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Abstract. We present a formalism to calculate frequency dependent electron current noise for transport
through two-level systems (such as coupled quantum dots or Cooper-pair boxes) in presence of dissipation.
Perturbation theories in various regimes are formulated within a matrix scheme in Laplace scheme which
we evaluate in detail both for weak and strong coupling to a bosonic environment.

PACS. 72.70.+m Noise processes and phenomena – 73.23.Hk Coulomb blockade; single-electron tunneling

1 Introduction

Electronic current noise has shot to prominence as a valu-
able tool for extracting information not available in con-
ventional dc transport experiments. This is in particular
true in mesoscopic systems, where energy relaxation and
the loss of phase coherence is crucial for the understand-
ing of transport properties. Transport through artificial
few-level systems (coupled quantum dots, small supercon-
ducting junctions) has received a great deal of attention
due to possible applications for quantum information pro-
cessing.

In this contribution, we present a theoretical investi-
gation of current noise in one of the simplest quantum
systems, i.e., a quantum two-level system (TLS or qubit)
coupled to a dissipative environment and to electron reser-
voirs. We have developed a formalism in order to calcu-
late the full, frequency (ω) dependent charge and current
noise spectrum for arbitrary coupling to a thermal, dis-
sipative environment. One of our main results is the ex-
traction of dephasing and relaxation rates of the TLS from
the noise. We formulate two different perturbative regimes
(weak dissipation or weak tunneling) within a single ma-
trix formalism that allows to explore noise in regimes of
different coupling strengths.

2 Model

Double quantum dots (DQD) in the strong Coulomb
blockade regime [1–4] and Cooper pair boxes [5–7] can be
tuned into a regime that is governed by an ‘open’ version of
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the spin–boson model (dissipative two–level system [8,9])

H =
ε

2
σz + Tcσx +

1
2
σzA +

∑
Q

ωQa†
QaQ

A :=
∑
Q

gQ

(
a−Q + a†

Q

)
, (1)

where one additional ‘transport’ electron tunnels between
a left (L) and a right (R) dot with energy difference ε and
inter–dot coupling Tc, where σz = |L〉〈L| − |R〉〈R| and
σx = |L〉〈R|+ |R〉〈L|. Our model describes a Cooper-pair
box as well, the transport through the DQD being anal-
ogous to the Josephson Quasiparticle Cycle (JQP) of the
superconducting single electron transistor (SSET) where
the charging energy is much larger than the Josephson en-
ergy, EC � EJ , such that only two charge states, |2〉 (one
excess Cooper pair in the SSET) and |0〉 (no extra Cooper
pair), are allowed, such that σz = |0〉〈0| − |2〉〈2| and
σx = |0〉〈2|+ |2〉〈0|, with 2Tc → EJ and ε → 4EC(2ng−1)
(ng is the total polarization charge applied to the gate
electrode [5–7]). The last two terms in equation (1) ap-
pear due to the coupling with the bosonic bath, where ωQ

are the frequencies of bosons, and the gQ denote interac-
tion constants. Although not exactly solvable, the model
is quite well understood for closed systems [8] (isolated
dots with one additional electron). The coupling to exter-
nal leads offers the possibility to study its non–equilibrium
properties.

2.1 Equations of motion

We describe the dynamics of the two level system by a re-
duced statistical operator ρ(t), allowing for an additional
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‘empty’ state. In the DQD case, this describes tunneling
from a left reservoir at rate ΓL into the left dot, and from
the right dot to the right reservoir at rate ΓR. In the
Cooper-pair box case, the extra ‘empty’ state |1〉 is needed
to describe two consecutive quasiparticle events (with
rates Γ2 and Γ1) through the cycle |2〉 → |1〉 → |0〉 ⇔ |2〉.
For simplicity, we use in the following the DQD language.
The coupling to the reservoirs within Born and Markov
(BM) approximation with respect to HT [2,20] yields tun-
neling rates Γα = 2π

∑
kα

|V α
k |2δ(ε − εkα) (we assume

Fermi distributions for the reservoirs fL = 1 and fR = 0;
large voltage regime). Then, second order perturbation
theory in HT becomes exact, and one obtains

∂

∂t
ρLL(t) = −iTc [ρLR(t) − ρRL(t)]

+ ΓL [1 − ρLL(t) − ρRR(t)]
∂

∂t
ρRR(t) = −iTc [ρRL(t) − ρLR(t)] − ΓRρRR(t).

