ = −g
n∑
`=1

(1− 2c†`c`)− J
n∑
`=1

(c†` − c`)(c
†
`+1 + c`+1) (5.75)

with antiperiodic boundary conditions cn+1 = −c1. This is often the only part considered, since it
contains the ground state (with zero quasi-particles). Translational invariance suggests to use the
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discrete Fourier transform (DFT, preserving the anticommutation relations due to its unitarity
by construction)

c` =
e−iπ/4

√
n

∑
k

c̃ke
+ik` 2π

n , (5.76)

which is a specific case of a Bogoliubov transformation. By construction, the DFT is unitary
and since it does not mix between annihilation and creation operators, it leaves the fermionic
anticommutation relations invariant (as one can check). The factor e−iπ/4 in front has just been
inserted for convenience (to obtain real-valued Bogoliubov coefficients later-on). The DFT is
compatible with the antiperiodic boundary conditions cn+1 = −c1 when k takes half-integer values

k ∈ {±1

2
,±3

2
,±5

2
, . . .} , where |k| ≤ n− 1

2
. (5.77)

Therefore, for even n, we get n different k values. The DFT maps the Hamiltonian into

H+ = −gn1 +
∑
k

{
2[g − J cos(k2π/n)]c̃†kc̃k + J sin(k2π/n)

[
c̃†kc̃
†
−k + c̃−kc̃k

]}
. (5.78)

Now, the observation that only positive and negative frequencies couple (conservation of one-
dimensional quasi-momentum), suggests to use the reduced Bogoliubov transform

c̃k = u+kγ+k + v∗−kγ
†
−k , (5.79)

which mixes positive and negative momenta and where the a priori unknown coefficients have
already been labeled suggestively (a more general ansatz would eventually of course yield the same
solution). Since the new operators γk should be fermionic, we obtain from the orthonormality
conditions

1 = |u+k|2 + |v−k|2 , 0 = u+kv
∗
+k + u−kv

∗
−k = (v∗+k, v

∗
−k)

(
u+k

u−k

)
. (5.80)

Demanding that the Bogoliubov transform eliminates all non-diagonal terms (of the form γ−kγ+k

etc.) yields (by combining positive and negative k) the equation

0 = 2

[
g − J cos

(
k

2π

n

)]
(u+kv−k − u−kv+k) + 2J sin

(
k

2π

n

)
(u−ku+k + v−kv+k)

= (v−k, u−k)

(
+2
[
g − J cos

(
k 2π
n

)]
+2J sin

(
k 2π
n

)
+2J sin

(
k 2π
n

)
−2
[
g − J cos

(
k 2π
n

)] )( u+k

v+k

)
≡ (v−k, u−k)M

(
u+k

v+k

)
. (5.81)

All equations can be fulfilled when we choose (u+k, v+k)
T as the normalized positive energy eigen-

state of the matrix M with eigenvalue

ε+
k = +2

√
g2 + J2 − 2gJ cos(k2π/n) ≡ εk (5.82)



82 CHAPTER 5. ADIABATIC QUANTUM COMPUTATION

and (v∗−k, u
∗
−k)

T = (−v∗+k,+u∗+k)T as its negative energy eigenstate with eigenvalue

ε−k = −2
√
g2 + J2 − 2gJ cos(k2π/n). To be more explicit, we have

uk =
g − J cos(k2π/n) +

√
g2 + J2 − 2gJ cos(k2π/n)√[

g − J cos(k2π/n) +
√
g2 + J2 − 2gJ cos(k2π/n)

]2

+ [J sin(k2π/n)]2
,

vk =
J sin(k2π/n)√[

g − J cos(k2π/n) +
√
g2 + J2 − 2gJ cos(k2π/n)

]2

+ [J sin(k2π/n)]2
. (5.83)

As a sanity check, we see that when the interaction vanishes J → 0, we get that the modes no
longer mix uk → 1 and vk → 0.

Using these solutions, we obtain when n is even

H+ =
∑
k

2

√
g2 + J2 − 2gJ cos

(
k

2π

n

)(
γ†kγk −

1

2

)
. (5.84)

From this, we conclude the single-particle energies

ε+k = 2

√
g2 + J2 − 2gJ cos

(
k

2π

n

)
= 2Ω

√
(1− s)2 + s2 − 2s(1− s) cos

(
k

2π

n

)
. (5.85)

The ground state has zero quasi-particles, and we can compute the ground state energy for large
chain lengths n explicitly by converting the sum into an integral

E0 = −1

2

∑
k

ε+k
n→∞→ −Ω

n

2

∫ +1

−1

dκ
√

(1− s)2 + s2 − 2s(1− s) cos(πκ) , (5.86)

where κ = 2k/n. Accordingly, the ground state energy density per spin becomes

ε(s) =
E0

n
= −Ω

∫ 1

0

dκ
√

(1− s)2 + s2 − 2s(1− s) cos(πκ) = −2Ω

π
ε(4s(1− s)) , (5.87)

where ε(x) is an elliptic integral of the second kind. This function has the peculiar property that
although its value at s = 1/2 is continuous, its second derivative diverges there logarithmically,
see Fig. 5.9. The next excited state in the subspace of an even quasiparticle number would be to
put two quasiparticles. To get the lowest excitation, we take the quasiparticles with k = ±1/2,
which yields for the excitation gap

G(s) = E1(s)− E0(s) = 2ε+1/2 = 4Ω

√
s2 + (1− s)2 − 2s(1− s) cos

(π
n

)
. (5.88)

By expanding the cos for large n and considering only the value of the gap at the critical point
s→ 1/2, the critical gap becomes

Gcrit ≈ Ω
π

n
. (5.89)

It is a general feature of quantum-critical models that the gap above the ground state vanishes as
n→∞. The scaling for the Ising model is rather mild, connected to the fact that it has a second
order quantum phase transition.
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Figure 5.9: Plot of the (negative) ground state
energy density ε(s) (black) and its first two
derivatives versus s. At the critical point s∗ =
1/2, the second derivative diverges.

Odd subspace diagonalization

The procedure for the odd subspace is essentially analogous, except that the Fourier transform
should now be compatible with periodic boundary conditions cn+1 = +c1. The Discrete Fourier
transform

c` =
1√
n

∑
k

c̃ke
+ik` 2π

n (5.90)

is compatible with the periodic boundary conditions when k takes only integer values

k ∈
{

0,±1,±2,±3, . . . ,±
(n

2
− 1
)
,+

n

2

}
, (5.91)

which holds for even values of n (we treat only this case) and then yields n different k-values. From
this choice, it also follows that c̃−n/2 = c̃+n/2. We get in analogy to the even subspace calculations
the relations

n−1∑
i=1

cici+1 + cnc1 =
∑
k

c̃+kc̃−ke
−ik 2π

n ,

n−1∑
i=1

c†i+1c
†
i + c†1c

†
n =

∑
k

c̃†−kc̃
†
+ke

+ik 2π
n ,

n−1∑
i=1

c†ici+1 + c†nc1 =
∑
k

c̃†+kc̃+ke
−ik 2π

n ,
n−1∑
i=1

c†i+1ci + c†1cn =
∑
k

c̃†+kc̃+ke
+ik 2π

n , (5.92)

and inserting them into the Hamiltonian H− we get

H− = gn1− 2g
∑
k

c̃†+kc̃+k − J
∑
k

[
c̃+kc̃−ke

−ik 2π
n + c̃†−kc̃

†
+ke

+ik 2π
n

]
+ J

∑
k

c̃†+kc̃+k

(
e+ik 2π

n + e−ik 2π
n

)
= gn1− 2(g − J)c†0c0 − 2(g + J)c†n/2cn/2 +

n/2−1∑
k=1

H−k . (5.93)

Here, the two additional terms arise from k = 0 and k = n/2, which is due to the different boundary
conditions in the odd subspace. The excitation energies of these modes can become negative. The
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Figure 5.10: Comparison of analytical (bold, col-
ored) predictions with numerical (thin dashed,
black) results for the lower part of the spectrum
for n = 10. Other parameters have been chosen
as g = Ω(1−s) and J = Ωs. At the critical point
s∗ = 1/2, the indicated gap between ground state
and first excited state of the even subspace closes
in the continuum limit n→∞.
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diagonalization of the quasimomentum pair Hamiltonian H−k proceeds in full analogy to H+
k , we

only have to take the different values of k into account

H−k =

[
2J cos

(
2πk

n

)
− 2g

]
c†+kc+k +

[
2J cos

(
2πk

n

)
− 2g

]
c†−kc−k

− 2iJ sin

(
2πk

n

)
c−kc+k + 2iJ sin

(
2πk

n

)
c†+kc

†
−k

= ε−k

[
γ†−kγ−k + γ†+kγ+k

]
+ ω−k 1 ,

ω−k = −2

(√
g2 + J2 − 2gJ cos

(
2πk

n

)
+ g − J cos

(
2πk

n

))
,

ε−k = 2

√
g2 + J2 − 2gJ cos

(
2πk

n

)
. (5.94)

After some rewriting, we can write the total Hamiltonian in the odd subspace as

H− = −2(g − J)

(
γ†0γ0 −

1

2

)
− 2(g + J)

(
γ†n/2γn/2 −

1

2

)
+

n/2−1∑
k=1

ε−k

[(
γ†+kγ+k −

1

2

)
+

(
γ†−kγ−k −

1

2

)]
. (5.95)

From these excitation energies we can succesively compute the full spectrum in the odd subspace.
First, we compute the lowest energy eigenstate by putting a single (odd subspace) quasiparticle
with minimum energy (this is for our parameters the one with k = +n/2) into the system. Further
energies can be computed by putting quasiparticles with larger energies, always obeying the con-
straint that in this subspace, the total number of quasi-particles must be odd. Other odd branches
are obtained by inserting three quasi-particles and so on.

Fig. 5.10 illustrates the analytic calculation of the eigenvalues for both even and odd subspaces
by comparing with a full-scale numerical solution for n = 10 spins, which yields in total 2n = 1024
eigenvalues. One can see that by knowing the single-quasiparticle energies and the ground state
energy in the separate subspaces, we can successively build up the complete spectrum of the model
– which numerically (dashed curves) requires the diagonalization of a 2n × 2n matrix.
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5.8.2 Adiabatic criterion

To see how fast the final ground state can be prepared from the initial one by a convex quench,
we consider the adiabatic criterion (5.11), which for a straight-line interpolation just involves the
matrix element HF−HI in the time-dependent system energy eigenbasis. If s(t) = t/T , we can use
the very same argument as before to find that T ∝ g−2

min ∝ n2 will suffice to ensure for adiabatic
evolution, such that the Schrödinger cat state can be prepared in a time that is quadratic in the
number of qubits [24]. However, similar to the adiabatic Grover model, when the interpolation
speed is adapted to the energy gap, one can do better.

Since [HF −HI,Σ
x] = 0, we will only consider the even parity sector, as there are no allowed

transitions between these sectors. To compute it, it is helpful to represent the individual contribu-
tions of the Ising model Hamiltonian in terms of the even subspace fermions (compare Eq. (5.78)
for either g = 0 or J = 0)∑

`

σx` = n1− 2
∑
`

c†`c` = n · 1− 2
∑
k

c̃†kc̃k = n · 1− 2
∑
k

(
u∗kγ

†
k + v−kγ−k

)(
ukγk + v∗−kγ

†
−k

)
= n1− 2

∑
k

[
|uk|2γ†kγk + |v−k|2γ−kγ†−k + u∗kv

∗
−kγ

†
kγ
†
−k + ukv−kγ−kγk

]
,∑

`

σz`σ
z
`+1 =

∑
`

(c†` − c`)(c
†
`+1 + c`+1) =

∑
k

[
2 cos(2πk/n)c̃†kc̃k − sin(2πk/n)

(
c̃†kc̃
†
−k + c̃−kc̃k

)]
=
∑
k

[
2 cos

(
2πk

n

)(
u∗kγ

†
k + v−kγ−k

)(
ukγk + v∗−kγ

†
−k

)
− sin

(
2πk

n

)[(
u∗kγ

†
k + v−kγ−k

)(
u∗−kγ

†
−k + vkγk

)
+
(
u−kγ−k + v∗kγ

†
k

)(
ukγk + v∗−kγ

†
−k

)] ]
,

(5.96)

where the coefficients are defined by (5.83). This helps with |E0(s)〉 = |0〉 and |E1(s)〉 =
γ†−1/2γ

†
+1/2 |0〉 to evaluate the matrix elements between ground state and first excited state in

the even particle number subspace, since only terms with two matching annihilation operators will
survive. Explicitly, one obtains

〈E0(s)|
∑
i

σxi |E1(s)〉 = 〈0|

(∑
i

σxi

)
γ†−1/2γ

†
+1/2 |0〉

= −2u1/2v−1/2 〈0| γ−1/2γ+1/2γ
†
−1/2γ

†
+1/2 |0〉

− 2u−1/2v+1/2 〈0| γ+1/2γ−1/2γ
†
−1/2γ

†
+1/2 |0〉

= 2u1/2v−1/2 − 2u−1/2v+1/2 = −4u1/2v1/2 ,

〈E0(s)|
∑
i

σzi σ
z
i+1 |E1(s)〉 = 〈0|

(∑
i

σzi σ
z
i+1

)
γ†−1/2γ

†
+1/2 |0〉

= 2 cos
(π
n

) [
−v−1/2u+1/2 + v+1/2u−1/2

]
− sin

(π
n

) [
−v−1/2v1/2 − u−1/2u+1/2

]
+ sin

(π
n

) [
v1/2v−1/2 + u1/2u−1/2

]
= 4 cos

(π
n

)
u1/2v1/2 + 2 sin

(π
n

) [
u2

1/2 − v2
1/2

]
. (5.97)
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Altogether, this implies

〈E0(s)| Ḣ |E1(s)〉 = Ωṡ
{
−4
[
1 + cos

(π
n

)]
u1/2v1/2 − 2 sin

(π
n

) [
u2

1/2 − v2
1/2

]}
=

−2Ωṡ sin
(
π
n

)√
1− 2s(1− s)

[
1 + cos

(
π
n

)] =
−8Ω2 sin

(
π
n

)
G(s)

ṡ
n→∞→ −4Ωṡ , (5.98)

with the energy gap (5.88). Altogether, the locally adiabatic criterion (5.11) reads

8Ω2 sin
(
π
n

)
G3(s)

ṡ� 1 . (5.99)

For large n, since sin(π/n)/G(s) remains bounded, it suffices to choose ṡ = σG2(s) with a small
constant σ to satisfy the adiabatic condition. From solving

∫ 1

0

ds

G2(s)
=

2 arctan
[√

1+cos(π/n)
1−cos(π/n)

]
√

1− cos2(π/n)
=

∫ T

0

σdt = σT = n− 1 +O (1/n) (5.100)

one then finds that in the large-n limit, an adiabatic runtime of T ∝ n actually suffices to prepare
the final Schrödinger cat ground state. So as with the Grover model in Sec. 5.4 one may get a
quadratic speedup by taking the varying gap into account. The difference however is that the
main obstacle, the energy gap, in the Grover model becomes exponentially small in the system
size gGrover

min = ΩN−1/2 = Ω2−n/2, whereas in the Ising model it is only polynomially small gIsing
min =

4Ω sin
(
π
2n

)
→ 2Ωπ

n
.

5.8.3 Non-straight interpolation

In presence of a thermal reservoir a reducing energy gap would still be problematic: Even if
non-adiabatic excitations can be controlled, a finite reservoir temperature will imply that thermal
excitations still pose a problem for large n. Fortunately, for the Ising model a different path may
be chosen along which a lower bound on the energy gap can be guaranteed. Instead of performing
a global quench which homogeneously changes the field g(t) = Ω[1 − s(t)] and the interaction
J(t) = Ωs(t) for all spins, one may sequentially turn on interactions and turn off local fields, i.e.,
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one may interpolate along the series of Hamiltonians

H0 = −Ω
n∑
i=1

σxi = HI ,

H1 = −Ωσz1σ
z
2 − Ω

n∑
i=3

σxi ,

...

Hk = −Ω
k∑
i=1

σzi σ
z
i+1 − Ω

n∑
i=k+2

σxi ,

...

Hn−1 = −Ω
n−1∑
i=1

σzi σ
z
i+1 ,

Hn = −Ω
n∑
i=1

σzi σ
z
i+1 = HF , (5.101)

which connects the same initial and final Hamiltonians, but now via a different path. Formally,
the time-dependent Hamiltonian is given by

H(t) =
n−1∑
k=0

Θ [sk(t)] Θ [1− sk(t)] {[1− sk(t)]Hk + sk(t)Hk+1} , (5.102)

where Θ(x) denotes the Heavyside step function and sk(t) = t−k∆t
∆t

encodes a constant speed
interpolation with n∆t = T such that sk[(k + 1)∆t] = 1 = 1− sk+1[(k + 1)∆t] and H(τ) = HF.

Given a spin chain with (constant) σzi σ
z
i+1-interactions, one has to apply a correspondingly

stronger external field to achieve an effective decoupling of the spins. The above nonlinear scheme
could be approximated by a strong transverse magnetic field that within the distance between
two spins rises linearly from zero to maximum and then travels at constant speed along the spin
chain. Conversely, one might imagine to slowly pull the spin chain out of a region with a strong
stationary transverse field if it is open, or to move and rotate it across an interface if it is closed,
to realize the above scheme.

Note that the interpolation path (5.101) does not destroy the bitflip symmetry, since

[
Hk,

n⊗̀
=1

σx`

]
=

0. The initial ground state is just the total superposition state∣∣Ψ0,even
0

〉
= |S〉 = H1 . . .Hn |0 . . . 0〉 , (5.103)

where Hk = 1√
2

(σxk + σzk) denotes the Hadamard gate on qubit k. It is easy to see that the ground

state of a single Hamiltonian Hk in (5.101) (within the subspace of even bit-flip parity) is for
1 ≤ k ≤ n− 1 given by∣∣Ψ0,even

k

〉
=

1√
2

[
1 + σx1 . . . σ

x
k+1

]
Hk+2 . . .Hn |0 . . . 0〉 , (5.104)

such that the overlap between two successive ground states yields
〈
Ψ0,even
k |Ψ0,even

k+1

〉
= 1/

√
2 for

0 ≤ k ≤ n−2. In the last interpolation step, the ground state is even invariant
〈
Ψ0,even
n−1 |Ψ0,even

n

〉
= 1.
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Hence, in every single step only slight transformations of the ground state are performed and
intuitively, one may expect that adiabatic preparation along this modified path should be more
efficient than in the conventional scheme.

For the first interpolation step in (5.101)

H0(s) ≡ (1− s)H0 + sH1

= −(1− s)Ω(σx1 + σx2 )− Ωsσz1σ
z
2 − Ω

n∑
i=3

σxi , (5.105)

the first two qubits evolve independently from the rest of the system and it is straightforward to
obtain the nontrivial eigenvalue contribution generated by their four-dimensional subspace

λ0/Ω = −
√

5s2 − 8s+ 4 ,

λ1/Ω = −s ,
λ2/Ω = +s ,

λ3/Ω = +
√

5s2 − 8s+ 4 , (5.106)

to which the (well-gapped) excitations resulting from decoupled qubits 3 . . . n – that are still subject
to a local external field – have to be added. Here, the relevant even subspace leads to an energy
gap g0(s) = λ3(s) − λ0(s) in the first step that is evidently independent of the total chain length
n.

