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Abstract

A review of coherent and collective quantum optical effects like superradiance and coherent population trapping
in mesoscopic systems is presented. Various new physical realizations of these phenomena are discussed, with a
focus on their role for electronic transport and quantum dissipation in coupled nano-scale systems like quantum
dots. A number of theoretical tools such as Master equations, polaron transformations, correlation functions, or
level statistics are used to describe recent work on dissipative charge qubits (double quantum dots), the Dicke effect,
phonon cavities, single oscillators, dark states and adiabatic control in quantum transport, and large spin-boson
models. The review attempts to establish connections between concepts from Mesoscopics (quantum transport,
coherent scattering, quantum chaos), Quantum Optics (such as superradiance, dark states, boson cavities), and
(in its last part) Quantum Information Theory.
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1. Introduction

There is a growing interest in the transfer of concepts and methods between Quantum Optics and
Condensed-Matter Physics. For example, well-known methods from Laser Physics like the control of
quantum coherent superpositions or strong coupling of atoms to cavity photons have started to become
feasible in artificial condensed-matter structures. On the other hand, condensed matter concepts are
used, e.g., in order to realize quantum phase transitions with atoms in tunable optical lattices. The main
direction of this Review is the one from Quantum Optics towards Condensed-Matter Physics, and to be
more specific, towards mesoscopic systems such as artificial atoms (quantum dots). The primary subject
therefore are concepts, models, and methods which are originally mostly known in a quantum optical
context, and the overall aim is to show how these appear and can be understood and implemented in
Mesoscopics. Typical examples are the roles that (collective) spontaneous emission, coherent coupling
to single boson modes, quantum cavities, dark resonances, adiabatic steering etc. play for, e.g., electronic
transport in low-dimensional systems such as (superconducting or semiconducting) charge qubits.

As is the case for Quantum Optics, quantum coherence is a very important (but not the only) ingredient
of physical phenomena in mesoscopic systems. Beside coherence, collective effects due to interactions of
electrons among themselves or with other degrees of freedom (such as phonons or photons) give rise to a
plethora of intriguing many-body phenomena. At the same time, collective effects are also well-known in
Quantum Optics. The laser is a good example for the realization of the paradigm of stimulated emission
in a system with a large number of atoms, interacting through a radiation field. Another paradigm is
spontaneous emission. As one of the most basic concepts of quantum physics, it can be traced back
to such early works as that of Albert Einstein in 1917. The corresponding realization of spontaneous
emission in a many-atom system (which will play a key role in this Review) issuperradiance: this is
the collective spontaneous emission of an initially excited ensemble ofN two-level systems interacting
with a common photon field. As a function of time, this emission has the form of a very sudden peak
on a short time scale∼ 1/N , with an abnormally large emission rate maximum∼ N2. This effect was
first proposed by Dicke in 1954, but it took nearly 20 years for the first experiments to confirm it in an
optically pumped hydrogen fluoride gas.

Outside Quantum Optics, Dicke superradiance has been known to appear incondensed matter systems
for quite a while, with excitons and electron–hole plasmas in semiconductors being the primary examples.
In spite of the intriguing complexities involved, it is semiconductor quantum optics where physicists have
probably been most successful so far in providing the condensed matter counterparts of genuine quantum
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optical effects. This indeed has led to a number of beautiful experiments such as the observation of Dicke
superradiance from radiatively coupled exciton quantum wells.

On the other hand and quite surprisingly, the Dicke effect has been ‘re-discovered’ relatively recently
in the electronic transport propertiesof a mesoscopic system in a theoretical work by Shabazyan and
Raikh in 1994 on the tunneling of electrons through two coupled impurities. This has been followed by
a number of (still mostly theoretical) activities, where this effect is discussed in a new context and for
physical systems that are completely different from their original counter-parts in Optics. For some of
these (like quantum dots), the analogies with the original optical systems seem to be fairly obvious at first
sight, but in fact the mesoscopic ‘setup’ (coupling to electron reservoirs, non-equilibrium, etc.) brings in
important new aspects and raises new questions.