For the remaining equation for the off–diagonal element
ρLR = ρ∗RL, one has to choose between perturbation the-
ory in gQ (weak coupling, PER), or in Tc in a polaron–
transformed frame (strong coupling, POL). In general, the
equations of motion can be written in matrix form

〈A(t)〉 = 〈A(0)〉 +
∫ t

0

dt′ {M(t − t′)〈A(t′)〉 + Γ} (2)

with the matrix memory kernel M , the expectation value
of the vector A ≡ (n̂L, n̂R, p̂, p̂†), and Γ = ΓLe1. We will
take advantage of this form further below. Note that the
stationary expectation values simply are

〈A(t → ∞)〉 = −M−1Γ (3)

which follows from differentiating equation (2).
Some general remarks are in order here. No exact so-

lution of the above model is available: this is the case even
for coupling to one bosonic mode only (gQ ∝ δQ,Q0 , Rabi
Hamiltonian). Furthermore, for the spin–boson problem
with ΓR/L = 0, it is well–known that POL is equivalent
to a double–path integral ‘non–interacting blip approxi-
mation’ (NIBA) that works well for zero bias ε = 0 but for
ε 	= 0 does not coincide with PER at small couplings and
low temperatures. We have compared both approaches for
ΓR/L 	= 0 and found [3] nearly perfect agreement for very
large ε � Tc, a regime that has been tested experimentally
recently [1].

2.2 Perturbation theory in the electron-boson coupling

The standard Born and Markov approximation with re-
spect to A yields

d

dt
ρPER

LR (t) = [iε − γp − ΓR/2] ρLR(t) + [iTc − γ−] ρRR(t)

− [iTc − γ+] ρLL(t).

Here, the rates are

γp := 2π
T 2

c

∆2
J(∆) coth (β∆/2)

γ± := −εTc

∆2

π

2
J(∆) coth (β∆/2) ∓ Tc

∆

π

2
J(∆)

J(ω) :=
∑
Q

|gQ|2δ(ω − ωQ). (4)

where ∆ :=
√

ε2 + 4T 2
c is the energy difference of the hy-

bridized levels, and β = 1/kBT the inverse boson equilib-
rium bath temperature. Note that beside the off–diagonal
decoherence rate γp, there appear terms ∝ γ± in the di-
agonals which below turn out to be important for the sta-
tionary current.

The effects of the bath are encapsulated in the spectral
density J(ω), where ωQ are the frequencies of the bosons
and the gQ denote interaction constants. When showing
results we will be using a generic Ohmic bath,

J(ω) = 2αωe−ω/ωc . (5)

The dimensionless parameter α reflects the strength of
dissipation and ωc is a high energy cutoff [9].

2.3 Polaron transformation

The polaron transformation [2] leads to an integral equa-
tion

ρPOL
LR (t) = −

∫ t

0

dt′eiε(t−t′)

[
ΓR

2
C(t − t′)ρLR(t′)

+ iTc {C(t − t′)ρLL(t′) − C∗(t − t′)ρRR(t′)}
]
,

where C(t) is an equilibrium correlation function with
respect to the bosonic bath (inverse temperature β =
1/kBT , spectral density ρ(ω), Eq. (4)),

C(t) := 〈X(t)X†〉B = e−Φ(t)

Φ(t) =
∫ ∞

0

dω
J(ω)
ω2

[
(1 − cosωt) coth

(
βω

2

)
+ i sinωt

]
.

(6)

In this case, the matrix M(τ) is time-dependent. We define
the Laplace transform

Ĉ(z) =
∫ ∞

0

dte−ztC(t). (7)

Laplace-transforming equation (6), we find

ρ̂LR(z) = −ΓR

2
Ĉε(z)ρ̂LR(z) (8)

− iTcĈε(z)ρ̂LL(z) + iTcĈ
∗
−ε(z)ρ̂RR(z)

ρ̂RL(z) = −ΓR

2
Ĉ∗

ε (z)ρ̂RL(z) (9)

+ iTcĈ
∗
ε (z)ρ̂LL(z) − iTcĈ−ε(z)ρ̂RR(z),

(10)
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where we abbreviated Ĉε(z) = Ĉ(z − iε), Ĉ−ε(z) = Ĉ(z +
iε), Ĉ∗

−ε(z) = [Ĉ(z∗ + iε)]∗, and Ĉ∗
ε (z) = [Ĉ(z∗ − iε)]∗.