For the intermediate steps we have

Hk(s) ≡ (1− s)Hk + sHk+1

= −Ω
k∑
i=1

σzi σ
z
i+1 − Ω(1− s)σxk+2 − Ωsσzk+1σ

z
k+2 − Ω

n∑
i=k+3

σxi (5.107)

in (5.101) for 1 ≤ k ≤ n−2, such that some non-trivial dynamics only takes place in the coefficients
of qubits k + 1 and k + 2. These are decoupled from qubits j ≥ k + 3 but still coupled to qubits
j ≤ k. However, with a suitable CNOT gate transformation (2.45), we can decouple them. One
can show that

CNOTij [σzi ⊗ 1j] CNOTij = σzi ⊗ 1j ,

CNOTij

[
σzi ⊗ σzj

]
CNOTij = 1i ⊗ σzj ,

CNOTij

[
1i ⊗ σxj

]
CNOTij = 1i ⊗ σxj . (5.108)

This means that a CNOT gate can be used to effectively decouple certain interactions, where
we only have local σz terms on the control qubit, local σx terms on the target qubit, and a
σz⊗σz interaction between the two. Using the CNOT transformation at the transition region, the
Hamiltonian (5.107) is mapped to

CNOTk+1,k+2Hk(s)CNOTk+1,k+2 = −Ω
k∑
i=1

σzi σ
z
i+1 − Ω

n∑
i=k+3

σxi − Ω(1− s)σxk+2 − Ωsσzk+2 ,

(5.109)

where it is visible that the qubit sets {1, . . . , (k + 1)}, {(k + 2)}, and {(k + 3), . . . , n} are mutually
decoupled. Then, one obtains for qubits 1 . . . (k + 1) just the eigenvalues of the Ising model in the
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Figure 5.11: Spectrum of an interpolation scheme
for the Ising model for n = 10, along which
– in contrast to Fig. 5.10 – a lower bound on
the energy gap can be guaranteed, adapted from
Ref. [25]. The solid curves represent the analyti-
cal results from Eqns (5.106) (left),(5.110) (mid-
dle), and (5.111) (right) that are shifted by the
corresponding negative energy contributions of
the decoupled qubits, whereas thin dashed lines
represent numerical solutions.

ferromagnetic phase with open boundary conditions (i.e., with minimum energy −kΩ for a two-fold
degenerate ground state and fundamental energy gap 2Ω) and for qubits (k + 3), . . . , n a minimum
energy of −(n − k − 2)Ω for the unique ground state and a fundamental energy gap of 2Ω. The
nontrivial part of the spectrum arises from the subspace of qubit (k + 2), where one obtains for
the eigenvalues

λ±/Ω = ±
√

1− 2s(1− s) . (5.110)

The final step is then trivial. Here, the two Hamiltonians do mutually commute, and the
spectrum accordingly just consists of straight lines

λ0/Ω = (1− s)[−(n− 1)] + s[−n] , λ1/Ω = (1− s)[−(n− 3)] + s[−(n− 4)] . (5.111)

Therefore, the minimum fundamental energy gap along the whole sequence of (5.101) within
the even subspace equates to geven

min = Ω
√

2, which is independent on the system size, see figure 5.11.
Accordingly, with a non-straight interpolation path, it is possible to prepare the final Schrödinger
cat state adiabatically also in O (n) time (we have a constant energy gap but need n steps), with a
lower bound on the energy gap. Here, the model is built such that one may never have any coupling
between subspaces of even and odd quasiparticle number, which follows from [H(s),Σx] = 0. Some
imperfections within the model or coupling to reservoirs not preserving the parity would lead to
transitions between even and odd subspaces. For this (and for purposes of numerical separation),
we note that by adding a penalty Hamiltonian

Hpen =
Ω

2

[
1−

⊗
`

σx`

]
(5.112)

the odd subspace is lifted by an energy penalty Ω, whereas the even subspace is not affected. A
review on adiabatic quantum computation is provided in Ref. [26].
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Chapter 6

Information measures

We have seen that some unintuitional properties like entanglement and coherence are vital for
quantum computation to work. Unfortunately however, quantum computers are far from perfect
and in particular for an open system, the Schrödinger equation alone is not sufficient to describe
their dynamics. To see how well a quantum device works, we need some objective measures for
distances between states [1] and we would like to have a method for measuring or quantifying
entanglement. With such a measure, we could say for quantum state preparation, how well a
quantum algorithm (e.g. Grover search) approximates the target state.

6.1 Quantum operations

For closed systems, we always used unitary evolution to describe the system dynamics. When
we perform a measurement on the system, we have to act on the density matrix with projection
operators to obtain the post-measurement state. For an open system, we integrate a master
equation, thereby mapping an initial density matrix to a final one. These are possible maps
between two density matrices.

The master equation formalism however rested on several approximations which in general
will not be applicable. In standard treatment of open systems, it is always assumed that the
global (full universe) density matrix evolves unitarily. If then initially, system and reservoir can
be written in a product form ρSB = USB(t)ρ0

S ⊗ ρ0
BU
†
SB(t), it follows by simply inserting a tensor

product decomposition of the time evolution operator USB(t) =
∑

αAα⊗Bα, that the exact reduced
density matrix of the system can be written as

ρS(t) =
∑
αβ

Aαρ
0
SA
†
βCαβ , (6.1)

where the positive semidefinite matrix Cαβ = TrB

{
B†βBαρ

0
B

}
ensures that

∑
αβ CαβA

†
βAα = 1.

Even further representing the operators by unitary transformations Aα =
∑

ᾱ uαᾱK̄ᾱ of new oper-
ators K̄α with the aim to diagonalize the Cαβ matrix, we can with the eigenvalues Cα ≥ 0 write
the above equation as

ρS(t) =
∑
α

CαK̄αρ
0
SK̄
†
α . (6.2)

91



92 CHAPTER 6. INFORMATION MEASURES

Finally, we introduce the operators Kα =
√
CαK̄α which then obey

∑
αK

†
αKα = 1 to conclude

that the most general quantum operation on a density matrix ρ0
S is given by a Kraus map [27]

ρS(t) =
∑
α

Kαρ
0
SK
†
α ≡ E(ρ0

S) :
∑
α

K†αKα = 1 . (6.3)

This is more general than Lindblad evolution, and the form of the above equation also includes
the unitary case as well as the evolution under measurements. Conversely, if a map can be written
as above, it is straightforward to show that it preserves all density matrix properties, e.g. for
positivity

〈Ψ| ρS(t) |Ψ〉 =
∑
α

∑
n

ρ0
n 〈Ψ|Kα |n〉 〈n|K†α |Ψ〉 =

∑
α

∑
n

ρ0
n|〈Ψ|Kα |n〉|2 ≥ 0 , (6.4)

where we have used the spectral decomposition of ρ0
S =

∑
n ρ

0
n |n〉 〈n|.

6.2 Comparing density matrices

6.2.1 Trace Distance

A classical distance measure between two probability distributions {pn} and {qn} (i.e., we have
pn ≥ 0 and

∑
n pn = 1) is the Kolmogorov distance

DKD({pn}, {qn}) =
1

2

∑
n

|pn − qn| . (6.5)

It is actually even a metric, since it is positive, vanishes if and only if q = p, it is symmetric, and
it obeys the triangle inequality

DKD({pn}, {qn}) ≥ 0 ,

DKD({pn}, {qn}) = 0↔ pn = qn∀n ,
DKD({pn}, {qn}) = DKD({qn}, {pn}) ,
DKD({pn}, {qn}) ≤ DKD({pn}, {`n}) +DKD({`n}, {qn}) . (6.6)

All these requirements are sensible ones to define a proper distance. In addition, one can give
the Kolmogorov distance an operational meaning: It is also given by the maximum probability
difference for an event S to occur

DKD({pn}, {qn}) = max
S
|p(S)− q(S)| = max

S

∣∣∣∣∣∑
n∈S

(pn − qn)

∣∣∣∣∣ . (6.7)

To see this, define rn = pn − qn and define the sets N+ = {n : rn > 0} and N− = {n : rn < 0,
such that

∑
n rn =

∑
n∈N+

rn +
∑

n∈N− rn = 0. With this, we can write

DKD({pn}, {qn}) =
1

2

∑
n

|rn| =
1

2

∑
n∈N+

rn −
∑
n∈N−

rn

 =
∑
n∈N+

rn = max
S

∣∣∣∣∣∑
n∈S

rn

∣∣∣∣∣ , (6.8)

which shows the above representation.
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Quantum systems are not just characterized by a discrete probability distribution, in addition
we need to specify the states corresponding to the probabilities. This is done with the density
matrix formalism ρ =

∑
n pn |Φn〉 〈Φn| (recall that in general 〈Φn|Φm〉 6= δnm), and correspondingly

we need a measure to quantify the distance between two density matrices. The trace distance
generalizes its classical analogue, the Kolmogorov distance, to the quantum world. The trace
distance between two density matrices ρ and σ is defined as

DTD(ρ, σ) =
1

2
Tr {|ρ− σ|} ≡ 1

2
Tr
{√

(ρ− σ)†(ρ− σ)
}

=
1

2
Tr
{√

(ρ− σ)2
}
. (6.9)

� Practically, it can be computed by computing the real eigenvalues λn of ρ−σ, and summing
up their absolute values DTD(ρ, σ) = 1

2

∑
n |λn|.

� Similar to the Kolmogorov distance, we can write the trace distance as a maximization over
all possible projectors P 2 = P

DTD(ρ, σ) = max
P

Tr {P (ρ− σ)} , (6.10)

which means that for any two states, there is an optimal measurement outcome P that dis-
tinguishes best between the two states, and the trace distance is then given by the difference
of outcome probabilities for this optimal outcome. To see that such a projector Pmax exists,
we note that

ρ− σ =
∑
n

λn |n〉 〈n| =
∑

n:λn>0

λn |n〉 〈n|︸ ︷︷ ︸
R+

−
∑

n:λn<0

(−λn) |n〉 〈n|︸ ︷︷ ︸
R−

= R+ −R− (6.11)

with positive operatorsR± obeyingR+R− = R−R+ = 0 and Tr {R+}−Tr {R−} = Tr {ρ− σ} =
0. This decomposition formally allows to evaluate

DTD(ρ, σ) =
1

2
Tr {|ρ− σ|} =

1

2
Tr {R+ +R−} = Tr {R+} . (6.12)

Therefore, we can choose Pmax as the projector onto the support of R+, i.e.,

Pmax =
∑

n:λn>0

|n〉 〈n| , (6.13)

such that PmaxR+ = R+ and PmaxR− = 0. With this, we get

DTD(ρ, σ) = Tr {R+} = Tr {Pmax(R+ −R−)} = Tr {Pmax(ρ− σ)} . (6.14)

In contrast, for an arbitrary projector P = P 2 6= Pmax, we have

Tr {P (ρ− σ)} = Tr {P (R+ −R−)} ≤ Tr {PR+} ≤ Tr {R+} = DTD(ρ, σ) , (6.15)

which shows (6.10).

� The trace distance is a metric: It is evidently positive, it vanishes if and only if ρ = σ, and
it is symmetric. Additionally, one can show the triangle inequality

DTD(ρ, τ) = Tr {P ρτ
max(ρ− τ)} = Tr {P ρτ

max(ρ− σ + σ − τ)}
≤ DTD(ρ, σ) +DTD(σ, τ) . (6.16)

This is useful to compare distances to each other: The direct distance should always be
smaller than the distance along a detour.



94 CHAPTER 6. INFORMATION MEASURES

� When the two density matrices commute [ρ, σ] = 0, we can denote their eigenvalues by ρ`
and σ`, and the trace distance falls back to the previously introduced Kolmogorov distance
between two distributions

DTD(ρ, σ)→ 1

2

∑
n

|ρn − σn| . (6.17)

� For a qubit, the trace distance between two states can be mapped to the ordinary euclidian
distance within the Bloch sphere, where with |n|, |m| ≤ 1 we have

DTD(ρ, σ) = DTD

(
1

2
[1− nσ],

1

2
[1−mσ]

)
=

1

2
Tr


√[

1

2
(n−m) · σ

]2


=

1

4
2|n−m| = |n−m|

2
, (6.18)

where we have used that the eigenvalues of α · σ are given by ±|α|.

� Any rotation on the Bloch sphere leaves the distance between two states invariant, but this
holds more generally for unitary transformations beyond the single-qubit case

DTD(UρU †, UσU †) = DTD(ρ, σ) . (6.19)

This also implies that the trace distance does not depend on the basis within which we
represent the density matrices ρ and σ.

A remarkable property of trace-preserving quantum operations (6.3) that becomes apparent by
using the trace-distance is that these operations are contractive. Writing again ρ−σ = R+−R−
with positive definite operators R±, we find

DTD(E(ρ), E(σ)) = Tr {Pmax[E(ρ)− E(σ)]} = Tr {Pmax[E(R+)− E(R−)]}
≤ Tr {Pmax[E(R+)]}
≤ Tr {E(R+)}

= Tr {R+} =
1

2
Tr {R+ +R−} =

1

2
Tr {|R+ −R−|} =

1

2
Tr {|ρ− σ|} = DTD(ρ, σ) ,

(6.20)

such that we get

DTD(E(ρ), E(σ)) ≤ DTD(ρ, σ) . (6.21)

� Unitary operations are thus an example of quantum-operations, where the equality is reached

DTD(Uρ0U
†, Uσ0U

†) = DTD(ρ0, σ0) . (6.22)

� Under Lindblad evolution ρ̇ = Lρ and σ̇ = Lσ, any two states can only get closer

DTD(eLtρ0, e
Ltσ0) ≤ DTD(ρ0, σ0) . (6.23)

In fact, we can even write this for infinitesimal time intervals using the divisibility of Marko-
vian evolution ρ(t+ ∆t) = eL∆tρ(t)

DTD(eL∆tρ(t), eL∆tσ(t)) ≤ DTD(ρ(t), σ(t)) , (6.24)

which means that under GKSL-dynamics, the distance between any two states must monotonously
decrease. We have already observed this in Fig. 4.2.
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Figure 6.1: Left: Evolution of trace distance between the two states depicted in Fig. 4.2 over
the full gate operation time ΩTgt = π (same parameters as there). The trace distance decreases
monotonously, which is a general feature of Lindblad evolution. Right: Evolution of the trace
distance between the exact solutions of the pure-dephasing spin-boson model for the initial states
ρ0 = |+〉 〈+| and σ0 = |−〉 〈−|. Parameters J0Ω = 1.0, ω̄ = 5Ω, βΩ = 10.

� For the exact solution of the pure-dephasing model (4.11) however, we only have

DTD(ρ(t), σ(t)) ≤ DTD(ρ0, σ0) , (6.25)

which can be used as a measure to distinguish Markovian (continuously contractive) from
non-Markovian evolution [28].

For a single qubit, this can be directly visualized with the euclidean distance between two
states, which is visualized in Fig. 6.1. If we compare this to the exact solution of the spin-boson
pure-dephasing model (4.11), we would for |±〉 = 1√

2
[|0〉 ± |1〉] gave

DTD (E(|−〉 〈−|), E(|+〉 〈+|)) = e−f(t) , (6.26)

with f(t) also defined in Eq. (4.11). From its definition, one can see that f(t) ≥ 0, but its derivative

d

dt
f(t) =

4

π

∫ ∞
0

J(ω)
d

dt

sin2(ωt/2)

ω2
coth(βω/2)dω

=
2

π

∫ ∞
0

J(ω)
sin(ωt)

ω
coth(βω/2)dω (6.27)

can become negative, in particular when J(ω) coth(βω/2) is a strongly peaked function. For
example, parametrizing the spectral density as

J(ω) = J0
ω4ω̄δ2

[(ω − ω̄)2 + δ2][(ω + ω̄)2 + δ2]
, (6.28)

which for ω̄ � δ has a maximum of height J0 and width δ at ω = ω̄, one can achieve a non-
monotonously decreasing trace distance, see Fig. 6.1 right panel.

We see that while with f(t) ≥ 0 = f(0), the trace distance always decreases with respect to its
initial value

DTD(ρ(t), σ(t)) ≤ DTD(ρ0, σ0) , (6.29)
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it does not need not decrease monotonously under the exact evolution of the pure-dephasing spin-
boson model, which highlights non-Markovian evolution [28].

6.2.2 Fidelity

The trace distance does not simplify significantly in case of pure states, as one can visualize in the
Bloch sphere representation. Therefore, also other measures have been introduced.

The classical fidelity between two classical distributions is given by

F ({pn}, {qn}) =
∑
n

√
pnqn . (6.30)

If the distributions are equal, we get F ({pn}, {pn}) =
∑

n pn = 1, which demonstrates that the
fidelity is not a metric. One can however construct a metric from the fidelity.

The quantum generalization yields the fidelity between states ρ and σ

F (ρ, σ) = Tr

{√√
ρσ
√
ρ

}
, (6.31)

where often also the square is used F (ρ, σ)→ F 2(ρ, σ).

� Since ρ and σ are density matrices, the above expression is well-defined. For example, by
using the spectral decomposition ρ =

∑
n ρn |n〉 〈n| we know that

√
ρ is well-defined and

positive. Then also using σ =
∑

α σα |α〉 〈α| we see that the operator below the large root is
positive

〈Ψ| √ρ
∑
α

σα |α〉 〈α|
√
ρ |Ψ〉 =

∑
α

σα|〈α |
√
ρ|Ψ〉|2 ≥ 0 . (6.32)

� When both states are pure ρ = |Ψ〉 〈Ψ| =
√
ρ and σ = |Φ〉 〈Φ|, the fidelity reduces to the

overlap between the states

F (ρ, σ)→ Tr
{√
|Ψ〉 〈Ψ|Φ〉 〈Φ|Ψ〉 〈Ψ|

}
= |〈Ψ|Φ〉| . (6.33)

� In the limit where both states commute [ρ, σ] = 0, we can use the spectral decomposition
ρ =

∑
n ρn |n〉 〈n| and σ =

∑
n σn |n〉 〈n| to conclude that the fidelity reduces to the classical

one (just as for the trace distance)

F (ρ, σ)→ Tr


√∑

n

ρ
1/2
n σnρ

1/2
n |n〉 〈n|

 = Tr

{∑
n

√
ρnσn |n〉 〈n|

}
=
∑
n

√
ρnσn . (6.34)

This also implies that F (ρ, ρ) = 1.

� Unitary transformations do not change the fidelity

F (ρ, σ) = Tr

{
U †U

√
U †U
√
ρU †UσU †U

√
ρU †U

}
= Tr

{√√
UρU †UσU †

√
UρU †

}
= F (UρU †, UσU †) . (6.35)
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� The symmetry can be seen by writing the fidelity as a trace norm

F (ρ, σ) = Tr

{√(√
σ
√
ρ
)†√

σ
√
ρ

}
= Tr

{√√
σ
√
ρ
(√

σ
√
ρ
)†}

= F (σ, ρ) . (6.36)

� A metric can be constructed by (compare e.g. [1])

DFD(ρ, σ) = arccosF (ρ, σ) . (6.37)

For two states on the surface of the Bloch sphere, this metric then corresponds to the angle
between the states.

� Quantum operations can only increase the fidelity between two states (which decreases the
derived metric above)

F (E(ρ), E(σ)) ≥ F (ρ, σ) . (6.38)

� There exist relations between fidelity and trace distance like

1− F (ρ, σ) ≤ DTD(ρ, σ) ≤
√

1− F 2(ρ, σ) . (6.39)

In Fig. 5.6 right panel, we have actually already used the (squared) fidelity to quantify the distance
between the time-dependent solution of the Schrödinger equation and individual energy eigenstates.

6.2.3 Quantum relative entropy

The von-Neumann entropy of a density matrix ρ is given by

S(ρ) = −Tr {ρ ln ρ} . (6.40)

� It is well-defined since ρ is a positive definite matrix and can therefore be computed by the
eigenvalues S(ρ) = −

∑
n ρn ln ρn, from which we can conclude 0 ≤ S(ρ), and where it is

understood that limρn→0 ρn ln ρn = 0. If ρn are interpreted as probabilities, the expression is
the entropy for a classical probability distribution and typically termed Shannon entropy.

� Often, one uses log2 in the definition, which merely then differs by a factor.

� From the expressions above one can see that the von-Neumann entropy of a pure state
vanishes S(|Ψ〉 〈Ψ|) = 0.

� One can maximize the entropy subject to the constraint that
∑

n ρn = 1 = Tr {ρ} (e.g. with
the method of Lagrange multipliers), and one then finds that the maximally mixed state is
the one with maximum entropy

S

(
1

N
1

)
= lnN , (6.41)

such that we have 0 ≤ S(ρ) ≤ lnN for a Hilbert space dimension N .
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� In a similar fashion, one can show that the maximum entropy state at given mean energy
E = Tr {Hρ} is the canonical equilibrium state

ρc =
e−βH

Tr {e−βH}
, (6.42)

where the Lagrange multiplier β assumes the role of the inverse temperature.

� For given mean energy E = Tr {Hρ} and particle number N = Tr
{
N̂ρ
}

, the grand-canonical

equilibrium state also maximizes the entropy

ρgc =
e−β(H−µN)

Tr {e−β(H−µN)}
. (6.43)

� The entropy of a tensor product is additive

S(ρA ⊗ ρB) = −Tr {ρA ⊗ ρB ln(ρA ⊗ ρB)} = −Tr {ρA ⊗ ρB [(ln ρA)⊗ 1 + 1⊗ (ln ρB)]}
= −TrA {ρA ln ρA} − TrB {ρB ln ρB} = S(ρA) + S(ρB) , (6.44)

where we have used that the matrix logarithm of a product of two commuting (!) matrices
behaves like the conventional logarithm.

Another way to quantify the distance between two quantum states is then the quantum
relative entropy

DQRE(ρ, σ) = Tr {ρ[ln ρ− lnσ]} = −S(ρ)− Tr {ρ lnσ} . (6.45)

� It is positive, which can be seen by introducing the spectral decomposition of both density
matrices

ρ =
∑
`

ρ` |`〉 〈`| , 0 ≤ ρ` ≤ 1 ,
∑
`

ρ` = 1 ,

σ =
∑
α

σα |α〉 〈α| , 0 ≤ σα ≤ 1 ,
∑
α

σα = 1 . (6.46)

Inserting them for the quantum relative entropy yields

−DQRE(ρ, σ) =
∑
`

ρ` [〈`| lnσ |`〉 − ln ρ`] =
∑
`

ρ`

[∑
α

ln(σα)|〈`|α〉|2 − ln ρ`

]

=
∑
`

ρ`

[∑
α

ln(σα)|〈`|α〉|2 − ln(ρ`)
∑
α

|〈`|α〉|2
]

=
∑
`

∑
α

ρ`|〈`|α〉|2 ln
σα
ρ`

≤
∑
`

∑
α

ρ`|〈`|α〉|2
[
σα
ρ`
− 1

]
=
∑
α

σα −
∑
`

ρ` = 0 , (6.47)

where we have used ln(x) ≤ x− 1, such that accordingly DQRE(ρ, σ) ≥ 0.