The purpose of the present Report is to give an overview over quantum optical concepts and models (such
as Dicke superradiance, adiabatic steering, single boson cavities) in Mesoscopics, with the main focus
on their role for coherence and correlations in electronic scattering, in mesoscopic transport, quantum
dissipation, and in such ‘genuine mesoscopic’ fields as level statistics and quantum chaos. Most of the
material covered here is theoretical, but there is an increasingly strong background of key experiments,
only some of which are described here. The current rapid experimental and theoretical progress is also
strongly driven by the desire to implement concepts from quantum information theory into real physical
systems. It can therefore be expected that this field will still grow very much in the near future, and a
Review, even if it is only on some special aspects of that field, might be helpful to those working or
planning to work in this area.

A good deal of the theoretical models to be discussed here is motivated by experiments in mesoscopic
systems, in particular on electronic transport in coupled, artificial two-level systems such as semicon-
ductor double quantum dots, or superconducting Cooper-pair boxes. Two examples in the semiconductor
case are the control of spontaneous phonon emission, and single-qubit rotations. For the sake of definite-
ness, double quantum dots will be the primary example for two-level systems throughout many parts of
this Review, but the reader should keep in mind that many of the theoretical models can be translated
(sometimes easily, sometimes probably not so easily) into other physical realizations.

Section 2 is devoted to electronic transport through double quantum dots and starts with a short survey
of experiments before moving on to a detailed theory part on models and methods, with more recent results
on electron shot noise and time-dependent effects. This is followed by a review of Dicke superradiance
in Section 3, with applications such as entanglement in quantum dot arrays, and a section on dissipation
effects in generic large-spin models that are of relevance to a large range of physical systems. Section 4
starts with a brief analysis of the Dicke spectral line-shape effect and its mathematical structure, which
turns out to be very fruitful for understanding its wider implications for correlation functions and scattering
matrices. This is discussed in detail for the original Shabazyan–Raikh and related models for tunneling
and impurity scattering and concluded by a discussion of the effect in the ac-magneto-conductivity of
quantum wires.

Section 5 presents electron transport through phonon cavities, and Section 6 introduces single-mode
quantum oscillator models, such as the Rabi–Hamiltonian, in the context of electronic transport. These
models have started to play a great role in the description of mechanical and vibrational degrees of freedom
in combination with transport in nanostructures, a topic that forms part of what can already safely been
called a new area of Mesoscopic Physics, i.e., nano-electromechanical systems.

Section 7 is devoted to the dark resonance effect and its spin-offs such as adiabatic transfer and rotations
of quantum states. Dark resonances occur as quantum coherent ‘trapped’superpositions in three (or more)
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state systems that are driven by (at least)two time-dependent, monochromatic fields. Again, there are
numerous applications of this effect in Laser Spectroscopy and Quantum Optics, ranging from laser
cooling, population transfer up to loss-free pulse propagation. In mesoscopic condensed-matter systems,
experiments and theoretical schemes related to this effect have just started to appear which is why an
introduction into this area should be quite useful.

Finally, Section 8 covers the Dicke superradiance model in its purest and, perhaps, most interesting
one-boson mode version. It provides a discussion of an instability of the model, the precursors of which
are related to a cross-over in its level statistics and its quantum-chaotic behavior. Exact solutions of this
model have recently enlarged the class of systems for which entanglement close to a quantum phase
transition can be discussed rigorously, which are briefly reviewed and compared with entanglement in
the Dicke model.

2. Electronic transport and spontaneous emission in artificial atoms (two-level systems)

Electronic transport is one of the most versatile and sensitive tools to explore the intriguing quantum
properties of solid-state based systems. The quantum Hall effect[1], with its fundamental conductance
unite2/h, gave a striking proof that ‘dirty’condensed matter systems indeed reveal beautiful ‘elementary’
physics, and in fact was one of the first highlights of the new physics that by now has established itself as
the arena of mesoscopic phenomena. In fact, electronic transport in the quantum regime can be considered
as one of the central subjects of modern Solid State Physics[2–10]. Phase coherence of quantum states
leads (or at least contributes) to effects such as, e.g., localization[11,12]of electron wave functions, the
quantization of the Hall resistance in two-dimensional electron gases[5,13,14], the famous conductance
steps of quasi one-dimensional quantum wires or quantum point contacts[15–18], or Aharonov–Bohm
like interference oscillations of the conductance of metallic rings or cylinders[19].