We re-arrange these equations into

zρ̂LR(z) =
[
z − 1

Cε(z)
− ΓR

2

]
ρ̂LR(z)

− iTcρ̂LL(z) + iTc
C∗

−ε(z)
Cε(z)

ρ̂RR(z) (11)

zρ̂RL(z) =
[
z − 1

C∗
ε (z)

− ΓR

2

]
ρ̂LR(z) (12)

+ iTcρ̂LL(z) − iTc
C−ε(z)
C∗

ε (z)
ρ̂RR(z). (13)

Note that in the limit of vanishing electron-boson cou-
pling, Cε(z) = C∗

−ε(z) = (z− iε)−1. Furthermore, we have

Re[Cε(z)]|z=±iω = πP (ε ∓ ω), (14)

where P (ε) is the probability for inelastic tunneling with
energy transfer ε [9]. For Ohmic dissipation at T = 0, one
has

Cε(0) = −i/ωc(−ε/ωc)2α−1e−ε/ωcΓ (1−2α,−ε/ωc), (15)

such that

P (ε) = (ε/ωc)2α−1e−ε/ωcθ(ε)/(ωcΓ (2α)). (16)

Here, Γ (x, y) is the incomplete Gamma function.

2.4 Matrix notation

We can introduce a convenient matrix notation that com-
prises both the PER and the POL case. Equation (2) can
be solved in Laplace space as

〈Â(z)〉 = [z − zM̂(z)]−1(〈A(0)〉 + Γ/z) (17)

and serves as a starting point for the analysis of sta-
tionary (1/z coefficient in Laurent series for z → 0) and
non-stationary quantities. The memory kernel has a block
structure

zM̂(z) =
[−Ĝ T̂c

D̂z Σ̂z

]
, Ĝ ≡

(
ΓL ΓL

0 ΓR

)
, (18)

where T̂c ≡ −iTc(1 − σx).
In the Born-Markov (PER) approximation, the result-

ing expressions are:

D̂PER = T̂c +
(

γ+ −γ−
γ+ −γ−

)
, Σ̂PER =

(
E 0
0 E∗

)
, (19)

where E = iε − γp − ΓR

2 and the rates equation (4) com-
pletely determine dephasing and relaxation in the system.

In the POL (strong coupling) approximation, the re-
sulting matrices in z-space are

D̂POL
z = iTc

(−1 Ĉ∗−ε/Ĉε

1 −Ĉ−ε/Ĉ∗
ε

)
, Σ̂POL

z =

(
Ẽ 0

0 Ẽ∗

)
,

(20)

with Ẽ[∗] ≡ z − 1/C
[∗]
ε (z)− ΓR/2. In contrast to the PER

solution, where M(τ) = M = zM̂(z) is time-independent,
MPOL(τ) is time-dependent and zM̂(z) depends on z in
the POL approach.

3 Spectral density of the current fluctuations

Usually, current noise is described by the power spectral
density

SI(ω) ≡ 2
∫ ∞

−∞
dτeiωτSI(τ)

=
∫ ∞

−∞
dτeiωτ 〈{∆Î(τ), ∆Î(0)}〉

∆Î(t) ≡ Î(t) − 〈Î(t)〉. (21)

However, quantum noise can be asymmetric in the fre-
quency ω due to the non-commutativity of current opera-
tors, such that the noise spectrum may be defined as:

Sasym
I (ω) =

∫ ∞

−∞
dτeiωτ 〈Î(τ), Î(0)〉 − 〈Î〉〈Î〉〉. (22)

It has been recently shown that such an asymmetric quan-
tum shot noise spectrum can be detected in situations
where a quantum of energy �ω is transferred from the
system to the measurement apparatus [21–23] which was
demonstrated experimentally [16].

In order to keep our discussion as general as possible
we consider here the symmetrized version of the quantum
noise, namely equation (21), and leave the study of non-
symmetrized noise for future research.