� When ρ and σ commute, we obtain the classical limit, the Kullback-Leibler-divergence

DQRE(ρ, σ)→
∑
`

ρ` ln
ρ`
σ`
, (6.48)

where ρ` and σ` are the eigenvalues of ρ and σ (in the same basis, with the same ordering).
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� It is not a metric (it is evidently not even symmetric).

� Completely positive trace-preserving maps (trace-preserving quantum operations) reduce the
relative entropy [29]

DQRE(E(ρ), E(σ)) ≤ DQRE(ρ, σ) . (6.49)

� An important inequality for Lindblad dynamics E(ρ) = eLtρ can be derived from this by
taking σ = ρ̄. One can write for Lindblad dynamics and ∆t > 0 for the evolution of
distances then

0 ≥ 1

∆t

[
DQRE(eL∆tρ(t), eL∆tρ̄)−DQRE(ρ(t), ρ̄)

]
=

1

∆t
[DQRE(ρ(t+ ∆t), ρ̄)−DQRE(ρ(t), ρ̄)]

=
1

∆t
Tr {ρ(t+ ∆t) ln(ρ(t+ ∆t))− ρ(t+ ∆t) ln ρ̄− ρ(t) ln ρ(t) + ρ(t) ln ρ̄}

=
1

∆t

[
∆tTr {[Lρ(t)] ln ρ(t)}+ ∆tTr

{
ρ(t)ρ−1(t)[Lρ(t)]

}
−∆t[Lρ(t)] ln ρ̄+O

(
∆t2
)]

∆t→0→ Tr {[Lρ(t)][ln ρ(t)− ln ρ̄]} . (6.50)

Eventually, we can write this as Spohn’s inequality [30]

−Tr {(Lρ)[ln ρ− ln ρ̄]} ≥ 0 , (6.51)

which has to hold for any Lindblad master equation where Lρ̄ = 0 is a steady state.

� The quantum relative entropy can be straightforwardly related to the (quantum) mutual
information, which measures (quantum and classical) correlation between two systems A
and B via

I(A,B) ≡ S(ρA) + S(ρB)− S(ρAB) = DQRE(ρAB, ρA ⊗ ρB) . (6.52)

The mutual information evidently vanishes for product states but is finite also for classical
correlations, as can be exemplified with the mixture ρAB = 1

2
|00〉 〈00|+ 1

2
|11〉 〈11|, for which

one gets S(ρA) = S(ρB) = S(ρAB) = ln 2.

6.3 Entanglement

Being an obscure property of multipartite quantum systems that is however necessary for the
quantum speedup, we would like to quantify entanglement between the constituents of bipartite
(or multipartite) quantum systems.

6.3.1 Entanglement entropy

When ρAB = |ΨAB〉 〈ΨAB| is a pure state, where in general

|ΨAB〉 =
∑
nA

∑
mB

cnA,mB |nA〉 ⊗ |mB〉 (6.53)
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denotes the tensor-product representation with coefficients cnA,mB and basis states |nA〉 and |mB〉,
respectively, one would like to have a measure for the non-classical correlations shared by A and
B. The mutual information measures also the classical correlations, such that it is not sufficient.
For this, it is helpful to note that any bipartite quantum state can also be written as

|ΨAB〉 =
∑
α

λα |aα〉 ⊗ |bα〉 :
∑
α

λ2
α = 1 , λα ≥ 0 , (6.54)

where |aα〉 and |bα〉 denote respective orthonormal bases in subsystem A and B (that in general are
different from the original bases). The above decomposition is known as Schmidt decomposition
with Schmidt coefficients λα. It is helpful because the single summation makes it simple to
compute reduced states: Since |aα〉 and |bα〉 are orthonormal bases, we can evaluate the partial
trace in them

ρA = TrB {|ΨAB〉 〈ΨAB|} =
∑
α

λ2
α |aα〉 〈aα| ,

ρB = TrA {|ΨAB〉 〈ΨAB|} =
∑
α

λ2
α |bα〉 〈bα| . (6.55)

In turn, this provides us with a recipe to obtain the bases {|aα〉} and {|bα〉} and the Schmidt
coefficients λα by the spectral decompositions of the reduced density matrices.

For pure bipartite states, a measure for the entanglement between subsystems A and B is the
entanglement entropy, which is given by the von-Neumann entropy of the reduced state

E(|ΨAB〉) = S(TrB {|ΨAB〉 〈ΨAB|}) . (6.56)

� The entanglement entropy is evidently positive as it inherits this property from the von-
Neumann entropy. Particularly, it vanishes for separable states

E(|ΨA〉 ⊗ |ΨB〉) = S(|ΨA〉 〈ΨA|) = 0 , (6.57)

whereas for all other states (that have more than one term in their Schmidt decomposition),
the reduced density matrix in A is mixed, such that the von-Neumann entropy is positive

E(|ΨAB〉) = −
∑
α

λ2
α lnλ2

α > 0 . (6.58)

� The entanglement entropy of the state between two d-level systems

|Ψmax〉 =
1√
d

[|1〉 ⊗ |1〉+ . . . |d〉 ⊗ |d〉] (6.59)

is then given by

E(|Ψmax〉) = S

(
1

d
[|1〉 〈1|+ . . .+ |d〉 〈d|]

)
= ln d , (6.60)

which assumes its maximum value, and hence, the above state is considered as maximally
entangled state. Such states (and equivalent ones connected to the above by local unitary
transformations) can serve as a resource and are therefore like a currency standard to which
one can compare.
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� It does not matter which system is traced out: One always has with ρA = TrB {|ΨAB〉 〈ΨAB|}
and ρB = TrA {|ΨAB〉 〈ΨAB|}

S(ρA) = S(ρB) . (6.61)

Note that this even holds when A and B have different dimension, because it is a direct conse-
quence of the Schmidt decomposition introduced before. Indeed, when looking at Eq. (6.55)
one can see that ρA and ρB have the same non-vanishing eigenvalues.

6.3.2 Examples

Bell states

The Bell states are maximally entangled ones, because they are assigned the maximum entangle-
ment entropy, e.g.

E(
|01〉+ |10〉√

2
) = S(

1

2
|0〉 〈0|+ 1

2
|1〉 〈1|) = ln 2 . (6.62)

Asymmetric partitions

To work through a simple asymmetric example, consider the three-qubit state

|Ψ〉 =
1√
3

[|001〉+ |010〉+ |100〉] . (6.63)

The reduced state of the first qubit A = {1} is

ρ1 = Tr23 {|Ψ〉 〈Ψ|} =
2

3
|0〉 〈0|+ 1

3
|1〉 〈1| , (6.64)

which has entropy S(ρ1) = ln(3/22/3) ≈ 0.637. The reduced state of the other two qubitsB = {2, 3}
is

ρ23 = Tr1 {|Ψ〉 〈Ψ|} =
1

3
[|01〉 〈01|+ |01〉 〈10|+ |10〉 〈01|+ |10〉 〈10|+ |00〉 〈00|]

=
2

3

|01〉+ |10〉√
2

〈01|+ 〈10|√
2

+
1

3
|00〉 〈00| , (6.65)

which has the same non-vanishing eigenvalues as ρ1, such that S(ρ1) = S(ρ23), despite the fact
that B has a four-dimensional Hilbert space, whereas A has a two-dimensional one. From this, we
can also find the Schmidt decomposition

|Ψ〉 =

√
2

3
|0〉 ⊗ |01〉+ |10〉√

2
+

√
1

3
|1〉 ⊗ |00〉 . (6.66)

Ising model entanglement

If we revisit the Ising model (5.59), we can ask about the entanglement between any spin and the
rest of the chain, when the global system is prepared in the ground state |Ψ0(s)〉. Since the whole
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Figure 6.2: Expectation value of 〈σx` 〉 (black) and
the derived entanglement entropy (red) for the
entanglement between a single spin of the Ising
model and the rest of the chain versus inter-
polation parameter s. The thin dotted line at
ln 2 provides the upper bound for the entangle-
ment entropy of a single spin. The limits s = 0
(no entanglement) and s = 1 (Schrödinger ket
state 1√

2
[|0 . . . 0〉 + |1 . . . 1〉]) can be understood

analytically.
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model is invariant under cyclic permutations of the spins, without loss of generality we consider
the first

ρ1 = Tr2...n {|Ψ0(s)〉 〈Ψ0(s)|} =
1

2
[1 + n · σ] . (6.67)

We can evaluate along the Jordan-Wigner (5.66), DFT (5.76), and Bogoliubov (5.79) transforms
employed in the diagonalization of the Ising model to find

nx = 〈Ψ0(s)|σx1 |Ψ0(s)〉 = 〈Ψ0(s)| (1− 2c†1c1) |Ψ0(s)〉 = 1− 2

n

∑
kq

e−i(k−q)2π/n 〈Ψ0(s)| c̃†kc̃q |Ψ0(s)〉

= 1− 2

n

∑
kq

e−i(k−q)2π/n 〈Ψ0(s)|
(
u∗kγ

†
+k + v−kγ−k

)(
uqγq + v∗−qγ

†
−q

)
|Ψ0(s)〉

= 1− 2

n

∑
k

|v−k|2 ,

ny = 〈Ψ0(s)| i(c†1 − c1) |Ψ0(s)〉 = . . . = 0 ,

nz = −〈Ψ0(s)| (c†1 + c1) |Ψ0(s)〉 = . . . = 0 , (6.68)

where the first expectation value can be made explicit by Eq. (5.83) and in the other equations we
have used that the DFT and Bogoliubov transforms are linear transformations of annihilation and
creation operators, such that their expectation value in the Ising ground state vanishes. The result
is then depicted in Fig. 6.2. The entanglement entropy does depend on the chosen partition. For
the Ising model for example, we may equally well split the ring into two equally-sized parts. One
then observes that the entanglement entropy of the ground state develops a peak near the critical
point, with a height that scales mildly with the system size [31, 32], see Fig. 6.3. The scaling laws
of the ground state entanglement entropy are an interesting research subject of its own [33].

Since adiabatic algorithms with a small energy gap are in some sense analogous to quantum-
critical phenomena, a scaling entanglement entropy has also been used to measure the performance
of such algorithms [21].
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Figure 6.3: Entanglement entropy of one half
Ising ring in the global Ising ground state for dif-
ferent lengths n. The peak in the middle scales
with the system size n and denotes a finite-size
precursor of a quantum phase transition. For
n → ∞, it scales logarithmically with the chain
length Smax ∝ lnn (which is significantly smaller
than the maximum possible scaling which would
be S ≤ ln d = n

2
ln 2) and its position moves to

s = 1/2.

Collective spin models

In collective spin models, characterized by a Hamiltonian H(Jx, Jy, Jz) with large spins

Jα =
1

2

n∑
i=1

σαi , (6.69)

one can via the commutation relations

[Jx, Jy] =
1

4

∑
ij

[
σxi , σ

y
j

]
=

i

2

∑
i

σzi = iJz (6.70)

and cyclic permutations thereof conclude that the large spin operators commute with the total
angular momentum operator, e.g.[

Jx, (Jx)2 + (Jy)2 + (Jz)2
]

= Jy[Jx, Jy] + [Jx, Jy]Jy + Jz[Jx, Jz] + [Jx, Jz]Jz

= iJyJz + iJzJy − iJzJy − iJyJz = 0 (6.71)

and likewise for the other components. From this, we can conclude that for such Hamiltonians,
the total angular momentum is conserved[

H, J2
]

=
[
H, (Jx)2 + (Jy)2 + (Jz)2

]
= 0 , (6.72)

and one can classify the eigenstates of such Hamiltonians according to their total angular momen-
tum. Within each subspace of given total angular momentum

J2 |j,m〉 = j(j + 1) |j,m〉 (6.73)

one can use the eigenstates of Jz

Jz |j,m〉 = m |j,m〉 (6.74)

as a basis, and by introducing the ladder operators

J± =
1

2

n∑
i=1

(σxi ± iσyi ) =
∑
i

σ±i = Jx ± iJy , (6.75)
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one can see that they allow to construct the other basis members from just one of a given angular
momentum sector

J± |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 : −j ≤ m ≤ +j . (6.76)

For n qubits one has jmax = n/2.
One example of such a collective is the Dicke model of superradiant decay that descibes the

collective coupling of n two-level atoms (qubits) to a bosonic reservoir (the surrounding electro-
magnetic field)

H = ΩJz + 2Jx ⊗
∑
k

(
hkbk + hkb

†
k

)
+
∑
k

ωkb
†
kbk . (6.77)

The master equation for the system then assumes the form

ρ̇S = −i
[
ΩJz + ∆E+J

+J− + ∆E−J
−J+, ρS

]
+ J(Ω)[1 + nB(Ω)]

[
J−ρSJ

+ − 1

2

{
J+J−, ρS

}]
+ J(Ω)nB(Ω)

[
J+ρSJ

− − 1

2

{
J−J+, ρS

}]
,

(6.78)

where Ω is the splitting of an individual atom, J(Ω) is the spectral density, and ∆E± denote Lamb-
shift terms. For low temperatures nB(ω) → 0 the master equation predicts a striking collective
speedup of relaxation from the state |m = +n/2〉 = |0 . . . 0〉 down to the state |m = −n/2〉 =
|1 . . . 1〉 as compared to the independent decay of two-level systems [34]. This speedup becomes
possible due to the increased transition rates around m ≈ 0, and we can ask for the role of
entanglement in this process.

For example, for n = 3 we would have for the relevant maximum angular momentum states∣∣∣∣32 ,+3

2

〉
= |000〉 ,∣∣∣∣32 ,+1

2

〉
=

1√
3

[|001〉+ |010〉+ |100〉] ,∣∣∣∣32 ,−1

2

〉
=

1√
3

[|110〉+ |101〉+ |011〉] ,∣∣∣∣32 ,−3

2

〉
= |111〉 , (6.79)

and we note that these states (also known as Dicke states) are always completely symmetric
superpositions of computational basis states with a given total number of 1s∣∣∣n

2
,m
〉
≡ |m〉 =

1√(
n

n
2
−m

) ∑
z:〈z|Jz |z〉=m

|z〉 . (6.80)

To compute the entanglement in such a Dicke state, we compute the reduced density matrix of
just one qubit, where from symmetry considerations it does not matter which we choose

ρi = Tr1...(i−1),(i+1)...n {|m〉 〈m|} =
1

2
[1 + n · σ] . (6.81)
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Figure 6.4: Entanglement entropy between a sin-
gle qubit and the others in the Dicke states |m〉
vs. m/n and for different n. For m = 0, it reaches
the maximum value ln 2 for all n.

The coefficients in the Bloch sphere representation can be computed from expectation values

nα = 〈m|σαi |m〉 =
2

n
〈m| Jα |m〉 , (6.82)

where we have again used the symmetry of the Dicke states. This implies

nx = ny = 0 , −1 ≤ nz =
2m

n
≤ +1 , ρi =

1

2

(
1 + 2m

n
0

0 1− 2m
n

)
, (6.83)

for which we can readily compute the von-Neumann entropy, see Fig. 6.4. It follows that the Dicke
states are highly entangled, in particular those with |m| � n/2. This however is just a statement
about the entanglement in the basis states that are convenient to treat this particular problem.

6.3.3 Entanglement of mixed states

Unfortunately however, the naive application of the entanglement entropy to mixed global states
leads to problems. Consider, for example, the two-qubit density matrix

ρAB =
1

2

|00〉+ |11〉√
2

〈00|+ 〈11|√
2

+
1

2

|00〉 − |11〉√
2

〈00| − 〈11|√
2

, (6.84)

which one could interpret as a statistical mixture of two (maximally entangled) Bell states. How-
ever, simple expansion also shows that

ρAB =
1

2
|00〉 〈00|+ 1

2
|11〉 〈11| , (6.85)

which is a mixture of two separable states that are not entangled at all. The naive application
of the entropy of entanglement recipe would yield the maximal entanglement of the Bell state
S(TrB {ρAB}) = S

(
1
2
|0〉 〈0|+ 1

2
|1〉 〈1|

)
= ln 2. To the contrary, to define an entanglement measure

for a mixed state, the following properties should be met [35]

� Separable states contain no entanglement. Such separable states can be written in the
form

ρAB =
∑
i

piρ
i
A ⊗ ρiB (6.86)
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with probabilities 0 ≤ pi ≤ 1 and
∑

i pi = 1 and where ρiA and ρiB are valid density matrices
(trace-normalized, hermitian, and positive) in subsystem A and B, respectively. The above
example would thereby not contain any entanglement.

� To the contrary, all non-separable states are entangled.

� The entanglement between two parties does not increase under local operations and classical
communication operations (LOCC operations). As a special case we note that entangle-
ment does not change at all under local unitary operations.

� There exist maximally entangled states, e.g. for two parties with d-dimensional subsystems
the state

|Ψmax〉 =
|1, 1〉+ . . .+ |d, d〉√

d
(6.87)

is maximally entangled. One example for this are the Bell states. Since one can prepare
essentially all other states by LOCC operations from the maximally entangled ones, the
maximally entangled states provide some reference to which one can compare.

A way to respect this would be to use the entanglement of formation

EF (ρ) = inf
{pi,|Ψi〉} : ρ=

∑
i pi|Ψi〉〈Ψi|

piS(TrB {|Ψi〉 〈Ψi|}) , (6.88)

which for the example above would yield EF (ρ) = 0. In general however, finding the infimum
decomposition of a density matrix is a hard problem.

6.3.4 Concurrence

For general mixed states of only two qubits, this problem has been solved [36]. The entanglement
of formation EF (ρ) for a mixed two-qubit density matrix ρ is given by

EF (ρ) = s

(
1 +

√
1− C2(ρ)

2

)
: s(x) = −x lnx− (1− x) ln(1− x) ,

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} , (6.89)

where the quantity C(ρ) is known as concurrence (and often used independently), the function
s(x) computes the von-Neumann entropy of a single-qubit density matrix with eigenvalues x and
1− x, and λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the sorted eigenvalues of the matrix

R =
√√

ρ [σy ⊗ σyρ∗σy ⊗ σy]
√
ρ , (6.90)

where ρ∗ denotes the complex conjugate density matrix.
One can see that these definitions remain sensible.

� You may see other definitions. For example, to compare with the entropy of formation where
the entropy is taken with log2, one has to replace ln→ log2. Likewise, instead of calculating
the eigenvalues of R, an equivalent representation asks to calculate the squareroots of the
(nevertheless positive) eigenvalues of the non-hermitian matrix R′2 = ρ[σy ⊗ σyρ∗σy ⊗ σy].
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� As with our discussion of fidelity, since ρ∗ is a valid density matrix and [σy ⊗ σyρ∗σy ⊗ σy] is
also valid (it is just a spin-flipped state of ρ∗), it leads to a valid density matrix, such that
what is under the root is positive definite.

� For a two-qubit pure state

|Ψ〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 : ρ = |Ψ〉 〈Ψ| = √ρ , (6.91)

this falls back to the entanglement entropy S(Tr2 {|Ψ〉 〈Ψ|}). Particularly, we get

R =
√
|Ψ〉 〈Ψ|σy ⊗ σy |Ψ∗〉 〈Ψ∗|σy ⊗ σy |Ψ〉 〈Ψ|

= |〈Ψ|σy ⊗ σy |Ψ∗〉| |Ψ〉 〈Ψ| , (6.92)

from which one can see that λ1 = |〈Ψ|σy ⊗ σy |Ψ∗〉| = 2|c∗01c
∗
10 − c∗00c

∗
11| whereas λ2 = λ3 =

λ4 = 0. The concurrence of a pure state is thereby given by

C(|Ψ〉 〈Ψ|) = 2|c∗01c
∗
10 − c∗00c

∗
11| . (6.93)

This can take values 0 ≤ C(|Ψ〉 〈Ψ|) ≤ 1, and if we compute the reduced state of a two-qubit
state

ρ1 =
1

2
[1 + n · σ] = Tr2 {|Ψ〉 〈Ψ|} , (6.94)

we can readily compute its eigenvalues λ± = 1
2
[1 ± |n|], and by explicitly computing nα =

Tr {σα1 |Ψ〉 〈Ψ|} = 〈Ψ|σα1 |Ψ〉 one finds

〈Ψ|σx1 |Ψ〉 = c00c
∗
10 + c01c

∗
11 + c10c

∗
00 + c11c

∗
01 ,

〈Ψ|σy1 |Ψ〉 = ic00c
∗
10 + ic01c

∗
11 − ic10c

∗
00 − ic11c

∗
01 ,

〈Ψ|σz1 |Ψ〉 = c00c
∗
00 + c01c

∗
01 − c10c

∗
10 − c11c

∗
11 ,

(6.95)

with which after some calculations one finds that

n · n = 1− C2(|Ψ〉 〈Ψ|) . (6.96)

This shows that the reduced state is mixed (witnessing entanglement in |Ψ〉) when the
concurrence is positive. The agreement however demonstrates that the above entanglement of
formation falls back to the entanglement entropy for pure two-qubit states, since in the above
entanglement of formation formula we can identify x = 1/2[1 + |n|] and 1−x = 1/2[1−|n|].