The technological and experimental advance has opened the test-ground for a number of fundamental
physical concepts related to the motion of electrons in lower dimensions. This has to be combined
with a rising interest to observe, control and eventually utilize the two key principles underlying our
understanding of modern quantum devices: quantum superposition and quantum entanglement.

2.1. Physical systems and experiments

The most basic systems where quantum mechanical principles can be tested in electronic transport are
two-level systems. These can naturally be described by a pseudo spin 1/2 (single qubit) that refers either
to the real electron spin or another degree of freedom that is described by a two-dimensional Hilbert space.
The most successful experimental realizations so far have probably beensuperconducting systemsbased
on either the charge or flux degree of freedom (the Review Article by Mahklin et al.[20] provides a good
introduction). In 1999, the experiments by Nakamura et al.[21] in superconducting Cooper-pair boxes
demonstrated controlled quantum mechanical oscillations for the first time in a condensed matter-based
two-level system, with more refined experiments following soon thereafter. These activities determine a
field which is still very much growing (and, needless to say, therefore cannot be treated in this Review
in full detail). One of these examples at the time of writing this Review are the experiments by the Yale
group on the coherent coupling of cavity photons to a Cooper-pair box, cf. Section 6.4.
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Furthermore, at least since the proposal by Loss and DiVincenzo in 1998[22], there is a strong activity
(still mostly theoretically) to test the huge potential of theelectron spinfor solid-state realizations of qubits
and arrays of qubits. Fujisawa et al.[23] measured the spin-relaxation time in a single semiconductor
quantum dot in the Coulomb blockade regime, where using a voltage pulse of fixed duration, the first
excited and the ground state could be moved into and out of a transport window between left and right
chemical potential of the electron reservoirs. The resulting transient current revealed spin-flip relaxation
times longer than a few�s for excited states whose spin differed from that of the ground state, whereas
without spin-flip the relaxation times were much shorter (3 ns).

Charge relaxation due to spontaneous phonon emission in quantum dots is therefore in general much
faster than spin-relaxation. In electron transport, spontaneous emission effects were first observed most
prominently in experiments with semiconductor double quantum dots. These are discussed in some detail
below, as the remainder of this section mainly deals with spontaneous emission effects in transport
through two-level systems. The operation of a single charge-based qubit as realized in semiconductor
double quantum dots was successfully demonstrated by Hayashi and co-workers in 2003, an experiment
which is discussed in Section 7.5.3.

2.1.1. Quantum dots
Quantum dots are semiconductor structures containing a small number of electrons (1∼ 1000) within

a region of space with typical sizes in the sub-micrometer range[24–28]. Many properties of such systems
can be investigated by transport, e.g. current-voltage measurements, if the dots are fabricated between
contacts acting as source and drain for electrons which can enter or leave the dot. In contrast to real atoms,
quantum dots areopensystems with respect to the number of electronsN which can easily be tuned with
external parameters such as gate voltages or magnetic fields. For example, by changing the size and the
shape of the dot with external gate voltages, one can realize dots as artificial atoms, with the possibility to
‘scan through the periodic table’ by adding one electron after the other within one and the same system.
In fact, quantum effects such as discrete energy levels (atomic shell structure) and quantum chaos (as in
nuclei) are observable in a controlled manner in quantum dots[27]. Moreover, the experiments can be
conducted in a regime which usually is not accessible to experiments with real atoms. For example, a
singlet–triplet transition should occur in real helium atoms for magnetic fields such large as of the order
of 105T, as the they occur only in the vicinity of white dwarfs and pulsars[29]. In artificial atoms, which
have a much larger size than real atoms, much smaller magnetic fields are sufficient to observe such
effects[30,31].