We define the Fano factor

γ ≡ SI(0)
2qI

, (23)

which quantifies deviations from the Poissonian noise,
SI(0) = 2qI (uncorrelated carriers with charge q).

3.1 Current conservation, quantum regression theorem

To calculate SI(ω), we need to relate the reduced dynam-
ics of the qubit to reservoir operators like the current op-
erator. Note that SI(ω) has to be calculated from the
autocorrelations of the total current I, i.e. particle plus
displacement current [24]. Using current conservation to-
gether with the Ramo-Shockley theorem,

I = aIL + bIR (24)

(a and b, with a + b = 1, depend on each junction capaci-
tance [24]), one can express SI(ω) in terms of the spectra
of particle currents and the charge noise spectrum SQ(ω),

SI(ω) = aSIL(ω) + bSIR(ω) − abω2SQ(ω). (25)



4 The European Physical Journal B

Here, the charge-charge correlation function SQ(ω) is de-
fined as

SQ(ω) ≡ lim
t→∞

∫ ∞

−∞
dτeiωτ 〈{Q̂(t), Q̂(t + τ)}〉

= 2Re
{
f̂(z = iω) + f̂(z = −iω)

}
, (26)

where Q̂ = n̂L + n̂R and f̂(z) is the Laplace transform of

f(τ) =
∑

i,j=L,R

〈n̂i(t)n̂j(t + τ)〉. (27)

This is evaluated with the help of the charge correlation
functions,

Cα(τ) ≡ 〈n̂α(t)A(t + τ)〉
f(τ) = (e1 + e2)[CL(τ) + CR(τ)]. (28)

The EOM for Cα(τ) can be obtained from the quan-
tum regression theorem [17] which in our case here reads

Ci(τ) = Ci(0) +
∫ τ

0

dτ ′ {M(τ − τ ′)Ci(τ ′) + 〈ni(t)〉Γ} .

(29)

Its solution is expressed with the help of the resolvent
[z − zM̂(z)]−1.

3.2 ‘Quasiparticle counting’ and MacDonald formula

We relate the qubit dynamics with reservoir operators
by introducing a counting variable n which represents
the number of electrons that have tunneled through the
right barrier [13,25]. We define generalized expectation
values as

O(n) ≡
∑

i=0,L,R

Trbath〈n, i|Ôρ(t)|n, i〉. (30)

The usual expectation values are recovered as

〈Ô〉 =
∑

n

O(n). (31)

One now writes

ṅ
(n)
0 = −ΓLn

(n)
0 + ΓRn

(n−1)
R

ṅ
(n)
L/R = ±ΓL/Rn

(n)
0 ± iTc

(
p(n) − [p(n)]†

)
(32)

and corresponding equations for p(n) and [p(n)]†. A similar
derivation holds for the left barrier. Equations (32) allow
to calculate the particle current and the noise spectrum
from

Pn(t) = n
(n)
0 (t) + n

(n)
L (t) + n

(n)
R (t), (33)

which gives the total probability of finding n electrons in
the collector by time t. In particular, IR(t) = e

∑
n nṖn(t)

and SIR can be calculated from [12]

SIR(ω) = 2ωe2

∫ ∞

0

dt sin(ωt)
d

dt

[〈n2(t)〉 − (t〈I〉)2] .
(34)

Here,

d

dt
〈n2(t)〉 =

∑
n

n2Ṗn(t)

= ΓR

∞∑
n=0

nn
(n)
R (t) + ΓR

∞∑
n=0

n
(n)
R (t). (35)

Solving equations (32) we obtain

SIR(ω) = 2eI {1 + ΓR [n̂R(−iω) + n̂R(iω)]}
zn̂R(z) = ΓLg+(z)/N(z)

N(z) ≡ [z + ΓR + g−(z)](z + ΓL)
+ (z + ΓR + ΓL)g+(z). (36)

with

g+[−](z) = ±iTc(e1 − e2)
[
z − Σ̂z

]−1

D̂ze1[2]. (37)

Equations (36, 37) demonstrate the dependence of the cur-
rent noise on the dephasing via the two-by-two blocks D̂z

and Σ̂z, cf. equations (18, 19, 20). Explicitly,

gPER
± (z) ≡ 2Tc

Tc(γp + ΓR/2 + z) − εγ±
(γp + ΓR/2 + z)2 + ε2

gPOL
+[−](z) ≡ T 2

c


 C

[∗]
[−]ε(z)

1 + ΓR

2 Cε(z)
+ (C ↔ C∗)


 . (38)

A similar derivation yields SIL(ω) = SIR(ω).