� For a product state ρAB = ρA⊗ ρB we get by inspection that the matrix R has four identical
eigenvalues λi = λ and hence C(ρA ⊗ ρB) = 0.

� The maximum concurrence C(ρ) = 1 is achieved for pure Bell states, and the entanglement

of formation is then ln 2. For example, we get for the pure Bell state C
(
|01〉+|10〉√

2

〈01|+〈10|√
2

)
= 1,

such that the entropy becomes ln 2 (or 1 if log2 is chosen).
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6.3.5 Examples

Bell states

Let us consider a mixture of Bell states

ρAB = p
|00〉+ |11〉√

2

〈00|+ 〈11|√
2

+ (1− p) |00〉 − |11〉√
2

〈00| − 〈11|√
2

(6.97)

with 0 ≤ p ≤ 1 parametrizing the mixture. Then, the eigenvalues of the matrix R are given by

λi ∈ {1− p, p, 0, 0} , (6.98)

such that the concurrence becomes

C(ρAB) = |1− 2p| , (6.99)

and the derived entanglement of formation

EF (ρAB) = −
1 + 2

√
p(1− p)
2

ln
1 + 2

√
p(1− p)
2

−
1− 2

√
p(1− p)
2

ln
1− 2

√
p(1− p)
2

(6.100)

becomes maximal when p = 0 or p = 1 (pure Bell state) and vanishes if and only if p = 1/2 (which
reproduces our previous example).

Ising model ground state

We can revisit the Ising model (5.59) ground state |Ψ0(s)〉 and from this derive the mixed state of
any two different qubits i 6= j

ρij = Trk6=i,j {|Ψ0(s)〉 〈Ψ0(s)|} . (6.101)

For this – in general mixed – density matrix, we can find the mutual information

I(ρij) = S(ρi) + S(ρj)− S(ρij) (6.102)

and via the concurrence C(ρij) also the entanglement of formation

EF (ρij) = S

(
1

2
[1 +

√
1− C2(ρij)σ

z]

)
(6.103)

between any two qubits on the Ising chain. One finds that whereas classical correlations quickly
build up for s > 0, the entanglement of formation between two qubits is only finite between next
neighbours and next-next-neighbours, see Fig. 6.5. For the Ising model, this can actually made
explicit analytically [37, 38]. In the figure, we also see that the mutual information is always larger
than the entanglement of formation. However, this need not generally be the case [39].
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Figure 6.5: Correlations between pairs of qubits
in the ground state of an Ising model (5.59) with
n = 18 spins. Whereas general (quantum and
classical) correlations as measured by the mu-
tual information (dashed) quickly build up with
the ferromagnetic interaction (s > 0), quan-
tum entanglement of formation (solid) only ex-
ists between neighbouring and next-neighbouring
qubits.

Completely symmetric spin states

For fully symmetric spin systems – such as e.g. the Dicke model describing the collective coupling
– the two-spin density matrix of arbitrary two qubits must be fully symmetric under exchange of
the qubits, which imposes some constraints on its matrix elements. In the computational basis for
two qubits {|00〉 , |01〉 , |10〉 , |11〉}, we can therefore give its matrix representation as

ρ12 =


v+ x∗+ x∗+ u∗

x+ w y x∗−
x+ y w x∗−
u x− x− v−

 , (6.104)

which has 7 parameters, and taking into account the trace condition we only have 6 instead of
15 possible parameters in the two-qubit density matrix. From this, we can compute the reduced
matrices ρ1 and ρ2, the mutual information I12 = S(ρ1) + S(ρ2) − S(ρ12) = 2S(ρ1) − S(ρ12) and
the concurrence. The parameters can be expressed by expectation values of Pauli matrices

v± = Tr

{
1

4
(1± 2σz1 + σz1σ

z
2) ρ12

}
,

x± = Tr

{
1

2

(
σ+

1 ± σ+
1 σ

z
2

)
ρ12

}
,

w = Tr

{
1

4
(1− σz1σz2) ρ12

}
,

y = Tr

{
1

4
(σx1σ

x
2 + σy1σ

y
2) ρ12

}
,

u = Tr

{
1

4
(σx1σ

x
2 − σ

y
1σ

y
2 + 2iσx1σ

y
2) ρ12

}
. (6.105)

The important point is now that for a fully symmetric system, these expectation values of arbitrary
two qubits (1 and 2 can correspond to any different labels) can be linked to the expectation values
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of large-spin operators [40]. For the relevant ones one gets

〈σα1 〉 =
2

n
〈Jα〉 ,

〈
σ+

1

〉
=

1

n

〈
J+
〉
,

〈σα1 σα2 〉 =
4 〈(Jα)2〉 − n
n(n− 1)

,

〈σx1σ
y
2〉 =

2 〈{Jx, Jy}〉
n(n− 1)

,

〈
σ+

1 σ
z
2

〉
=
〈{J+, Jz}〉
n(n− 1)

. (6.106)

Here, the first line becomes evident by inserting the definition of Jα or J+ in terms of Pauli
matrices and using that due to symmetry, all individual resulting terms must be identical. The
other terms also become evident by inserting the definitions of the large-spin operators, using that
〈
∑

i(σ
α
i )2〉 = 〈1n〉 = n and that in the product of large spin operators one gets n(n − 1) terms

where the Pauli matrices act on different spins, e.g.

Tr
{

(JαJβ + JβJα)ρsymm

}
=

1

4

∑
ij

Tr
{

(σαi σ
β
j + σβi σ

β
j )ρsymm

}
=
n

2
+

1

4

∑
i 6=j

Tr
{

(σαi σ
β
j + σβj σ

α
i )ρsymm

}
=
n

2
+

1

4
n(n− 1)Tr

{
(σα1 σ

β
2 + σβ2σ

α
1 )ρsymm

}
, (6.107)

where in the last line we have used that by symmetry they will all get the same expectation values.
From this, one finds that the density matrix of arbitrary two qubits of a fully symmetric system
– and thereby the concurrence between any two qubits chosen from that fully symmetric system
– can be linked to expectation values of large-spin operators. The concurrence between any two
qubits in the maximum angular momentum Dicke state has been calculated [40]

C (Tr3...n {|m〉 〈m|}) =
1

2n(n− 1)

[
n2 − 4m2 −

√
(n2 − 4m2)[(n− 2)2 − 4m2]

]
, (6.108)

from which we can see that the concurrence (and hence the entanglement) vanishes for m =
±n/2. Interestingly, the states with m = −n/2 + 1 and m = +n/2 − 1 are the ones with the
highest concurrence Cmax = 2/n (and hence largest pairwise entanglement), and not the ones with
m ≈ 0 (which have the largest qubit-remainder entanglement). The derived maximum pairwise
entanglement for these states Emax = (1 + 2 lnn)/n2 + O ((lnn)/n4) is significantly smaller than
the qubit-remainder entanglement depicted in Fig. 6.4. Furthermore, for n = 2 and m = 0 the
concurrence reaches the maximum possible value C → 1, such that the derived entanglement of
formation becomes maximal. However, the corresponding Dicke state

|1, 0〉 =
1√
2

[|01〉+ |10〉] (6.109)

is just one of the Bell states, such that this outcome is to be expected. For large n, the pairwise
entanglement in the Dicke states, see Fig. 6.6 is significantly smaller than the entanglement between
a single qubit and the rest.
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two different qubits when the atomic cloud is
purely prepared in one of the Dicke states |m〉
vs. m/n and for different n. For m = −n/2 + 1
and m = +n/2−1, it reaches its maximum value
for all n. The pairwise entanglement is thus for
n > 2 significantly smaller than the entanglement
between a single qubit and the rest depicted in
Fig. 6.4.

Superradiant decay

For systems that are fully symmetric under particle exchange, the two-qubit density matrix of
any two qubits (6.104) can be fully expressed by expectation values of large spin operators. From
this mixed reduced density matrix we can get the concurrence and from the concurrence the
entanglement of formation. The expectation value of large-spin operators can be obtained by
solving the master equation

ρ̇S = −i

[
ΩJz +

σ(Ω)

2i
J+J− +

σ(Ω)

2i
J−J+, ρS

]
+ J(Ω)[1 + nB(Ω)]

[
J−ρSJ

+ − 1

2

{
J+J−, ρS

}]
+ J(Ω)nB(Ω)

[
J+ρSJ

− − 1

2

{
J−J+, ρS

}]
,

(6.110)

where Ω is the splitting of an individual atom, nB(Ω) = [eβΩ− 1]−1 and σ(±Ω) denote Lamb-shift
terms. We parametrize the spectral density as

J(ω) = Γ
4ωω̄δ2

[(ω − ω̄)2 + δ2][(ω + ω̄)2 + δ2]
, (6.111)

which is an odd function of ω and for δ � ω̄ has a peak of height Γ at position ω̄ with a width
δ. For such a spectral density an explicit analytic calculation of the Lamb-shift terms in the
zero-temperature limit is possible

σ(ω) =
i

π
P
∫
J(ω′)[1 + nB(ω′)]

ω − ω′
dω′ → i

π
P
∫ ∞

0

J(ω′)

ω − ω′
dω′ , (6.112)

such that we can numerically solve the full master equation. However, if initially no coherences in
the Dicke basis are present, the density matrix can at all times be written as a statistical mixture
of Dicke states

ρS(t) =
∑
m

Pm(t) |m〉 〈m| , (6.113)
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Figure 6.7: Superradiant decay of a cloud of n
two-level systems according to Eq. (6.110) vs. di-
mensionless time for zero temperature. The col-
lective effect leads to a quadratic speedup of re-
laxation, which in the radiated energy current
(inset) shows up as a peak of the radiation in-
tensity with a height scaling as n2. Parameters:
J(Ω) = Γ. 0 1 2 3
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where the evolution of the probabilities Pm(t) is governed by a rate equation

Ṗm = 〈m| ρ̇S |m〉

= J(Ω)[1 + nB(Ω)]
[n

2

(n
2

+ 1
)
−m(m+ 1)

]
Pm+1 + J(Ω)nB(Ω)

[n
2

(n
2

+ 1
)
−m(m− 1)

]
Pm−1

− J(Ω)[1 + nB(Ω)]
[n

2

(n
2

+ 1
)
−m(m− 1)

]
Pm − J(Ω)nB(Ω)

[n
2

(n
2

+ 1
)
−m(m+ 1)

]
Pm ,

(6.114)

which is inert to the Lamb-shift terms.
At small temperatures or large Ω such that nB(Ω)→ 0, the evolution of 〈Jz〉 for example shows

drastic collective effects for large n [41, 34], compare e.g. Fig. 6.7. In contrast to the decay of a
single atom (or N single atoms decaying independently), the collective decay is significantly faster,
formally explained by the scaling of the coefficients in the rate equation (6.114).

From the full master equation (6.110) however we may also obtain other large spin expectation
values. From the solution, we can with the results of the previous section deduce the concurrence
and entanglement of formation and also the mutual information between two qubits during the
superradiant decay, which is depicted in fig. 6.8. As one would expect, the collective interaction
with the reservoir strongly correlates any pair of atoms during the superradiant decay. This
correlation could not be there if the atoms would couple to the reservoir independently, since then
the total density matrix would always be a tensor product of the individual ones.

From the finite concurrence we have deduced before for the Dicke states, one might have
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expected that also a finite two-atom entanglement of formation may be generated in the course
of the evolution. However, this is not the case, as is exemplified in the inset. When initialized in
the state |n/2, n/2〉, the concurrence (and the derived entanglement of formation will remain zero)
throughout the evolution. Also when initialized in other Dicke states, the two-atom entanglement
of formation quickly decays. Going back to the original microscopic model (6.77), this does make
some sense: The coupling between the single atoms and the modes of the electromagnetic field
cannot generate entanglement between the atoms if the electromagnetic field is kept unperturbed
(as we assume in the derivation of the master equation by keeping the reservoir in a fixed state).
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Chapter 7

Quantum Thermodynamics

7.1 Nonequilibrium thermodynamics

Interestingly, we can use some of the information measures introduced to connect the globally
unitary evolution of quantum systems that generates correlations between system and reservoirs
to the second law of thermodynamics – without resorting to weak-coupling assumptions [42]. We
start from a microscopic setting where both system and interaction Hamiltonians are allowed to
be time-dependent

H(t) = HS(t) +
∑
ν

H
(ν)
I (t) +

∑
ν

H
(ν)
B , (7.1)

whereas the reservoir Hamiltonians H
(ν)
B are constant. The index ν labels different reservoirs, thus

allowing for a non-equilibrium context.
The only assumption is that initially, we assume that the system and reservoirs are uncorrelated,

and that the reservoirs are initially at (grand-canonical) thermal equilibrium states

ρ(0) = ρS(0)
⊗
ν

ρ̄ν , ρ̄ν =
e−βν(H

(ν)
B −µνN

(ν)
B )

Zν
, (7.2)

where Zν and N
(ν)
B denote partition function and reservoir particle number of reservoir ν, respec-

tively, and βν and µν are the inverse temperature and chemical potential. We will only assume
this at the initial time, but not for t > 0. In fact, the treatment is so general that the reservoirs
can be arbitrarily small, they can even consist of single qubits and they can move arbitrarily far
away from any product state during the evolution. The only formal requirement is that they are
initially represented as a thermal equilibrium state, which can be decomposed as a mixture of
reservoir energy eigenstates.

Since the evolution of the total universe is unitary, its total von-Neumann entropy is a constant
of motion

d

dt
Σ(t) = − d

dt
Tr {ρ(t) ln ρ(t)} = −Tr

{
ρ̇ ln ρ+ ρ

d

dt
ln ρ

}
= 0 . (7.3)

While it is obvious from the von-Neumann equation that the first term on the r.h.s. above vanishes

Tr {ρ̇ ln ρ} = −iTr {[Hρ− ρH] ln ρ} = −iTr {H[ρ ln(ρ)− ln(ρ)ρ]} = 0 , (7.4)

115
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the second term should be treated a bit more carefully as the density matrix need not commute
with its derivative. Nevertheless, since ρ is always a valid density matrix, there exists a unitary
transformation V (t) that diagonalizes it ρ(t) = V (t)ρD(t)V †(t), where ρD(t) is a diagonal matrix.
From this, we find that also the second term vanishes

Tr

{
ρ
d

dt
ln ρ

}
= Tr

{
V (t)ρD(t)V †(t)

d

dt
ln[V (t)ρD(t)V †(t)]

}
= Tr

{
V (t)ρD(t)V †(t)

d

dt
V (t)[ln ρD(t)]V †(t)

}
= Tr

{
ρD(t)V †(t)V̇ [ln ρD(t)] + ρD(t)ρ−1

D (t)ρ̇D + V (t)ρD(t)[ln ρD(t)]V̇ †
}

= Tr
{

[ln ρD(t)]ρD(t)V †V̇ + ρD(t)[ln ρD(t)]V̇ †V
}

= Tr
{
ρD(t)[ln ρD(t)][V̇ †V + V †V̇ ]

}
= 0 . (7.5)

This means that the entropy of the universe remains constant and is given by the sum of the initial
entropies

Σ(t) = −Tr {ρ(t) ln ρ(t)} = −Tr {ρ(0) ln ρ(0)} = −TrS {ρS(0) ln ρS(0)} −
∑
ν

Trν {ρ̄ν ln ρ̄ν} ,

(7.6)

where we have used that for an initial product state the von-Neumann entropy is additive in
system and reservoir contributions. Now, we introduce the exact (i.e., without any master equation
approximation) local reduced density matrices of system and reservoirs via

ρS(t) = Tr{ν} {ρ(t)} , ρν(t) = TrS,ν′ 6=ν {ρ(t)} . (7.7)

When we look at the entropy of the system

S(t) ≡ −TrS {ρS(t) ln ρS(t)} , (7.8)

we see that its initial value is related to the full entropy of the universe via Σ(0) = Σ(t) as

S(0) = Σ(t) +
∑
ν

Trν {ρ̄ν ln ρ̄ν} . (7.9)

Its change with respect to the initial value can therefore be written as

∆S(t) ≡ S(t)− S(0)

= −TrS {ρS(t) ln ρS(t)}+ Tr {ρ(t) ln ρ(t)} −
∑
ν

Trν {ρ̄ν ln ρ̄ν}

= −Tr {ρ(t) ln ρS(t)}+ Tr {ρ(t) ln ρ(t)} −
∑
ν

Trν {ρ̄ν ln ρ̄ν}

= −Tr

{
ρ(t) ln

[
ρS(t)

⊗
ν

ρ̄ν

]}
+ Tr {ρ(t) ln ρ(t)}+

∑
ν

Trν {[ρν(t)− ρ̄ν ] ln ρ̄ν}

= DQRE

(
ρ(t), ρS(t)

⊗
ν

ρ̄ν

)
−
∑
ν

βνTrν

{
[ρν(t)− ρ̄ν ]

[
H

(ν)
B − µνN

(ν)
B

]}
, (7.10)
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where the first term is nothing but the distance – expressed in terms of the quantum relative
entropy, compare Eq. (6.45) – between the actual exact density matrix of the full universe ρ(t)
and the product state of the exact reduced system density matrix and the initial reservoir states.
The first term is thus positive and vanishes if system and bath are not correlated at all and when
the baths remain at their initial states (e.g. decoupled evolution of system and reservoirs). Since
it has the standard form , it will be denoted as the entropy production

∆iS(t) = DQRE

(
ρ(t), ρS(t)

⊗
ν

ρ̄ν

)
≥ 0 . (7.11)

We see that the entropy production is large when system and reservoir become strongly correlated
or also when the reservoirs are driven far away from their initial states. For finite-size reservoirs,
recurrences can occur, and the entropy production can behave periodically. We therefore note that
its production rate need not be positive. In particular, for periodically evolving universes we must
observe times where d

dt
∆iS(t) < 0. Note that also for just a single reservoir, the entropy production

is not the mutual information between system and reservoir, because ρ̄ν is not the exact reduced
density matrix of the reservoir.

By contrast, the second term in (7.10) can be related to the heat leaving the reservoirs during
[0, t]

∆eS(t) = −
∑
ν

βνTrν

{
[ρν(t)− ρ̄ν ]

[
H

(ν)
B − µνN

(ν)
B

]}
=
∑
ν

βν∆Qν(t) , (7.12)

where the the heat flowing out of the reservoir ν is defined as

∆Qν(t) =
〈
H

(ν)
B − µνN

(ν)
B

〉
0
−
〈
H

(ν)
B − µνN

(ν)
B

〉
t
. (7.13)

Summarizing, the second law can be written as ∆S(t) = ∆iS(t) +
∑

ν βν∆Qν(t) or solving for
the entropy production, the second law of thermodynamics reads

∆iS(t) = ∆S(t)−
∑
ν

βν∆Qν(t) ≥ 0 . (7.14)

� The first term on the r.h.s. is the entropy change of the system only, whereas the other terms
correspond to the entropy changes of an initial equilibrium reservoir ∆Sν = βν∆Qν .

� By performing the operation limt→∞
1
t

[. . .] on Eq. (7.14), we find for a finite-sized system
and a constant global Hamiltonian

−
∑
ν

βν lim
t→∞

〈Hν − µνNν〉0 − 〈Hν − µνNν〉t
t

= lim
t→∞

∆iS(t)

t
≥ 0 . (7.15)

Now, if the currents leaving the reservoirs assume steady state values in the long-time limit
(it is an assumption that these limits exist)

lim
t→∞

d

dt
〈Hν〉t ≡ −Ī

ν
E , lim

t→∞

d

dt
〈Nν〉t ≡ −Ī

ν
M , (7.16)
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we can invoke the rule of l’Hospital to evaluate the limit, yielding

−
∑
ν

βν
(
ĪνE − µν ĪνM

)
≥ 0 . (7.17)

This shows that under the assumption of stationary currents, the conventional form of the
second law at steady state also holds beyond weak coupling and also if interactions are present
inside the system, thus confirming and generalizing considerations based on the Landauer
formula [43] (compare lecture on quantum transport).

� In general (for t > 0) the total entropy is not just the sum of system entropy (7.8) and
reservoir entropies

Sν(t) = −Tr {ρν(t) ln ρν(t)} . (7.18)

Instead, it is modified by the correlations between system and reservoir (e.g. entanglement).
The correlation entropy is therefore defined as

Sc(t) = Σ(t)− S(t)−
∑
ν

Sν(t) . (7.19)

For a single reservoir only, the correlation entropy corresponds to the negative mutual infor-
mation (6.52) between system and reservoir, such that it generalizes this concept to multi-
partite systems. Due to the assumption of an initial product state we have Sc(0) = 0, and
therefore with Σ(t) = Σ(0) the relation

Sc(t) = Sc(t)− Sc(0) = −∆S(t)−
∑
ν

∆Sν(t) (7.20)

In analogy to the mutual information, we can also express the correlation entropy by a
distance

DQRE

(
ρ(t), ρS(t)

⊗
ν

ρν(t)

)
= Tr {ρ(t) ln ρ(t)} − Tr

{
ρ(t)

[
ln ρS(t) +

∑
ν

ln ρν(t)

]}
= −Σ(t)− TrS {ρS(t) ln ρS(t)} −

∑
ν

Trν {ρν(t) ln ρν(t)}

= −Σ(t) + S(t) +
∑
ν

Sν(t) = −Sc(t) ≥ 0 . (7.21)

The correlation entropy is thereby always negative. Now, one can write the sum of entropy
production and correlation entropy as

∆iS(t) + Sc(t) = DQRE

(
ρ(t), ρS(t)

⊗
ν

ρ̄ν

)
−DQRE

(
ρ(t), ρS(t)

⊗
ν

ρν(t)

)

= −Tr

{
ρ(t) ln[ρS(t)

⊗
ν

ρ̄ν ]

}
+ Tr

{
ρ(t) ln[ρS(t)

⊗
ν

ρν(t)]

}
=
∑
ν

[−Trν {ρν(t) ln ρ̄ν}+ Trν {ρν(t) ln ρν(t)}] =
∑
ν

DQRE(ρν(t), ρ̄ν) ≥ 0

(7.22)
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as a distance quantifying how much the reservoirs are driven away from their initial states.
Since this is always positive, we conclude that the entropy production is always larger or
equal than the negative correlation entropy

∆iS(t) ≥ −Sc(t) ≥ 0 . (7.23)

� We can solve Eq. (7.10) for the entropy production ∆iS(t) = S(t)−S(0)−
∑

ν βν∆Qν(t) ≥ 0
and perform a time derivative on both sides

d

dt
∆iS(t) = Ṡ(t)−

∑
ν

βν∆Q̇ν(t) , (7.24)

where Q̇ν(t) now denotes the heat current entering the system from reservoir ν. In general,
this quantity d

dt
∆iS(t) need not be positive. However, for a master equation approach where

all reservoirs enter additively

L = L0 +
∑
ν

Lν (7.25)

and individually thermalize the system to its reservoir-specific local equilibrium state

Lν ρ̄νS = Lνe−βν(HS−µνNS)/Zν = 0 , (7.26)

we can write Spohn’s inequality as

−
∑
ν

Tr {(Lνρ(t))[ln ρ(t)− ln ρ̄νS]} = Ṡ(t)−
∑
ν

βνTr {(Lνρ(t))[HS − µνNS]}

= Ṡ(t)−
∑
ν

βν [I
(ν)
E − µνI

(ν)
M ] ≥ 0 , (7.27)

and we see that the r.h.s. then just yields the same with energy currents I
(ν)
E and matter

currents I
(ν)
M that enter the system from reservoir ν then just tells us that for such descriptions

also the entropy production rate must be positive.

7.1.1 Example: Two coupled qubits

To begin with something simple, we can test the above relations with just two qubits

H =
ω1

2
σz1 +

ω2

2
σz2 + λσx1σ

x
2 , (7.28)

where λ parametrizes the coupling strength between them. The first qubit can be considered as
the system, whereas the second mimics the ”reservoir”. We consider the initial state

ρ(0) = ρ0
1 ⊗ ρ̄2 = ρ0

1 ⊗
e−β2ω2/2σz

Z2

, (7.29)

where the initial state of the system ρ0
1 is arbitrary. Then, we compute the exact solution via

ρ(t) = e−iHtρ(0)e+iHt . (7.30)
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Figure 7.1: Plot of the correlation measures
entropy production (black) from (7.32) and
negative correlation entropy/mutual information
(red) from (7.33), and entanglement of forma-
tion (blue) from (6.89) for a universe composed of
two interacting qubits. The entropy production
(black) is always greater than the mutual infor-
mation (red), and both quantities are positive.
In times where the mutual information vanishes
with finite entropy production, the global density
matrix is of product form, but the bath is driven
away from its initial equilibrium state. For λ →
0, all quantities vanish. Parameters: ω1 = ω2 =
ω, λ = 0.1ω, ρ0

1 = (1− 10−3) |0〉 〈0|+ 10−3 |1〉 〈1|,
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From this, we can compute the reduced density matrices

ρ1(t) = Tr2 {ρ(t)} , ρ2(t) = Tr1 {ρ(t)} . (7.31)

and the entropy production

∆iS(t) = DQRE(ρ(t), ρ1(t)⊗ ρ̄2) (7.32)

and the mutual information (negative correlation entropy)

I12(t) = −Sc(t) = DQRE(ρ(t), ρ1(t)⊗ ρ2(t)) . (7.33)

The result is shown in Fig. 7.1 and confirms relation (7.23).

7.1.2 Numeric example: Ising model

If we consider the Ising model (5.59), we can simply isolate one spin and call it system, and the
remaining open chain is then called reservoir. Thus, we consider the Hamiltonian of the universe
to be composed as H = HS +HB +HI with

HS = Ω(1− s)σx1 , HB = Ω(1− s)
n∑
i=2

σxi + Ωs
n−1∑
i=2

σzi σ
z
i+1 , HI = Ωs [σz1σ

z
2 + σznσ

z
1] .

(7.34)

In this representation, the coupling between system and reservoir is parametrized by s and is not
independent of the reservoir-internal coupling. We consider the product initial state which we can
numerically propagate

ρ0 = ρ0
S ⊗ ρ0

B : ρ0
B =

e−βHB

ZB
=⇒ ρ(t) = e−i[HS+HB+HI ]tρ0e

+i[HS+HB+HI ]t . (7.35)
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Figure 7.2: Plot of the entropy production vs.
dimensionless time for Ising chains of different
lengths n, regarding a single qubit as system and
the rest of the ring as reservoir. With increas-
ing chain length, the intermediate plateau is as-
sumed for longer times. Dashed lines denote the
mutual information. Other parameters βΩ = 1.0,
ρ0
S = 1

2
[1 + σx], s = 0.5.

We may numerically trace the evolution of the entropy production

DQRE(ρ(t), ρS(t)⊗ ρ0
B) = Tr {ρ(t) ln ρ(t)} − Tr

{
ρ(t) ln ρS(t)⊗ ρ0

B

}
= Tr {ρ(t) ln ρ(t)} − Tr {ρ(t)[ln ρS(t)]⊗ 1} − Tr

{
ρ(t)1⊗ [ln ρ0

B]
}

= S(ρS(t))− S(ρ(t)) + β 〈HB〉t + lnZB , (7.36)

which can thereby be related to a time-dependent expectation value of the reservoir energy and
the entropies of system and universe, which can be determined by computing the eigenvalues of
the respective density matrices. Altogether, one finds some highly oscillatory behaviour, which
however develops into a plateau when the chain becomes longer (the reservoir becomes larger), see
Fig. 7.2.

7.1.3 Example: Transient entropy production for pure-dephasing

We had solved the pure dephasing version of the spin-boson model

H = Ω/2σz + σz ⊗
∑
k

(
hkbk + h∗kb

†
k

)
+
∑
k

ωkb
†
kbk . (7.37)

before. For the system, we would in the eigenbasis of σz simply obtain stationary populations and
decaying coherences

|ρ01|(t) = e−f(t)
∣∣ρ0

01

∣∣ , f(t) =
4

π

∫ ∞
0

J(ω)
sin2(ωt/2)

ω2
coth

(
βω

2

)
dω , (7.38)

compare Eq. (4.11). For the pure-dephasing model it is actually much simpler to compute
the change of the reservoir energy by going to the Heisenberg picture (marked with a Õ(t) =
e+iHtOe−iHt). Performing a time-derivative, operators that are constant in the Schrödinger picture
obey

d

dt
Õ(t) = ie+iHt [H,O] e−iHt , (7.39)

and by explicitly computing all the commutators one can see that the Heisenberg operators will
obey a system of coupled differential equations (which may be infinite-dimensional). Fortunately,
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for the pure-dephasing model, these operator equations do already close

d

dt
σ̃z = 0 ,

d

dt
b̃k = −iωkb̃k − ih∗kσ̃

z ,

d

dt
b̃†k = +iωkb̃

†
k + ihkσ̃

z . (7.40)

They are therefore solved by

σ̃z(t) = σz ,

b̃k(t) = bke
−iωkt +

h∗k
ωk
σz
(
e−iωkt − 1

)
,

b̃†k(t) = b†ke
+iωkt +

hk
ωk
σz
(
e+iωkt − 1

)
, (7.41)

which also respects the initial condition b̃k(0) = bk. This already tells us that the total expectation
value of the reservoir energy becomes

〈E〉t =
∑
k

ωkTr
{(

e+iωktb†k +
hk
ωk

(
e+iωkt − 1

)
σz
)
×

×
(
e−iωktbk +

h∗k
ωk

(
e−iωkt − 1

)
σz
)
ρ0
S ⊗ ρB

}
= 〈E〉0 +

∑
k

|hk|2

ωk
[2− 2 cos(ωkt)] = 〈E〉0 +

∫ ∞
0

J(ω)

2πω
[2− 2 cos(ωt)]

= 〈E〉0 +
2

π

∫ ∞
0

J(ω)

ω
sin2

(
ωt

2

)
dω , (7.42)

where

〈E〉0 =
∑
k

ωk

〈
b†kbk

〉
th

=
∑
k

ωk

∞∑
nk=0

nke
−β(ωk−µ)nk/Zk , (7.43)

where convergence requires that ωk−µ > 0. Therefore, the difference to the initial reservoir energy
is then given by

∆E(t) =
2

π

∫ ∞
0

J(ω)

ω
sin2

(
ωt

2

)
dω , (7.44)

which is always positive. In complete analogy one can compute the change of the reservoir particle
number

∆N(t) =
2

π

∫ ∞
0

J(ω)

ω2
sin2

(
ωt

2

)
dω . (7.45)

For a single reservoir, Eq. (7.10) becomes

∆iS(t) = S(t)− S(0) + β [∆E(t)− µ∆N(t)] . (7.46)
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Using that ∆E(t) > 0, ∆N(t) > 0, and for bosons µ ≤ 0 (actually, we would normally drop it
for photons), we can already conclude that the second term that describes the reservoir entropy
production is separately positive. Also, if we would let t → ∞, the final density matrix of the
system would be diagonal, such that we can conclude that S(∞) − S(0) > 0, but does this hold
for all times? Parametrizing the density matrix by the occupation ρ11 and the time-dependent
coherence ρ01(t), its von-Neumann entropy becomes

S(t) = −1

2

[
1−

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
ln

1

2

[
1−

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
−1

2

[
1 +

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
ln

1

2

[
1 +

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
. (7.47)

Using that as time increases, the coherences become smaller |ρ01(t)|2 = e−2f(t)|ρ0
01|

2
, we find (in

the regime 0 ≤ (1− 2ρ11)2 + 4|ρ01(t)|2 ≤ 1 that is allowed for a valid density matrix), that S(t) =

−(1−x)/2 ln(1−x)/2−(1+x)/2 ln(1+x)/2 is a decaying function with
√

(1− 2ρ11)2 + 4|ρ01(t)|2 =

x ∈ [0, 1]. Therefore, we conclude S(t) > S(0), and consequently

∆iS(t) = S(t)− S(0) + β [∆E(t)− µ∆N(t)] ≥ 0 , (7.48)

confirming the validity of the second law for the pure-dephasing model. Here, the first term gives
the entropy increase in the system. The time derivative of these terms may become negative
(similar to the discussion of the trace distance).

7.1.4 Use of Spohn’s inequality

In the master equation limit, the entropy production is a monotonously growing function in time,
which is expressed by Spohn’s inequality even in a non-equilibrium environment (7.27)

Ṡ(t)−
∑
ν

βν [I
(ν)
E (t)− µνI(ν)

M (t)] ≥ 0 (7.49)

labeled by the different reservoirs ν, from which energy and matter currents may enter the system

I
(ν)
E (t) ≡ Tr {HS[LνρS(t)]} , I

(ν)
M (t) ≡ Tr {NS[LνρS(t)]} . (7.50)

In the long-term limit, for a finite-size system, the system will reach a stationary state

lim
t→∞

ρS(t) = ρ̄S , (7.51)

and the von-Neumann entropy of the system will saturate

lim
t→∞

Ṡ(t) = 0 . (7.52)

In this limit, also the currents will then assume stationary limits

lim
t→∞

I
(ν)
E (t) = Ī

(ν)
E , lim

t→∞
I

(ν)
M (t) = Ī

(ν)
M , (7.53)

and Spohn’s inequality then reads

−
∑
ν

βν [Ī
(ν)
E − µν Ī

(ν)
M ] ≥ 0 . (7.54)
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Formally, the same inequality has to be satisfied whenever stationary currents exist and the system
entropy saturates, compare Eq. (7.17). The difference however is then that in the master equation
treatment currents are defined phenomenologically from the system perspective (e.g. IE(t) =
Tr {HS(LνρS(t))}), whereas in the full treatment the currents can be defined microscopically (e.g.
IE(t) = −Tr {HBρ(t)}).

This has been the basis for the analysis of many heat engines operating at steady state [44, 45].

� For a single reservoir described by inverse temperature β and chemical potential µ we first
note that all stationary currents must vanish since we discuss master equations where then
Le−β[HS−µNS ]/ZS = 0. The same holds for many different reservoirs that are at the same
equilibrium state βν = β and µν = µ.

� For just two reservoirs ν ∈ {L,R}, the energy currents and matter currents at steady state
must cancel

ĪE ≡ Ī
(L)
E = −Ī(R)

E , ĪM ≡ Ī
(L)
M = −Ī(R)

M . (7.55)

With this, the second law inequality (7.17) becomes

−βL(ĪE − µLĪM) + βR(ĪE − µRĪM) = (βR − βL)ĪE + (βLµL − βRµR)ĪM ≥ 0 . (7.56)

– For equal temperatures βL = βR = β, this just leads to the inequality (µL−µR)ĪM ≥ 0,
which states that the matter current going through the system must be directed from
high chemical potential to low chemical potential.

– For equal chemical potentials µL = µR = µ, this yields (βR− βL)(ĪE −µĪM) ≥ 0, which
states that the heat current going through the system from left to right reservoirs always
goes from hot (small βν) to cold (large βν) – the Clausius formulation of the second law.

– Without loss of generality we assume µL < µR and βL < βR (i.e., the left reservoir is
hotter than the right one). Then, it is possible to generate chemical work (in case of
electrons electric power) by utilizing heat from the hot reservoir. The efficiency of this
generator is then given by the ratio of the generated electric power (or chemical work
rate) P = −ĪM(µL − µR) divided by the heat current entering the system from the hot
reservoir

η =
−ĪM(µL − µR)

ĪE − µLĪM
=

−(βR − βL)(µL − µR)ĪM
(βR − βL)ĪE − (βR − βL)µLĪM

=
−(βR − βL)(µL − µR)ĪM

(βR − βL)ĪE + (µLβL − µRβR)ĪM − (µLβL − µRβR)ĪM − (βR − βL)µLĪM

≤ −(βR − βL)(µL − µR)ĪM
−(µLβL − µRβR)ĪM − (βR − βL)µLĪM

=
(βR − βL)(µL − µR)

(µLβL − µRβR) + (βR − βL)µL

= 1− βL
βR

= 1− TR
TL

= 1− Tcold

Thot

= ηCarnot . (7.57)

The efficiency of such a generator is bounded by Carnot efficiency, irrespective of the
microscopic details.

� For a system that is coupled via three terminals to different reservoirs characterized only by
a temperature

βw < βh < βc , (7.58)
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we only have to satisfy energy conservation

Ī
(w)
E + Ī

(h)
E + Ī

(c)
E = 0 . (7.59)

The second law

βw[Ī
(h)
E + Ī

(c)
E ]− βhĪ(h)

E − βcĪ
(c)
E ≥ 0 (7.60)

then allows to use heat from the (hottest) work reservoir to cool the coldest reservoir, i.e.,
to achieve

Ī
(c)
E > 0 . (7.61)

The coefficient of performance for this process is then also upper-bounded by a corre-
sponding Carnot value. One can see this by considering the infinite temperature limit for the

work reservoir βw → 0, from which we get −βhĪ(h)
E − βcĪ

(c)
E ≥ 0 or alternatively − Ī

(h)
E

Ī
(c)
E

≥ βc
βh

.

This then implies

COPcooling =
Ī

(c)
E

Ī
(w)
E

=
Ī

(c)
E

−Ī(h)
E − Ī

(c)
E

=
1

− Ī
(h)
E

Ī
(c)
E

− 1

≤ 1
βc
βh
− 1

=
Tc

Th − Tc
, (7.62)

which is the well-known classical limit.

7.2 Quantum Otto cycle

Thermodynamic cycles were useful to separate heat and work contributions clearly from each other.
Some classical cycles can be straightforwardly transferred into the quantum domain. During some
strokes of such a thermodynamic cycle, the working fluid of a heat engine could be subjected to a
constant Hamiltonian and coupled to a single reservoir. In these strokes, any energetic change can
be interpreted as heat, and the quantum system is evolving towards thermal equilibrium with its
coupled reservoir. In other strokes, the system is decoupled from any reservoir and only subject
to a time-dependent Hamiltonian. In such strokes, any energetic change of the system can be seen
as work. If the reservoirs that we couple to are kept at different temperature, one may construct
cycles like in the classical limit.

The ideal Otto cycle consists of four strokes

A→B A parameter in the classical system is varied such that no heat is exchanged with the reservoir
(this is also called adiabatic). Quantum-mechanically, this would transfer to the solution of a
time-dependent von-Neumann equation, which however is not necessarily quantum adiabatic
if the driving of the Hamiltonian is fast.

B→C The system is coupled to a hot reservoir while keeping its internal parameters constant until
it has equilibrated with the reservoir. Quantum-mechanically, this could be modeled by the
evolution under a thermalizing Lindblad equation.
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C→D The parameters are varied back while the system is decoupled from any reservoir, such that
formally this step is similar to the first one.

D→A The system is coupled to a cold reservoir, such that the formal description is similar to the
second step.

Since we have model equations for every step of the cycle, it is straightforward to transfer the Otto
cycle into the quantum domain and to take the final density matrix after every stroke as the initial
one to the next stroke.

The simplest example for this is a harmonic oscillator with a time-dependent frequency

H(t) =
p2

2m
+

1

2
mω2(t)x2 , (7.63)

where x and p are the usual position and momentum operators obeying [x, p] = i (recall ~ = 1).
Now, the usual transformation to creation and annihilation operators becomes time-dependent

x =

√
1

2mω(t)
(a†(t) + a(t)) , p = i

√
mω(t)

2
(a†(t)− a(t)) , (7.64)

but still allows to represent the Hamiltonian by ladder operators

H(t) = ω(t)
[
a†(t)a(t) + 1/2

]
. (7.65)

Here it is important to realize that the Hamilton-Operator will not commute with itself at different
times

[H(t), H(t′)] 6= 0 , (7.66)

since the annihilation and creation operators

a(t) =

√
mω(t)

2
x+ i

1√
2mω(t)

p , a†(t) =

√
mω(t)

2
x− i

1√
2mω(t)

p (7.67)

will at different times not obey the usual commutation relations

[a(t), a†(t′)] =
1

2

[√
ω(t)

ω(t′)
+

√
ω(t′)

ω(t)

]
. (7.68)

When ω(t) = ω(t′), this falls back to the known commutation relations.

7.2.1 Modeling of closed (unitary) strokes

While the system is decoupled from the reservoirs, we change the parameter of oscillator frequency,
leading to the time-dependent von-Neumann equation

ρ̇ = −i [H(t), ρ] . (7.69)

Formally, this is solved by

ρ(t) = U(t)ρ(0)U †(t) , (7.70)
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with time evolution operatur U(t) defined by

U̇ = −iH(t)U(t) . (7.71)

In general, it will have to be obtained numerically. If the evolution of the frequency however is
very slow, we can use the quantum adiabatic approximation from Sec. 5.1. It states that density
operator which is initially diagonal in the initial energy eigebasis (because it was thermalized with
a reservoir) remains diagonal. Specific for the oscillator, the initial energy eigenbasis would be
given by the initial Fock states a†(0)a(0) |n(0)〉 = n |n(0)〉, and an initially diagonal state would
be given by

ρ(0) =
∑
n

p0
n |n(0)〉 〈n(0)| : p0

n = e−βω(n+1)(eβω − 1) . (7.72)

When we apply the adiabatically approximated time evolution operator Uad(t) from Eq. (5.13) we
obtain a state that is diagonal in the final Fock states

ρ(t) =
∑
n

p0
n |n(t)〉 〈n(t)| , (7.73)

which are defined by a†(t)a(t) |n(t)〉 = n |n(t)〉. The net effect is that although |n(t)〉 6= |n(0)〉, the
probabilities for these states do not change.