4 Results

4.1 Zero frequency shot noise

In the zero frequency limit z → 0, one obtains

SI(0) = 2eI

(
1 + 2ΓR

d

dz
[zn̂R(z)]z=0

)
. (39)

Without bath (α = 0), we recover previous results of
reference [13] (shot noise of DQD’s) and reference [11]
(shot noise of the CP box). In particular, we obtain

[zn̂R(z)]′z=0 = −4T 2
c ΓL

ΓR

× 4ε2(ΓR − ΓL) + 3ΓLΓ 2
R + Γ 3

R + 8ΓRT 2
c

[ΓLΓ 2
R + 4ΓLε2 + 4T 2

c (ΓR + 2ΓL)]2
, (40)

For α = 0 and Γ ≡ ΓL = ΓR (Fig. 1a, thick solid line),
the smallest Fano factor is reached for ε = 0 where quan-
tum coherence strongly suppresses noise. The maximum
suppression (γ = 1/5) is reached for Γ = 2

√
2Tc. For

large ε > 0 (ε < 0) the charge becomes localized in the
right (left) level, SI(0) is dominated by only one Poisson
process, namely the noise of the right (left) barrier, and
γ → 1.
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Fig. 1. a) Fano factor vs. bias ε for dissipative coupling α =
0.005 and different temperatures from T = 0 (dashed line) to
T = 300 (line with circles) in intervals of 50. For comparison,
the case α = 0 is also shown (thick solid line). Parameters Tc =
3, ΓL = ΓR = 0.01, ωc = 500, (in µeV) correspond to typical
experimental values [1] in double quantum dots. b) Current vs.
bias ε. c) Shot noise vs. bias ε.

For α 	= 0, the system has a finite possibility to
exchange energy quanta with the bath. The effect of a
bosonic bath on noise in a mesoscopic scatterer was first
discussed in [14]. For the TLS discussed here, sponta-
neousemission (for ε > 0) occurs even at very low tem-
peratures [1,2], and the noise is reduced [10] well below
the Poisson limit (Fig. 1a, dashed line).

The maximum suppression is now reached when the
elastic and inelastic rates coincide, i.e., γp = ΓR, as we
have checked numerically. For large couplings, sponta-
neous emission leads to a very asymmetric Fano factor
that goes from γ ≈ 1 to γ ≈ 0.5 as ε changes sign (not
shown here).

At finite temperatures, absorption of energy quanta
from the the bath is possible and the Fano factor for
ε < 0 is also reduced below the Poisson limit. Note that
for ε > 0 the opposite behavior is found and the Fano
factor increases as the temperature increases. Interest-
ingly, at ε = 0 both the current and shot noise become
temperature-independent.

4.2 Finite frequency noise

For finite ω, we show the numerical results for α = 0 in
Figure 2. The background noise is half the Poisson value as
one expects for a symmetric structure. γ deviates from this
value around ω = 0 where the noise has a peak and ω = ∆
where the noise is suppressed. This noise supression (dip
in the Fano factor) directly reflects the resonant shape of
SQ(ω) around ∆ (inset), cf. equation (25). The physical
reason for this is the fact that an increase of ε localizes the
qubit and, thus, the zero-frequency noise reaches γ → 1.
Moreover, the dip in the high frequency noise at ω = ∆ is
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S
I(ω
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eI

0.9975 1 1.0025
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ω
2 S

Q
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)/8
eI

0.9975 1 1.0025
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ε=10

Fig. 2. Frequency dependent current noise (no dissipation,
T = 0, ΓL = ΓR = 0.01). Inset: charge noise contribution.
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Fig. 3. Effect of decoherence on current noise near resonance
(ohmic dissipation, bias ε = 10, ΓR = ΓL = Γ = 0.01, α =
0.005 and different temperatures from T = 0 (thick solid line)
to T = 300 (in intervals of 50), corresponding to T ≈ 0.4∆ −
2.2∆. Right inset: the pseudospin correlation function Sz(ω).
Left inset: low frequencies region near shot noise limit ω = 0.
Arrows indicate the direction of increasing temperatures.

progressively destroyed (reduction of quantum coherence)
as ε increases.