7.2.2 Modeling of open (dissipative) strokes

While coupled to the reservoir, we leave the parameter ω constant and model the dynamics of the
system with a Lindblad equation

ρ̇ = −i [H, ρ(t)] + Γ[1 + nB(ω)]

[
aρa† − 1

2
a†aρ− 1

2
ρa†a

]
+ ΓnB(ω)

[
a†ρa− 1

2
aa†ρ− 1

2
ρaa†

]
. (7.74)

Here, Γ is a coupling strength to the reservoir and

nB(ω) =
1

eβω − 1
(7.75)

is the Bose distribution at inverse reservoir temperature β. For H = ω(a†a + 1/2) one can now
show that the stationary state of this equation is the thermalized one

ρ̄ =
e−βH

Tr {e−βH}
. (7.76)

If one considers the dynamics of populations 〈n| ρ |n〉 ≡ ρnn one finds that they decouple from the
coherences and correspond to a rate equation system

ρ̇nn = Γ[1 + nB(ω)] [(n+ 1)ρn+1,n+1 − nρnn] + ΓnB(ω) [nρn−1,n−1 − (n+ 1)ρnn] . (7.77)

From this, one finds that the ratio of relaxation and excitation processes

Rn→n+1

Rn+1→n
=

ΓnB(ω)

Γ[1 + nB(ω)]
= e−βω (7.78)

obeys detailed balance. Furthermore, in the long-term limit, the coherences 〈n| ρ |m〉 with n 6= m
will just decay, such that thermalization becomes immediately evident.
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7.2.3 Strokes in the quantum Otto cycle

For the quantum Otto cycle with a harmonic oscillator we can construct the cycle from two unitary
(no heat exchange – classically adiabatic) and two dissipative (with a cold reservoir coupling Γc
and a hot reservoir coupling Γh) strokes:

A→ B : In this first stroke the frequency of the oscillator is changed from ω(tA) = ωc to ω(tB) = ωh
by a rather arbitrary protocol, while the reservoirs are decoupled Γc(t) = Γh(t) = 0 for all
t ∈ [tA, tB]. Since only the parameter ω is changed, all energetic changes of the working fluid
are interpreted as work. The time evolution is modeled by the von-Neumann equation and
is not necessarily quantum adiabatic (but termed classically adiabatic as there is no heat
exchange). Accordingly, the von-Neumann entropy of the system remains constant.

B → C : In the second stroke the frequency is kept constant ω(t) = ωB = ωh for all t ∈ [tB, tC ].
The system is coupled to the hot reservoir, i.e., Γh(t) = Γh and Γc(t) = 0 for t ∈ [tB, tC ].
The von-Neumann entropy of the system may change, but its rate of change is bounded via
Spohn’s inequality by the heat flux

Ṡ − βIhE ≥ 0 . (7.79)

C → D : In the third stroke the coupling to the reservoirs is lifted and the frequency is brought back to
its initial value ωh → ωc, where the protocol actually need not be the reverse one of the first
stroke. This corresponds to ω(tC) = ωh und ω(tD) = ωc, and the reservoirs are decoupled
Γc(t) = Γh(t) = 0 for all t ∈ [tC , tD]. In this stroke, the entropy remains constant.

D → A: The cycle is closed by the last stroke via coupling to the cold reservoir, one has ω(t) = ωc,
Γc(t) = Γc and Γh(t) = 0 for all t ∈ [tD, tA + T ], there T is the total duration of one cycle.

Accordingly, we can model the complete dynamics throughout the cycle as

ρ̇ = −i
[
ω(t)a†(t)a(t), ρ

]
+ Γh(t)[1 + nB(ωh)]

[
ahρa

†
h −

1

2
a†hahρ−

1

2
ρa†hah

]
+ Γh(t)nB(ωh)

[
a†hρah −

1

2
aha

†
hρ−

1

2
ρaha

†
h

]
+ Γc(t)[1 + nB(ωc)]

[
acρa

†
c −

1

2
a†cacρ−

1

2
ρa†cac

]
+ Γc(t)nB(ωc)

[
a†cρac −

1

2
aca
†
cρ−

1

2
ρaca

†
c

]
,

(7.80)

where frequencies and couplings vary as described above and ah = a(tB) = a(tC) sowie ac = a(tD) =
a(tA). In general, this model system will have to be solved numerically – using an appropriate
cutoff ncutβhωh � 1 and ncutβcωc � 1, such that the time-dependent density matrix will be very
far from an equilbrium state. However, in the particular case when the cycle is performed very
slow (meaning slow driving and a very long coupling time to the reservoirs), a simple analytic
treatment is possible:

tB − tA →∞ , tD − tC →∞ , tC − tB →∞ , tA + T − tD →∞ (7.81)

If the contact to the cold reservoir was sufficiently long, at time tA the working fluid will be in
thermal equilbrium with the cold reservoir

ρ(tA) ≈ e−βcωca
†
cac

Tr
{
e−βcωca

†
cac

} . (7.82)
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Figure 7.3: Quantum Otto cycle in the S −
ω plane. The ideal limit is slow (quantum-
adiabatic) driving and perfect equilibration, but
for finite durations of the strokes only the hor-
izontal lines will be closer together. Energetic
changes during the unitary strokes (analogous to
classically adiabatic ones) are interpreted as work
(green), during the coupling to the hot (red) or
cold (blue) reservoir only heat is exchanged.

Then, if the frequency change ωc to ωh is performed sufficiently slow (i.e., quantum-adiabatically),
the working fluid will for t ∈ [tA, tB] remain in the instantaneous energy eigenstates, i.e., one has

ρ(tB) ≈ e−βcωca
†
hah

Tr
{
e−βcωca

†
hah

} . (7.83)

However, for βc > βh, this is not the equilibrium state with the hot reservoir. If we couple in
the next stroke to the hot reservoir, the state will evolve into a new equilibrium state (through a
sequence of non-equilibrium ones), such that after long time, the system will equilibrate with the
hot reservoir

ρ(tC) ≈ e−βhωha
†
hah

Tr
{
e−βhωha

†
hah

} . (7.84)

When now the frequency is changed back from ωh to ωc, the system remains in its instantaneous
energy eigenstates, which is however not the equilibrium state of the cold reservoir

ρ(tD) ≈ e−βhωha
†
cac

Tr
{
e−βhωha

†
cac

} . (7.85)

Coupling the system for a long time then to the cold reservoir leads to ρ(tA + T ) = ρ(tA), which
closes the cycle. During the unitary strokes, the von-Neumann entropy of the system will remain
constant. While coupled to the hot reservoir, energy will flow into the system, its entropy will
increase. While coupled to the cold reservoir, energy will flow out of the system, its entropy will
decrease, such that the cycle in the S − ω diagram assumes a simple shape, see Fig. 7.3.

The work applied to the system is then computed as the net work resulting from the two strokes
A→ B and C → D

∆WAB = Tr
{
ωh(a

†
hah + 1/2)ρ(tB)

}
− Tr

{
ωc(a

†
cac + 1/2)ρ(tA)

}
=

ωh − ωc
eβcωc − 1

+
(ωh − ωc)

2
,

∆WCD = Tr
{
ωc(a

†
cac + 1/2)ρ(tD)

}
− Tr

{
ωh(a

†
hah + 1/2)ρ(tC)

}
=

ωc − ωh
eβhωh − 1

+
(ωc − ωh)

2
.

(7.86)
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The energetic changes during the other strokes are heat. The (usually positive) heat entering from
the hot reservoir and (usually negative) heat entering from the cold reservoir are then calculated
via

∆QBC = Tr
{
ωha

†
hah [ρ(tC)− ρ(tB)]

}
=

ωh
eβhωh − 1

− ωh
eβcωc − 1

,

∆QDA = Tr
{
ωca

†
cac [ρ(tA)− ρ(tD)]

}
=

ωc
eβcωc − 1

− ωc
eβhωh − 1

. (7.87)

With these formulas, we have neglected that any time-dependent coupling to the reservoir
must also require a change of Hamiltonian parameters (wasted work required to let the engine
run). This means that the coupling to the reservoir must remain weak enough to allow for a
Lindblad description and to be able to neglect the work contribution required for coupling and
decoupling.

To take up heat from the hot reservoir ∆QBC > 0 we therefore require that βhωh < βcωc. The
total work extracted from the system is then ∆W = −∆WAB −∆WCD, which we can write as

∆W = (ωh − ωc)
[

1

eβhωh − 1
− 1

eβcωc − 1

]
. (7.88)

The efficiency in this limit is then

η =
∆W

∆QBC

Θ(∆W ) =

(
1− ωc

ωh

)
Θ(∆W ) . (7.89)

One might think that this efficiency could reach one for ωh � ωc, but additionally we have to
respect the condition ∆W ≥ 0 (work extraction), which also requires βhωh < βcωc. Therefore,
we can at best choose ωmax

h = ωc
βc
βh

to maximize efficiency while still having a non-negative work
output

ηmax = 1− βh
βc

= 1− Tc
Th

= ηCa . (7.90)

Unfortunately, at this working point even the extracted work per cycle vanishes. Even when we
numerically optimize ωc and ωh to maximize the extracted work, the extracted power would still
vanish due to the assumed infinite cycle time. Individually optimizing alltogether ωc, ωh and the
protocol, one often finds numerically that the Curzon-Ahlborn or Chambadal-Novikov efficiency

ηCA = 1−
√
Tc
Th

(7.91)

is a much more realistic bound for the efficiency.

7.2.4 Harmonic oscillator working fluid with finite times

To numerically simulate a quantum Otto cycle, it is for most solvers useful to employ a fixed
operator basis. We choose here the ”cold” ladder operators that diagonalize the Hamiltonian
while coupled to the cold bath

ac =

√
mωc

2
x+

i√
2mωc

p , a†c =

√
mωc

2
x− i√

2mωc
p . (7.92)
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Then, we need to express the ladder operators that hold for a different frequency in terms of the
cold ladder operators. Since Eq. (7.67) holds at all frequencies, we can simply insert

x =
1√

2mωc

(
a†c + ac

)
, p = i

√
mωc

2

(
a†c − ac

)
, (7.93)

to obtain a representation of the time-dependent ladder operators in terms of the cold ladder
operators

a(t) =
1

2

√ω(t)

ωc
+

√
ωc
ω(t)

 ac +
1

2

√ω(t)

ωc
−
√

ωc
ω(t)

 a†c ,

a†(t) =
1

2

√ω(t)

ωc
+

√
ωc
ω(t)

 a†c +
1

2

√ω(t)

ωc
−
√

ωc
ω(t)

 ac . (7.94)

In particular, this also defines the ”hot” ladder operators that diagonalize the Hamiltonian while
coupled to the hot bath

ah =
1

2

(√
ωh
ωc

+

√
ωc
ωh

)
ac +

1

2

(√
ωh
ωc
−
√
ωc
ωh

)
a†c ,

a†h =
1

2

(√
ωh
ωc

+

√
ωc
ωh

)
a†c +

1

2

(√
ωh
ωc
−
√
ωc
ωh

)
ac . (7.95)

This is in fact a particular case of a Bogoliubov transform that mixes annihilation and creation
operators ac and a†c to form new bosonic annihilation and creation operators a(t) and a†(t) that
automatically obey the bosonic commutation relations.

To estimate whether the adiabatic criterion (5.11) is met, we consider to represent Ḣ in terms
of the time-dependent ladder operators

Ḣ = mω(t)ω̇x2 =
ω̇

2

(
(a†(t))2 + a2(t) + a†(t)a(t) + a(t)a†(t)

)
, (7.96)

from which we see that the driving of the frequency preserves the number parity of the oscillator
quasiparticle (i.e., an even or odd number of quanta would remain either even or odd under
this driving). Inserting this into (5.11), we conclude that adiabaticity can be maintained when
Ncutω̇/ω

2 � 1, where Ncut denotes the bosonic cutoff of the Hilbert space.
Nevertheless, care should be taken when choosing the bosonic cutoff of the Hilbert space: Since

the ”hot” annihilation operators also contain a contribution from ”cold” creation operators, they
do not as reliably drag the system towards the vacuum state of the cold reservoir, such that the
bosonic cutoff Ncut needs to be chosen significantly larger. If that is not taken into account, we
will rather model an artificial system than a harmonic oscillator model. Nevertheless, it may show
similar characteristics as a full harmonic oscillator working medium. Fig. 7.4 shows that for slow
driving, the previously discussed harmonic oscillator limit is roughly approximated. For faster
driving, the evolution is no longer adiabatic and the equilibration between system and reservoir is
not perfect during the dissipative strokes. Therefore, the cycle in the ω-entropy plane reaches a
different limit cycle which is significantly smaller.

Such models can actually be implemented in a lab [46].
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Figure 7.4: Plot of 10 finite-time Otto cycle
in the ω − S plane. For long cycle durations
(ωcT = 1000, orange), the analytic results are
approached, but for short cycle durations a limit
cycle develops (ωcT = 10). Other parameters
Ncut = 10, ωh = 3ωc, βcωc = 1, βhωh = 3/8,
Γh/ωc = Γc/ωc = 0.1, linear ramp protocol be-
tween ωc and ωh, all strokes take one quarter of
total cycle duration.
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7.2.5 Collective spin working fluid with finite times

The quantum Otto cycle can be applied to arbitrary quantum systems. To remain quantum-
adiabatic, we have to run it slowly – thereby reducing the extracted power. Further, the finite
equilibration times will also reduce the overall power output.

By contrast, one can always remain quantum adiabatic by driving the Hamiltonian in the
unitary strokes in a way that does not change the energy eigenstates but only the energies

H(t) =
∑
n

En(t) |n〉 〈n| , (7.97)

which is the case when the Hamiltonian commutes with itself at different times

[H(t), H(t′)] = 0 . (7.98)

Any homogeneous transformation of the Hamiltonian H(t) = g(t)H0 by some function g(t) will
implement this. This then allows to explicitly write the unitary time evolution operator as

U(t) = exp

{
−i

∫ t

0

H(t′)dt′
}
, (7.99)

which shows that under such evolution, one will always remain in the instantaneous energy eigen-
state, or more generally, for an initial state expanded in the constant energy eigenstates

ρ =
∑
nm

ρnm |n〉 〈m| , (7.100)

one gets the time-evolved state

U(t)ρU †(t) =
∑
nm

ρnme
−i
∫ t
0 [En(t′)−Em(t′)]dt′ |n〉 〈m| , (7.101)

no matter how fast the driving is actually performed.
Additionally, one can speed up the equilibration with the reservoirs (or the energy uptake from

the hot reservoir and energy radiation into the cold reservoir) by using superradiant effects. This
way, the total energy exchange (e.g. total work extraction or heat uptake) will not be increased, but
it will be achieved in shorter time, thereby increasing the delivered power P = ∆W/T . Thereby,
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instead of Eq. (7.80), we may consider an atomic cloud with a variable level splitting ω(t) –
implemented e.g. by Stark or Zeeman splittings with a time-dependent external field – collectively
coupled to both reservoirs

ρ̇ = −i [ω(t)Jz, ρ]

+ Γh(t)[1 + nB(ωh)]

[
J−ρJ+ − 1

2
J+J−ρ− 1

2
ρJ+J−

]
+ Γh(t)nB(ωh)

[
J+ρJ− − 1

2
J−J+ρ− 1

2
ρJ−J+

]
+ Γc(t)[1 + nB(ωc)]

[
J−ρJ+ − 1

2
J+J−ρ− 1

2
ρJ+J−

]
+ Γc(t)nB(ωc)

[
J+ρJ− − 1

2
J−J+ρ− 1

2
ρJ−J+

]
.

(7.102)

Technically, the advantage is that a natural time-independent basis – the eigenbasis of Jz can be
employed. Furthermore, to simplify the analysis, we assume that only the subspace of maximum
angular momentum j = n/2 contributes, such that we can constrain ourselves to the Dicke states
|m〉 = |n/2,m〉. In the ideal limit (perfect equilibration), the working fluid is initially in equilibrium
with the cold reservoir

ρA ≈
e−βcωcJ

z

Tr {e−βcωcJz}
. (7.103)

This state is diagonal in the Dicke basis, and therefore, no matter how fast we drive, during the
unitary stroke we do not change such a state

ρB ≈
e−βcωcJ

z

Tr {e−βcωcJz}
=

e−β
′ωhJ

z

Tr {e−β′ωhJz}
, β′ = βc

ωc
ωh

, (7.104)

which has an appealing interpretation of a thermal state at a different temperature. To take up
heat from the hot reservoir, we require that β′ > βh. After an ideal equilibration with the hot
reservoir, the state would be

ρC ≈
e−βhωhJ

z

Tr {e−βhωhJz}
, (7.105)

which would be inert to the reversed unitary stroke

ρD ≈
e−βhωhJ

z

Tr {e−βhωhJz}
=

e−β
′′ωcJz

Tr {e−β′′ωcJz}
, β′′ = βh

ωh
ωc

, (7.106)

where – to dump heat into the cold reservoir we require that β′′ < βc, which reproduces the
previous condition.

The total work extracted during one cycle is then

∆W = EA − EB + EC − ED = Tr {ωcJzρA} − Tr {ωhJzρB}+ Tr {ωhJzρC} − Tr {ωcJzρD}
= (ωh − ωc)Tr {Jz(ρC − ρA)} , (7.107)

where we have only used that for our driving ρD = ρC and ρB = ρA, irrespective of perfect or
imperfect thermalization. Likewise, the heat uptake from the hot reservoir is

∆Qh = EC − EB = ωhTr {Jz(ρC − ρB)} = ωhTr {Jz(ρC − ρA)} . (7.108)
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Figure 7.5: Plot of 10 quantum Otto cycles for a
large spin model for slow driving (solid) and very
fast driving (dotted). Whereas for n = 10, a fast
driving time ωcT = 10 does not suffice to achieve
thermalization (grey), the same driving time suf-
fices for n = 20 (orange). Other parameters are
chosen as in Fig. 7.4. Inset: Scaling of relaxation
times during steps D → A for a zero-temperature
cold reservoir, defined by a small trace distance
DTD(ρ(Teq), |−n/2〉 〈−n/2|) = 0.01 for an initial
infinite temperature state (black) and the original
Dicke setup (red) (lines represent 1/n fits).
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Without calculation, we therefore find that the efficiency depends only on the ratio of the frequen-
cies

η =

(
1− ωc

ωh

)
Θ(∆W ) =

(
1− ωc

ωh

)
Θ(βcωc − βhωh) ≤ 1− βh

βc
, (7.109)

which eventually is again bounded by the Carnot value.
To compute the absolute value of work extracted per cycle, we note that in the subspace of

maximum angular momentum j = n/2, everything can be derived analytically, e.g. via

Tr
{
e−αJ

z}
=

+n/2∑
m=−n/2

e−αm =
sinh

(
α(n+1)

2

)
sinh

(
α
2

) ,

Tr
{
Jze−αJ

z}
= − d

dα
Tr
{
e−αJ

z}
. (7.110)

The simplest result however is achieved when the hot reservoir is at infinite temperature βhωh � 1,
such that ρC ≈ 1

n+1
1 and the cold reservoir is at zero temperature βcωc � 1 such that ρA ≈

|−n/2〉 〈−n/2|. In this limit, we get the maximum extracted work for perfect thermalization as

∆Wmax =
n

2
(ωh − ωc) . (7.111)

The power is then obtained by dividing by the cycle duration P = ∆W/T . Since the unitary
strokes can be performed infinitely fast, the cycle duration is composed from the contact times
with both reservoirs T = τc + τh. If the times required to reach complete equilibration scale as 1/n
(as is found in the original superradiance setup), the total power would scale quadratically with
the number of qubits, thus transferring a genuine quantum effect to the classical world. Indeed,
we observe that a cycle duration that for n = 10 does not suffice to achieve perfect equilibration
manages to achieve perfect equilibration for n = 20, see Fig. 7.5.

For the excitation process due to the hot reservoir, the master equation (7.102) can with
Γc(t)→ 0 and ω(t)→ ωh be written as

ρ̇ = −i [ωhJ
z, ρ]

+ Γh[1 + nB(ωh)]

[
J−ρJ+ − 1

2
J+J−ρ− 1

2
ρJ+J−

]
+ ΓhnB(ωh)

[
J+ρJ− − 1

2
J−J+ρ− 1

2
ρJ−J+

]
,

(7.112)
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which for an infinitely hot reservoir nB(ωh)→∞ will lead to an instantaneous equilibration, such
that we can also perform this stroke infinitely fast in the infinite temperature limit and T ≈ τc.
While coupled to the cold reservoir (effectively at zero temperature), we have to obey

ρ̇ = −i [ωcJ
z, ρ] + Γc

[
J−ρJ+ − 1

2
J+J−ρ− 1

2
ρJ+J−

]
. (7.113)

From this, we can derive the dual master equation, i.e., an equation of motion for the expectation
value 〈Jz〉, using invariance of the trace and the commutation relations of the large spin operators

d

dt
〈Jz〉 = ΓcTr

{(
J+JzJ− − 1

2
JzJ+J− − 1

2
J+J−Jz

)
ρ

}
=

Γc
2

Tr
{

[J+, Jz]J−ρ+ J+[Jz, J−]ρ
}

= −ΓcTr
{
J+J−ρ

}
= −Γc

[〈
J2
〉
−
〈
(Jz)2

〉
+ 〈Jz〉

]
. (7.114)

A common approach to this is to apply the mean-field approximation 〈(Jz)2〉 ≈ 〈Jz〉2, which
closes the equation of motion and predicts a 1/n scaling of the equilibration time. Unfortunately,
for the initial infinite-temperature state we have

〈Jz〉0 =

+n/2∑
m=−n/2

m

n+ 1
= 0 ,

〈
(Jz)2

〉
0

=

+n/2∑
m=−n/2

m2

n+ 1
=
n(n+ 2)

12
, (7.115)

which does not comply well with the mean-field approximation. Nevertheless, the 1/n scaling
is well observed even for starting with the most excited state, which should show the longest
equilibration time. We can define an equilibration time by using the trace distance to the ground
state as an equilibration measure

DTD(ρ(Teq), |−n/2〉 〈−n/2|) = 0.01 . (7.116)

Indeed, the inset of Fig. 7.5 shows that the equilibration times with a zero-temperature reservoir
scale as 1/n for large n. This means that an optimal cycle time would allow to extract a power
scaling quadratically in the number of qubits [47]

∆W

T
∝ n2 . (7.117)

7.2.6 Analogous equilibrium cycle

To optimize the cycle, we have so far exploited limits where ideally the system density matrix was
close to an equilibrium state

ρ(t) ≈ e−β(t)H(t)

Tr {e−β(t)H(t)}
. (7.118)

For general protocols, this will evidently not be the case: Fast (non-adiabatic) drivings will nor-
mally yield non-thermal states ρA/B/C/D (for example, they may build up coherences in the instan-
taneous energy eigenstates), and imperfect relaxation processes will also generate non-equilibrium
states. Then, an analytic treatment is significantly harder. Nevertheless, general statements are
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still possible even in this case. To each nonequilibrium state ρ and a Hamiltonian H we can define
a thermal reference state ω and a reference temperature β∗ by constructing the Gibbs state
as the one which has the same entropy

ω ≡ e−β
∗H

Tr {e−β∗H}
: SvN(ω)

!
= SvN(ρ) = −Tr {ρ ln ρ} . (7.119)

We note that for a non-degenerate ground state, this construction allows for a unique solution for
β∗, since the entropy of an equilibrium state is a monotonously growing function of temperature
and spans the complete range from 0 for zero temperature to ln d for infinite temperature. It will
however normally have to be obtained numerically.

The advantage in this definition comes from a relation between the quantum relative entropy
between the thermal reference state and the nonequilibrium state and the energetic difference

DQRE(ρ, ω) = Tr {ρ ln ρ} − Tr {ρ lnω} = Tr {ω lnω} − Tr {ρ lnω}
= Tr

{
(ω − ρ)

[
−β∗H − ln Tr

{
e−β

∗H
}

1
]}

= β∗Tr {H(ρ− ω)} . (7.120)

Therefore, we can e.g. relate the heat uptake during steps B → C from the hot reservoir for a
nonequilibrium state to the heat uptake of the corresponding thermal reference states

Qh = Tr {HB(ρC − ρB)} = Tr {HB(ωC − ωB)} − Tr {HB(ωC − ρC)}+ Tr {HB(ωB − ρB)}
= Q∗h + (β∗C)−1DQRE(ρC , ωC)− (β∗B)−1DQRE(ρB, ωB) . (7.121)

Doing the same for the (negative) heat taken from the cold reservoir

Qc = Tr {HA(ρA − ρD)} = Q∗c + (β∗A)−1DQRE(ρA, ωA)− (β∗D)−1DQRE(ρD, ωD) , (7.122)

we can relate the efficiency at the limit cycle – where ∆W = Qc +Qh due to energy conservation
– with the heat uptakes Q∗c and Q∗h of an analogous replacement circuit along thermal reference
states

η =
Qc +Qh

Qh

= 1− −Qc

Qh

. (7.123)

Exploiting that the quantum relative entropy is always positive, one can find protocols for a
quantum Otto cycle that optimize the efficiency [48]. For example, assuming that the reservoirs
perfectly equilibrate the working fluid

DQRE(ρA, ωA) = DQRE(ωA, ωA) = 0 , DQRE(ρC , ωC) = DQRE(ωC , ωC) = 0 , (7.124)

the only way to increase efficiency is to bring the state at points D and B as close as possible to
their thermal reference state by improving the unitary stroke protocol, see Fig. 7.6.

7.3 Quantum-mechanical evolution towards equilibrium

In the theory of closed quantum systems, the basic assumption is that all states evolve unitarily.
This means that the information of the initial state |Ψ0〉 is still fully contained in the time-
dependent solution |Ψ(t)〉, and in this strict sense, any evolution towards a time-independent
equilibrium state is excluded.
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Figure 7.6: Optimization of a thermodynamic cy-
cle by using improved unitary strokes to deliver
more work, taken from Ref. [48]. By reducing
the distance to the thermal reference states at
points B and D, more heat is taken from the hot
reservoir and less is dumped into the cold reser-
voir, altogether leading to an increased efficiency.
Since the thermal reference states cannot always
be reached, the final efficiency may not reach the
Carnot value.

One may nevertheless reach a notion where a time-dependent reduced state of a globally uni-
tarily evolving system approaches an equilibrium state [49].

Here, the main assumption is that initially, the whole universe is in a pure state

ρ0 = |Ψ0〉 〈Ψ0| , (7.125)

and under a globally unitary dynamics, this does of course remain pure

ρ(t) = U(t) |Ψ0〉 〈Ψ0|U †(t) = e−iHt |Ψ0〉 〈Ψ0| e+iHt = |Ψ(t)〉 〈Ψ(t)| 6= ρ̄ . (7.126)

The above expression could be time-independent if the initial pure state was an eigenstate of
the global Hamiltonian or a superposition of energetically degenerate eigenstates. The global
Hamiltonian H = HS +HB +HI can formally be written in its spectral representation

H =
∑
k

Ek |Ek〉 〈Ek| (7.127)

with energies Ek and eigenstates |Ek〉. The only restriction that one imposes is that the global
Hamiltonian has non-degenerate energy gaps, i.e., for any four energies {En, Em, Ek, E`} the con-
dition

Ek − E` = Em − En (7.128)

can only be trivially fulfilled, i.e., with (Ek = E` and Em = En) or with (Ek = Em and E` = En).

� This restriction excludes Hamiltonians that are not fully interactive. For such Hamiltonians,
there would exist a partition into system and reservoir without an interaction remaining
(H = H ′S + H ′B), and one would have e.g. the energies E1 = ES

1 + EB
1 , E2 = ES

1 + EB
2 ,

E3 = ES
2 +EB

1 , and E4 = ES
2 +EB

2 that could fulfil the above condition E4 −E3 = E2 −E1

without any of the energies being equal.

� This restriction is rather mild in the sense that most slight perturbations added to a non-
interacting Hamiltonian will render it interacting.

Then, notationally one defines the reduced density matrices of system and reservoir

ρS(t) = TrB {ρ(t)} , ρB(t) = TrS {ρ(t)} (7.129)
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as usual and the time-averaged states of the universe, the system, and the reservoir

ω = lim
τ→∞

1

τ

∫ τ

0

ρ(t)dt , ωS = lim
τ→∞

1

τ

∫ τ

0

ρS(t)dt , ωB = lim
τ→∞

1

τ

∫ τ

0

ρB(t)dt . (7.130)

Furthermore, one can also introduce an effective dimension of a mixed state by

deff(ρ) =
1

Tr {ρ2}
. (7.131)

For example, if we decompose the initial state into energy eigenstates of the global Hamiltonian

|Ψ0〉 =
∑
k

ck |Ek〉 :
∑
k

|ck|2 = 1 , (7.132)

we get for the time-evolved state

ρ(t) =
∑
k`

ckc
∗
`e
−i(Ek−E`)t |Ek〉 〈E`| , (7.133)

and for its time-averaged value (due to the non-degenerate energy gaps)

ω =
∑
k

|ck|2 |Ek〉 〈Ek| . (7.134)

Simply squaring this, we have ω2 =
∑

k |ck|
4 |Ek〉 〈Ek|, and the effective dimension becomes

deff(ω) =
1∑
k |ck|

4 . (7.135)

Let furthermore dS denote the Hilbert space dimension of the system. Then, one can prove the
following [49]

lim
τ→∞

1

τ

∫ ∞
0

DTD(ρS(t), ωS)dt ≤ 1

2

√
dS

deff(ωB)
≤

√
d2
S

deff(ω)
. (7.136)

� If the r.h.s. is small (naturally, dS is significantly smaller than the dimension of the full
universe), then the inequality means that the time-averaged distance between actual state
ρS(t) and its time-averaged state ωS is small.

� A small trace distance implies that any derived expectation values are small. Writing for
two valid density matrices ρ1 − ρ2 =

∑
n λn |n〉 〈n|, we can e.g. bound

|〈A1〉 − 〈A2〉| = |Tr {A(ρ1 − ρ2)}| =

∣∣∣∣∣∑
n

〈n|A |n〉λn

∣∣∣∣∣
≤
∑
n

|〈n|A |n〉||λn| ≤ |amax|2
1

2

∑
n

|λn| = 2|amax|DTD(ρ1, ρ2) , (7.137)

where amax is the eigenvalue of the observable A with the largest magnitude.



Chapter 8

Selected phenomena and applications

8.1 Reservoir models

Reservoir models are used in abundance to describe relaxation processes to thermal equilibrium.
In most microscopic approaches, a reservoir is typically modeled by a bunch of non-interacting
degrees of freedom

HB =
∑
k

ωkH
k
B (8.1)

that do not directly interact [Hk
B, H

q
B] = 0 and which could for example be bosonic or fermionic

modes Hk
B = b†kbk. Here, the energies ωk represent excitation energies of the reservoir. The coupling

between system and reservoir

HI = S†
∑
k

hkBk +
∑
k

h∗kB
†
kS (8.2)

then couples the system via the (not necessarily hermitian) system coupling operator S to every

mode of the reservoir with reservoir coupling operator Bk fulfilling [Bk, H
q
B]

k 6=q
= 0 with individual

coupling strength hk. In the limit of an infinitely large reservoir, the spectral density or spectral
coupling density

Γ(ω) = 2π
∑
k

|hk|2δ(ω − ωk) (8.3)

describes the combined effect of system-reservoir coupling strength and reservoir level distribution.
In contrast, the density of states

D(ω) = 2π
∑
k

δ(ω − ωk) (8.4)

is a pure reservoir property and describes only the level distribution.

Whenever we use a continuous function to describe these quentities, we assume that the reser-
voir is infinitely large. In the following, we will review some particularly simple examples of
reservoir models that after diagonalization give rise to a continuum of energies ωk.

139
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8.1.1 Tight-binding chain

Consider a chain of N identical sites that are connected by identical next-neighbour hopping
amplitudes T > 0 (any complex phase can be absorbed in the annihilation and creation operators)

HB = ε
N∑
n=1

c†ncn + T

N−1∑
n=1

[
c†ncn+1 + c†n+1cn

]
=
(
c†1, . . . , c

†
N

)
H

 c1
...
cN

 . (8.5)

Here, it does not matter whether the chain is of bosonic or fermionic nature. All that matters is
that the tri-diagonal N ×N matrix

H =


ε T

T
. . . . . .
. . . . . . T

T ε

 (8.6)

can be diagonalized by a suitable unitary transformation HD = UHU †. We therefore define new
operators by using the unitary transformation d1

...
dN

 = U

 c1
...
cN

 . (8.7)

Notably, if the ci operators are bosons or fermions, the transformed dk operators are of the same
nature (the commutation or anticommutation relations are not changed by arbitrary unitary trans-
formations of creation and annihilation operators). This allows us to write the Hamiltonian as

HB =
(
c†1, . . . , c

†
N

)
U †UHU †U

 c1
...
cN

 =
(
d†1, . . . , d

†
N

)
HD

 d1
...
dN

 =
N∑
k=1

ωkd
†
kdk , (8.8)

where ωk are the eigenvalues of H. Simply by looking at the matrix H, we find that its eigenvalues
must be in the interval ωk ∈ [ε− 2T, ε+ 2T ].

This becomes apparent e.g. by the Gershgorin circle theorem: To any square matrix
A ∈ CN×N one can in the complex plane define the Gershgorin disks centered at the diagonal
entries aii with radii determined by the sum of off-diagonals in every row

Si =

{
z : |z − aii| ≤

N∑
j=1,j 6=i

|aij|

}
. (8.9)

Then one has that any connected set of Gershgorin disks contains as many eigenvalues as diagonal
elements. The radii of the Gershgorin disks can evidently also be determined by summing the
off-diagonal entries of columns instead of rows, and a tighter bound for the eigenvalues is then
found by taking the smaller radius. Applied to the matrix above, we find that all N Gershgorin
discs coincide with center ε and radius 2T . Additionally however, the matrix is hermitian, such
that all eigenvalues must be real.
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For the matrix above, we can explicitly find the unitary transformation that diagonalizes it

Uij = (U)ij =

√
2

N + 1
sin

(
πij

N + 1

)
, (8.10)

and which leads to the eigenvalues

ωk = ε− 2T cos

(
πk

N + 1

)
, (8.11)

and we can write the bath Hamiltonian as

HB =
N∑
k=1

[
ε− 2T cos

(
πk

N + 1

)]
d†kdk . (8.12)

To see what effect such a local diagonalization of the reservoir Hamiltonian has on the coupling,
consider the interaction Hamiltonian describing a coupling to the first site of the chain

HI = λS†c1 + λ∗c†1S , (8.13)

where S is some arbitrary system operator that can also be hermitian (note also that for bosons,
the operator order may be exchanged without additional sign). Inverting the transformation, we
can express the c1 operators in terms of the dk operators c1

...
cN

 = U †

 d1
...
dN

 , (8.14)

or component-wise

c1 =
∑
k

(U †)1kdk = U∗k1dk =

√
2

N + 1

∑
k

sin

(
πk

N + 1

)
dk . (8.15)

Thus, from the interaction Hamiltonian

HI = λS†
∑
k

√
2

N + 1
sin

(
πk

N + 1

)
dk + λ∗

∑
k

√
2

N + 1

∑
k

sin

(
πk

N + 1

)
d†kS

= S†
∑
k

tkdk +
∑
k

t∗kd
†
kS (8.16)

we can identify

tk = λ

√
2

N + 1
sin

(
πk

N + 1

)
. (8.17)

In the continuum limit N → ∞, we can replace the summation in the spectral density by an
integral with κ = k/(N + 1)

Γ(ω) = 2π
∑
k

|tk|2δ(ω − ωk) = 4πλ2

∫ 1

0

sin2(πκ)δ (ω − ε+ 2T cos(πκ)) dκ . (8.18)



142 CHAPTER 8. SELECTED PHENOMENA AND APPLICATIONS

Now, using a δ-function property

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

: g(xi) = 0 (8.19)

we find that

Γ(ω) = 4πλ2

∫ 1

0

[
1− cos2(πκ)

] δ (κ− 1
π

arccos( ε−ω
2T

)
)

2Tπ sin(πκ)
dκ

=
2λ2

T

√
1− (ω − ε)2

4T 2
Θ(4T 2 − (ω − ε)2) . (8.20)

In a similar fashion, the density of states becomes

D(ω) = 2πN

∫ 1

0

δ
(
κ− 1

π
arccos( ε−ω

2T
)
)

2Tπ sin(πκ)
dκ

=
N

T
√

1− (ω−ε)2
4T 2

Θ(4T 2 − (ω − ε)2) . (8.21)

8.1.2 Example: Evolution under a 1d reservoir

We consider a fermionic Hamiltonian

HS = εd†d , HI = λd†c1 + λ∗c†1d , (8.22)

and where HB is the finite tight-binding chain discussed in the previous section. By locally diag-
onalizing the reservoir, we can write this in the form

H = εd†d+
∑
k

[
tkd
†dk + t∗kd

†
kd
]

+
∑
k

ωkd
†
kdk , (8.23)

where

tk = λ

√
2

N + 1
sin

(
πk

N + 1

)
, ωk = ε− 2T cos

(
πk

N + 1

)
. (8.24)

Initially, the universe is in the state

ρ0 = ρ0
S ⊗

e−β(HB−µNB)

ZB
, (8.25)

where initially the reservoir is put in local thermal equilibrium with inverse temperature β and
chemical potential µ. This system can be solved exactly by various methods. Note that however
a direct numerical solution is usually prohibitive since the dimension of the Hilbert space scales
exponentially and numerical error control is mandatory.

In the Heisenberg picture (bold symbols), the equations of motions close by considering e.g.
only annihilation operators

ḋ = −iεd− i
∑
k

tkdk , ḋk = −iωkdk − it∗kd . (8.26)
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It is at this point where we have used that the operators are fermionic (some sign differences would
show up for bosons). Performing a Laplace transform

d(z) =

∫ ∞
0

de−ztdt , dk(z) =

∫ ∞
0

dke
−ztdt (8.27)

we can convert the differential equations into algebraic ones

zd(z)− d = −iεd(z)− i
∑
k

tkdk(z) , zdk(z)− dk = −iωkdk(z)− it∗kd(z) , (8.28)

where d and dk are the original operators in the Schrödinger picture. Of these, we can solve the
second for dk(z) and insert this in the first equation, yielding an expression for the dot annihilation
operator

d(z) = g(z)d+
∑
k

gk(z)dk (8.29)

with the functions

g(z) =
1

z + iε+
∑

k
|tk|2
z+iωk

, gk(z) =
−itk

(z + iωk)
(
z + iε+

∑
q
|tq |2
z+iωq

) . (8.30)

Accordingly, to compute the time-dependent annihilation operator in the interaction picture

d = g(t)d+
∑
k

gk(t)dk (8.31)

we need to compute the inverse Laplace transforms

g(t) =
1

2πi

∫ γ+i∞

γ−i∞
g(z)e+ztdz , gk(t) =

1

2πi

∫ γ+i∞

γ−i∞
gk(z)e+ztdz (8.32)

via the Bromwick integral. Eventually, the time-dependent dot occupation is given by〈
d†d

〉
t

= Tr
{
d†dρ0

}
= |g(t)|2n0 +

N∑
k=1

|gk(t)|2f(ωk) , (8.33)

where n0 is the initial dot occupation and f(ωk) = [eβ(ωk−µ) + 1]−1 is the Fermi function of the
lead. For finite number of reservoir modes, this solution will exhibit recurrences. An exact solution
in the continuum limit Nc → ∞ can also be derived by converting the sums into integrals. For
example, in case a stationary solution exists, the stationary dot occupation then becomes

n̄ =

∫
dω

2π
Γ(ω)f(ω)

T 2

T 2(ε− ω)2 + (ε− ω)(ω − ε)λ2 + λ4
, (8.34)

which however still needs to be evaluated numerically.
We can compare this exact solution with the master equation solution (4.50) which yields a

simple rate equation in the system energy eigenbasis

P0 = −Γ(ε)f(ε)P0 + Γ(ε)[1− f(ε)]P1 ,

P1 = +Γ(ε)f(ε)P0 − Γ(ε)[1− f(ε)]P1 , (8.35)

and which has the simple solution〈
d†d
〉
t

= e−Γ(ε)tn0 + f(ε)
[
1− e−Γ(ε)t

]
. (8.36)

The result is depicted in Fig. 8.1. One can see that at weak couplings λ, the master equation
captures the general dynamics very well, although it fits worse for small times.
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Figure 8.1: Time-dependent occupation of a sin-
gle quantum dot coupled to tight-binding chains
of varying lengths. Thin solid curves represent ex-
act solutions, the bold solid curve corresponds to
Eq. (8.36), and the dotted line represents the sta-
tionary dot occupation according to (8.34). Pa-
rameters: ε = ε, T = ε/2, λ = 0.1ε, βε = 1,
µ = 0. 0 20 40 60 80 100
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8.1.3 Higher-dimensional tight-binding lattices