A similar reduction of the dip at ω = ∆ occurs at fixed
ε and Γ with increasing dissipation (Fig. 3) in the weak
coupling (PER) regime. This behavior demonstrates that
SI(ω) reveals the complete internal dissipative dynamics
of the TLS.

In order to substantiate the above argument, we plot
the symmetrized pseudospin correlation function

Sz(ω) = 1/2
∫ ∞

−∞
dωeiωτ 〈{σ̂z(τ), σ̂z}〉 (41)

(Fig. 3, right inset). This function is often used to investi-
gate the dynamics of the SB problem [9]. Both functions
reflect (in the same fashion) how the coherent dynamics
of the system progressively gets damped by the bosonic
bath.

In the past, there have been various schemes for
the extraction of inelastic rates (dephasing and relax-
ation rates) from transport quantities in double quan-
tum dots, e.g. by adiabatic transfer or pumping [18,19].
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Fig. 4. Low frequency current noise in qubit with strong ohmic
dissipation (T = 0, ε = 10, Tc = 3, ΓL = ΓR = 0.01). Inset:
Shot noise for ω = 0.

One central prediction of our theory here is that for open
two-level systems, these rates can be extracted from a
current noise measurement at low temperatures by de-
termining the half-width of the correlation function SI(ω)
around ω = ∆ or ω = 0 [26]. For an Ohmic environment,
γb

d = γp/2 + 2πα( ε
∆)2kBT , such that the total dephas-

ing rate is γd(T = 0) = γb
d + Γ/2 = (γp + Γ )/2 Close to

ω = 0, the peak in SI(ω) for α = 0 changes into a dip
around ω = 0 reflecting incoherent relaxation dynamics
for α 	= 0. The half-width is now given by the relaxation
rate such that the full-width of SI(ω) around ω = 0, at
T = 0, is twice that of the high frequency noise (Fig. 3,
thick solid line of the left inset).

As temperature increases, the Lorentzian dip around
ω = ∆ broadens. This can be understood in terms of an in-
crease of the dephasing rate with temperature. The noise
at low frequencies does not follow this simple behavior
(Fig. 3, left inset). Instead, its shape changes as one in-
creases the temperature. Although we do not have a rig-
urous explanation for this, one can expect a strong depen-
dence of the shot noise around ω = 0 with temperature
because in the range studied T ≈ 0.4∆−2.2∆ the frequen-
cies are always smaller than temperature. Moreover, as we
explained above, the Fano factor decreases with tempera-
ture for ε < 0 whereas the opposite behavior is found for
ε > 0.

4.3 Strong dissipation noise

The results for the strong coupling (POL) regime are pre-
sented in Figure 4. Near ω = 0, POL and PER yield
nearly identical results for the noise SI(ω) at very small
α (not shown here). The cross-over to Poissonian noise
near ω = 0 with increasing α indicates the formation of
localized polarons. The delocalisation-localisation transi-
tion [8,9] of the spin-boson model at α = 1 is reflected in a
change of the analytic behaviour of Cε and the shot noise
near zero bias (Fig. 4, inset). Similar physics has been
found recently in the suppression of the persistent current
I(|ε|) ∝ ImC−|ε| through a strongly dissipative quantum

ring containing a quantum dot with bias ε [15]. Although
POL becomes less reliable for α < 1 and smaller bias, the
non-symmetry in ε of the shot noise and the inelastic cur-
rent ∝ ReCε reflects the ‘open’ topology of our TLS in
the non-linear transport regime.

5 Conclusion

We have shown that the current noise spectrum contains
detailed information about the internal, dissipative dy-
namics of open quantum two-level system such as double
quantum dots or Cooper pair boxes. On the theoretical
side, the challenging question of how to go beyond the two
perturbative methods presented here remains open. One
way could be the use of path-integral techniques beyond
the NIBA, another could be exact solutions for certain
values of the coupling α, although at present it is unclear
how feasable these approaches are in the transport situa-
tion discussed here.

On the experimental side, promising progress has been
made for noise measurements [16] and experiments in tun-
able double quantum dots [4] and Cooper-pair boxes [7],
where we hope our predictions to be tested in the near
future.
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