The diagonalization of the chain Hamilton in the previous section becomes evident from the iden-
tities (for integers 1 ≤ k, q ≤ N)

δkq =
N∑
j=1

2

N + 1
sin

(
πkj

N + 1

)
sin

(
πqj

N + 1

)
,

δkq2 cos

(
πk

N + 1

)
=

N∑
j=1

2

N + 1

[
sin

(
πkj

N + 1

)
sin

(
πq(j + 1)

N + 1

)
+ sin

(
πk(j + 1)

N + 1

)
sin

(
πqj

N + 1

)]
, (8.37)

where the first equation simply implements the unitarity condition of the transformation (8.10).
Such relations can also be employed for higher-dimensional lattices, for example, the Hamiltonian

HB = ε
Nx∑
i=1

Ny∑
j=1

c†ijcij + Tx

Nx−1∑
i=1

Ny∑
j=1

[
c†ijci+1,j + c†i+1,jcij

]
+ Ty

Nx∑
i=1

Ny−1∑
j=1

[
c†ijci,j+1 + c†i,j+1cij

]
. (8.38)

Now, the unitary transform

cij =

√
2

Nx + 1

√
2

Ny + 1

Nx∑
k=1

Ny∑
q=1

sin

(
πki

Nx + 1

)
sin

(
πqj

Ny + 1

)
dkq (8.39)

will allow to map the Hamiltonian into

HB =
Nx∑
k=1

Ny∑
q=1

[
ε− 2Tx cos

(
πk

Nx + 1

)
− 2Ty cos

(
πq

Ny + 1

)]
d†kqdkq . (8.40)

An interaction Hamiltonian of the form

HI = λ(S†c11 + c†11S) , (8.41)
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Figure 8.2: Spectral densities for infinite 1d and
2d reservoirs, characterized by tunneling ampli-
tudes T in the 1d case and Tx and Ty in the 2d
case, where the system is coupled to the end of
the chain or the corner of the lattice, respectively.
For Tx � Ty, the lattice becomes effectively one-
dimensional.

where some system is coupled to the corner of a square lattice reservoir, is then transformed into

HI = S†
∑
kq

λ

√
2

Nx + 1

√
2

Ny + 1
sin

(
πk

Nx + 1

)
sin

(
πq

Ny + 1

)
dkq + h.c. . (8.42)

This allows to compute the spectral coupling density for such a corner coupling as

Γ(ω) = 2π
∑
kq

|tkq|2δ
(
ω − ε+ 2Tx cos

(
πk

Nx + 1

)
+ 2Ty cos

(
πq

Ny + 1

))

→ 2π

∫ 1

0

dκ

∫ 1

0

dσ4λ2 sin2(πκ) sin2(πσ)δ (ω − ε+ 2Tx cos(πκ) + 2Ty cos(πσ))

= 8πλ2

∫ +2Tx

−2Tx

dx

∫ +2Ty

−2Ty

dy

[
1− x2

4T 2
x

] [
1− y2

4T 2
y

]
δ(ω − ε+ x+ y)

1

2πTx

√
1− x2

4T 2
x

1

2πTy
√

1− y2

4T 2
y

=
2λ2

πTxTy

∫ +2Tx

−2Tx

dx

∫ +2Ty

−2Ty

dy

√
1− x2

4T 2
x

√
1− y2

4T 2
y

δ(ω − ε+ x+ y) , (8.43)

which can be further reduced by using the Dirac-δ function. Essentially, for a different dimension
we obtain a different shape of the spectral density – for strongly elongated reservoirs Tx � Ty
however we reproduce the previous 1d result, see Fig. 8.2. The generalization to even higher
dimensions is straightforward.

8.1.4 Reservoirs with periodic boundary conditions

For a closed chain of the form

HB = ε

N∑
n=1

c†ncn + T

N∑
n=1

[
c†ncn+1 + c†n+1cn

]
=
(
c†1, . . . , c

†
N

)
H

 c1
...
cN

 (8.44)
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the matrix is no longer tridiagonal

H =


ε T T

T
. . . . . .
. . . . . . T

T T ε

 , (8.45)

but Gershgorins circle theorem yields the same estimate on the eigenvalues. This case is even
simpler: One can use the discrete Fourier transform from Eq. (5.76)

cn =
1√
N

N∑
k=1

e2πink/Ndk (8.46)

to diagonalize the Hamiltonian via exploiting

N∑
n=1

1

N
e+2πink/Ne−2πinq/N = δkq . (8.47)

Eventually, one finds

HB =
N∑
k=1

[
ε+ 2T cos

(
2πk

N

)]
d†kdk =

∑
k

ωkd
†
kdk . (8.48)

Now, for a generic local coupling to the j-th site of the ring

HI = λS†cj + λ∗c†jS = λS†
∑
k

1√
N
e2πijk/Ndk + h.c. , (8.49)

the spectral coupling density becomes independent of the coupling site (using κ = k/N)

Γ(ω) = 2π
∑
k

λ2

N
δ

(
ω − ε− 2T cos

(
2πk

N

))
= 2πλ2

∫ 1

0

δ (ω − ε− 2T cos(2πκ)) dκ

=
λ2

T
√

1− (ω−ε)2
4T 2

Θ(4T 2 − (ω − ε)2) , (8.50)

which is very different from the spectral density of a chain (8.20).

8.1.5 Spin reservoir: Ising model

Our previous considerations were limited to non-interacting bosons or fermions, such that we could
consider the single-particle subspace. One can go beyond this by adding a single qubit to the Ising
model (5.59)

HS =
ω0

2
σz0 − Tσx0 , HI =

λ√
n
σx0

n∑
i=1

σxi ,

HB = −Ω(1− s)
n∑
i=1

σxi − Ωs
n∑
i=1

σzi σ
z
i+1 (8.51)



8.1. RESERVOIR MODELS 147

0 0.2 0.4 0.6 0.8 1

phase parameter s

-6

-4

-2

0

2

4

6
en

er
g

y
 s

p
ec

tr
u

m
 (

N
=

6
) 

[u
n

it
s 

o
f 

Ω
]

2 ε
1/2

(s)

2 ε
3/2

(s)

2 ε
5/2

(s)

s
crit

|000>

4 N Ω/π

paramagnetic ferromagnetic

O(π/N)

Figure 8.3: Full spectrum of the Ising model spec-
trum for n = 6 spins, adapted from Ref. [50].
A collective Jx interaction may only connect the
ground state to a fraction of states in the even
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number of connected states is 2n/2. Vertical lines
denote single-particle excitation energies. The
largest single-particle excitation energy at s =
1/2 is 2Ω, such that the largest pair creation en-
ergy is 4Ω.

with σzn+1 = σz1. Here, the scaling with the coupling strength has been adapted to reach a suitable
continuum limit. With appropriate coding of the full Hamiltonian, we can numerically access what
we did before, i.e., solve it numerically for finite (small) values of n.

However, additionally we can now derive the master equation for the system. Taking B =
λ√
n
2Jx as coupling operator, we first note that in the free fermion representation, it reads via (5.96)

2Jx =
n∑
`=1

σx` = n1− 2
∑
k

[
|uk|2γ†kγk + |v−k|2γ−kγ†−k + u∗kv

∗
−kγ

†
kγ
†
−k + ukv−kγ−kγk

]
, (8.52)

where the coefficients are determined in (5.83) with g = Ω(1 − s) and J = Ωs. This interaction
connects the ground state of the reservoir only with 2n/2 of the overall 2n reservoir states, see
Fig. 8.3.

This is an example where the first order expectation value of this interaction in a thermal state
does not vanish

〈B〉th =
λ√
n

[
n− 2

∑
k

|uk|2
〈
γ†kγk

〉
th

+ |vk|2
〈
γkγ

†
k

〉
th

]

=
λ√
n

[
n− 2

∑
k

|uk|2f(εk) + |vk|2[1− f(εk)]

]
, (8.53)

where

f(ε) =
1

eβε + 1
(8.54)

denotes the Fermi function at vanishing chemical potential. In the derivation of a master equation
we do however assume that the first order expectation value of the reservoir coupling operator in
the thermal state vanishes. We therefore rewrite system and interaction

H ′S =
ω0

2
σz0 + [〈B〉th − T ]σx0 , H ′I = σx0

[
λ√
n

n∑
i=1

σxi − 〈B〉th

]
≡ σx0 ⊗B′ , (8.55)
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such that H ′S + H ′I = HS + HI and 〈B′〉th = 0. We note that in the interaction picture, we have
for the coupling operator

B(τ) =
λ√
n
n1− 2

λ√
n

∑
k

[
|uk|2γ†kγk + |v−k|2γ−kγ†−k

]
− 2

λ√
n

∑
k

[
+u∗kv

∗
−kγ

†
kγ
†
−ke

+2iεkτ + ukv−kγ−kγke
−2iεkτ

]
≡ B0 +B1(τ) : 〈B(τ)〉th = 〈B〉th = 〈B0〉th (8.56)

Then, the correlation function becomes

C(τ) = 〈B′(τ)B′〉th = 〈[B0 − 〈B0〉+B1(τ)][B0 − 〈B0〉+B1]〉th
=
〈
[B0 − 〈B0〉]2

〉
+ 〈B1(τ)B1〉th , (8.57)

were we have used that the expectation value of products of B0 and B1 vanishes. Even more, for
large n we will have 〈[B0 − 〈B0〉]2〉 → 0, such that we only need to consider the last term

C+(τ)→ 4λ2

n
Tr
{∑

k

[
u∗kv

∗
−kγ

†
kγ
†
−ke

+2iεkτ + ukv−kγ−kγke
−2iεkτ

]∑
q

[
u∗qv

∗
−qγ

†
qγ
†
−q + uqv−qγ−qγq

] e−βH+
B

Z+
B

}
=

4λ2

n

∑
kq

[
u∗kv

∗
−kuqv−qe

+2iεkτ
〈
γ†kγ

†
−kγ−qγq

〉
th

+ ukv−ku
∗
qv
∗
−qe
−2iεkτ

〈
γ−kγkγ

†
qγ
†
−q

〉
th

]
,

(8.58)

where we have used that only few combinations of operators remain finite under the expecta-
tion value. The expectation value of quartic fermionic operators in a thermal state can now be
separately evaluated (using that εk = ε−k)〈

γ†kγ
†
−kγ−qγq

〉
th

= f(εk)f(ε−k) (δkq − δk,−q) = f 2(εk) (δkq − δq,−k) ,〈
γ−kγkγ

†
qγ
†
−q

〉
th

= [1− f(εk)][1− f(ε−k)] (δkq − δk,−q) = [1− f(εk)]
2 (δkq − δq,−k) , (8.59)

where we have used the fermionic anticommutation relations and where f(εk) = [eβεk+1]−1 denotes
the Fermi function at vanishing chemical potential. Using that u−k = u+k, v−k = −v+k, ε−k = ε+k,
we can further write

C+(τ) =
4λ2

n

∑
k

[
2|uk|2|vk|2e+2iεkτf 2(εk) + 2|uk|2|vk|2e−2iεkτ [1− f(εk)]

2
]
. (8.60)

As a sanity check we see that C(−τ) = C∗(+τ) and that the KMS relation C(τ) = C(−τ − iβ) is
satisfied (compare lecture on quantum transport). For even n, the above summation over k runs
over the half-integer values with −(n − 1)/2 ≤ k ≤ +(n − 1)/2 in integer steps, such that in the
continuum limit n → ∞ we may introduce κ = 2πk/n and replace the summation above by an
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integral

C+(τ)→ 8λ2

2π

∫ π

−π
dκ|u(κ)|2|v(κ)|2

[
e+2iε(κ)τf 2(ε(κ)) + e−2iε(κ)τ [1− f(ε(κ))]2

]
=

8λ2

π

∫ π

0

dκ|u(κ)|2|v(κ)|2
[
e+2iε(κ)τf 2(ε(κ)) + e−2iε(κ)τ [1− f(ε(κ))]2

]
=

8λ2

π

2Ω∫
2Ω|1−2s|

dε
dε
dκ

|u(ε)|2|v(ε)|2
[
e+2iετf 2(ε) + e−2iετ [1− f(ε)]2

]
, (8.61)

where we can deduce from Eq. (5.83)

lim
s→1/2

|u(ε)|2|v(ε)|2
dε
dκ

=

√
4Ω2 − ε2

8Ω2
. (8.62)

Thus, for a quantum-critical reservoir (s = 1/2 and continuum limit)

C+(τ) =
8λ2

π

∫ 2Ω

0

√
4Ω2 − ε2

8Ω2

[
e+2iετf 2(ε) + e−2iετ [1− f(ε)]2

]
=

8λ2

π

∫ +2Ω

−2Ω

√
4Ω2 − ε2

8Ω2
e−2iετ [1− f(ε)]2dε

=
2λ2

πΩ

∫ +4Ω

−4Ω

√
1− ω2

16Ω2
[1− f(ω/2)]2e−iωτdω , (8.63)

from which we can read off the Fourier transform

γ(ω) =
4λ2

Ω

√
1− ω2

16Ω2
[1− f(ω/2)]2Θ(16Ω2 − ω2) . (8.64)

This is all we need to write down the master equation (4.49) with the coupling operator S = σx.
In particular, when T = 〈B〉th, the renormalized system Hamiltonian is just ω0/2σ

z
0. This has the

energy eigenbasis {|1〉 , |0〉}, and the rate equation for the ground state occupation Pg and excited
state occupation Pe assumes the form

Ṗe = +γ(−ω0)Pg − γ(+ω0)Pe ,

Ṗg = −γ(−ω0)Pg + γ(+ω0)Pe . (8.65)

From γ(−ω0)/γ(+ω0) = e−βω0 we find that the system will just thermalize in the long-term limit.

8.2 Topological single-particle pumping

Chain models are suitable candidates to realize adiabatic pumping schemes. Here, the nature
of the particles is typically not relevant as the pumping schemes rely only on the single-particle
excitation spectra, which do not depend on the bosonic or fermionic character. Such a chain model
exhibiting rich dynamics is the Aubry-Andre model

H = ∆
N∑
n=1

[2 + cos(2πnb+ φ)] c†ncn + T
N−1∑
n=1

[
c†ncn+1 + c†n+1cn

]
, (8.66)
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where T is a next-neighbour hopping amplitude, ∆ defines the energy scale, n is the site index
and b and φ are parameters. Specifically, b could in case of electrons be controlled by the magnetic
field (compare solid state lecture). But also other means of implementing this Hamiltonian are
conceivable. For example, the variation in the on-site energies can be achieved by using nearby
gates with varying potentials.

When b is a rational number, the excitation spectrum of H exhibits a finite number of bands.
For example, for b = 1/2, we find two bands (such a model can be mapped to a Su-Schrieffer-
Heeger chain, compare lecture on solid state physics) and for b = 1/3 we find three bands. We will
consider a chain of trimers b = 1/3 with NT = N/3 ∈ N denoting the number of trimers. Some
analytic understanding of the band structure can then be gained from analyzing the periodically
closed version of the model

Hper = ∆

3NT∑
n=1

[2 + cos(2πnb+ φ)] c†ncn + T

3NT∑
n=1

[
c†ncn+1 + c†n+1cn

]
, (8.67)

with cN+1 = c1. Using a DFT cn = 1√
N

∑N
k=1 e

2πikn/Ndk maps the Hamiltonian into one with
decoupled trimers

Hper =

NT∑
k=1

(
d†k, d

†
k+NT

, d†k+2NT

)
Hk

 dk
dk+NT

dk+2NT

 ,

Hk = ∆

 2 e−iφ/2 e+iφ/2
e+iφ/2 2 e−iφ/2
e−iφ/2 e+iφ/2 2

+ 2T


cos
(

2πk
3NT

)
0 0

0 cos
(

2πk
3NT

+ 2π
3

)
0

0 0 cos
(

2πk
3NT

+ 4π
3

)
 ,

(8.68)

which can be analytically diagonalized individually. From this one finds that the periodically
closed version of the model has three bands.

When we plot the single-particle excitation spectrum of the open chain model (8.66) for b = 1/3
as a function of φ, we see additionally to the bands also two regions where there are two isolated
eigenvalues outside the bands, see Fig. 8.4. The points where these isolated levels come very close
together (in fact, their splitting is exponentially small in the system size and can for N = 81 trimers
hardly be numerically resolved, compare inset) can be understood from symmetry arguments: The
trimers have the onsite-energies

εA = ε1 = ∆

[
2 + cos

(
2π

3
+ φ

)]
,

εB = ε2 = ∆

[
2 + cos

(
4π

3
+ φ

)]
,

εC = ε3 = ∆

[
2 + cos

(
6π

3
+ φ

)]
, (8.69)

which are periodically repeated along the chain. Now, when φ = 2π/3 (the position of the first
avoided crossing) we find that εA = εC = ∆3

2
and εB = 3∆, such that the chain has an inversion

symmetry at this point. A similar thing happens at φ = 5π/3 where εA = εC = ∆5
2

and εB = ∆.
If we look at the distribution of eigenstates across the sites, one can see that the isolated energy
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eigenstates are either left- or right dominated, see Fig. 8.5. At the avoided crossing (with exponen-
tially small and numerically unresolvable energy gap), the nature of the lower energy eigenstate
changes abruptly from left-dominated to right-dominated, such that an adiabatic transition (re-
maining in the lower eigenstate) is not possible. Writing the solution of the Schrödinger equation
as

|Ψ(t0 + ∆t)〉 = |Ψ(t0)〉 − i

∫ t0+∆t

t0

H(t′) |Ψ(t′)〉 dt′ , (8.70)

one can see that a local Hamiltonian H(t) can in short times ∆t not generate a transition between
a left-dominated state |Ψ(t0)〉 and a right-dominated state. Therefore, the state will essentially
remain the same at the avoided crossing (non-adiabatic transition), and after the avoided crossing
all the amplitude is in the excited state. Afterwards, an adiabatic evolution is still possible (along
the excited state) until ∆φ = 2π, where the excited state is again non-adiabatically transferred
to the ground state – now right-dominated. Therefore, after ∆φ = 2π and two non-adiabatic
transitions, the particle is transferred from left to right.

This appears well reflected in the numerical solution of the time-dependent Schrödinger equa-
tion. In the single-particle subspace, we can use a short-hand notation

|npos〉 = |0〉 ⊗ . . . |0〉 ⊗ |1〉︸︷︷︸
nth pos.

⊗ |0〉 ⊗ . . .⊗ |0〉 . (8.71)

Since the overall particle number is conserved by the Hamiltonian, it suffices to consider only the
single-particle basis, and the spectrum in this subspace is just given by the previously considered
single-particle energies. Initializing the system in a state where a single particle is localized on the
left

|Ψ0〉 = |1pos〉 〈1pos| , (8.72)

we do not exactly prepare the system in an energy eigenstate. Nevertheless, this state has a large
overlap with the left-dominated edge state. When we then solve the time-dependent Schrödinger
equation subject to the time-dependent Hamiltonian with

φ(t) =
2π

3
+ 2π

t

Trt

: 0 ≤ t ≤ Trt (8.73)

with a sufficiently large runtime Trt, we may expect adiabatic evolution and hence will find the par-
ticle close to the right end of the chain at the end of the protocol, which is indeed what we observe
for large runtimes Trt in the numerical solution, see Fig. 8.6. This is not a conventional particle
pumping scheme, as during the process, the wave function is completely delocalized. Rather, the
particle is teleported from one end of the chain to the other. One may thereby wonder how robust
this scheme is with respect to imperfections. These imperfections must however not destroy the
inversion symmetry of the system. For example, the inversion symmetry is respected when we only
perturb the intra-trimer couplings

∆H1 =

N/3∑
n=1

rn

[
c†3nc3n+1 + c†3n+1c3n

]
, (8.74)
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Figure 8.7: When random disorder in the tunneling amplitudes (rn ∈ ∆[−1/2,+1/2] uniformly
distributed) is added to the Hamiltonian, it will perturb all eigenvalues (orange dots vs. black
curves). However, in case of intra-trimer disorder (8.74), the inversion symmetry is respected and
so are the edge state eigenvalues (left). This is not the case when total disorder (8.75) is used
(right).
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it will not be respected when we perturb all tunnel couplings

∆H2 =
N∑
n=1

rn

[
c†ncn+1 + c†n+1cn

]
, (8.75)

with random numbers rn. This is clearly visible in the spectrum, see Fig. 8.7.
This robustness against disorder would then enable a teleportation protocol to work even

through strongly disordered lattices.
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[16] R. Dümcke and H. Spohn. The proper form of the generator in the weak coupling limit.
Zeitschrift für Physik B, 34:419–422, 1979.

[17] Tameem Albash, Sergio Boixo, Daniel A Lidar, and Paolo Zanardi. Quantum adiabatic
Markovian master equations. New Journal of Physics, 14(12):123016, dec 2012.

[18] Jérémie Roland and Nicolas J. Cerf. Quantum search by local adiabatic evolution. Physical
Review A, 65:042308, Mar 2002.
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