Transport experiments are very sensitive to energy scales down to a few micro electron volts. Tradi-
tionally, there are three effects which dominate transport through quantum dots: the tunnel effect, which
is a quantum mechanical phenomenon where electrons can penetrate an electrostatic potential-barrier,
the charging effect which is due to the discreteness of the electron charge and known as Coulomb block-
ade effect, and size quantization due to the smallness of the dots, leading to discrete energies. Out of
these three, the Coulomb blockade effect with its charging energyU = e2/2C for one additional elec-
tron is the most important and in fact sufficient to explain the simplest cases in the earlier experiments
on quantum dots in terms of simple charging diagrams. There, the only ‘quantum’ feature of quan-
tum dots stems from the discreteness of the electron chargee, with the smallness of the dots providing
the correspondingly small capacitancesC (and therefore sizable charging energiesU), and the tunnel
effect merely providing the contact between the dot and the outside world (i.e. the contact leads). On
the theoretical side, this corresponds to a description of sequential tunneling in terms of simple rate
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equations, which was called ‘orthodox theory’ for single electron charging effect in general, a good stan-
dard reference for which is provided by the volume on ‘Single Charge Tunneling’ edited by Grabert and
Devoret[32].

As could be expected, a major thrust in quantum dot physics (starting in the 1990s) has been to
go beyond this simple picture and to take a closer look at the above-mentioned effects. As for charge
interaction and quantum size effects, this lead to detailed investigations of the internal structure of dots,
with electron–electron correlations and spin effects playing a major role. As for the tunnel effect, one can
broadly speak of two main streams where either the ‘external’ coupling of electrons between the dot and
the reservoirs, or the coupling of dots to other dots (coupled-dot systems) or to other external degrees
of freedom (photons, phonons) is dealt with on a more serious level. The former case with co-tunneling
and the Kondo effect as the main key-words is intrinsically ‘solid state’ physics, whereas the latter (in
particular when it comes to two or more level systems interacting with bosons) has a number of analogies
with Quantum Optics and is the main subject of this Review. One should bear in mind, however, that the
distinction into two streams is a drastic simplification of what in reality is a very complex field of current
research activities.

Recent review articles on quantum dots are the ones by Reimann and Manninen[33] on the electronic
structure of quantum dots, and the overview article on electronic structure and transport properties of
quantum dots by Tews[34].

2.1.2. Double quantum dots
Coupling of two quantum dots leads to double quantum dots which in analogy with atomic and molec-

ular physics sometimes are called ‘artificial molecules’, although this terminology can be somewhat
misleading: in the strong Coulomb blockade limit, double quantum dots are better described as two-level
systems with controllable level-spacing and one additional transport electron, which rather suggests the
analogy with a simple model for anatom, in particular if it comes to interaction with external fields such
as photons or phonons. This view appears to be rather natural from a Quantum Optics point of view,
too (cf. the classic book ‘Optical Resonance and Two-Level Atoms’ by Allen and Eberly[36]), and it
furthermore fits with the terminology of quantum information technology, with the charge double dot (as
in the experiment by Hayashi and co-workers) being the elementary one-qubit, cf. Section 7.5.3.

On the other hand, the distinction between the two regimes of ionic-like bonding (weak tunneling
between the two dots) and covalent bonding (strong tunneling) is often used in the literature; this also
reflects the choice between two different starting points in the theoretical description, i.e., the basis of
localized states and the basis of delocalized (bonding and antibonding) states in the theory of the two-level
system, as is discussed in Section 2.

Several groups have performed transport experiments with double quantum dots, with lateral structures
offering experimental advantages over vertical dots with respect to their tunability of parameters.A recent
overview of the Delft and NTT experiments is given by van der Wiel et al.[37], who review the stability
diagram, linear and non-linear transport, resonant tunneling, and the influence of magnetic fields and
microwave radiation on transport in lateral double quantum dots.

As for the earlier double quantum dot experiments, van der Vaart and co-workers[35] investigated
resonant tunneling in 1995 and found an asymmetry in the resonant line-shape that already hinted at
physics beyond the simple elastic tunneling model, cf.Fig. 1. Subsequently, Waugh and co-workers
measured the tunnel-coupling induced splitting of the conductance peaks for double and triple quantum
dots[38].The Stuttgart group with Blick and co-workers explored the charging diagram for single-electron
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Fig. 1. Left: double quantum dot used in the first experiment by van der Vaart and coworkers[35] on resonant tunneling.
Dimensions are 320×320 nm2 (left dot) and 280×280 nm2 (right dot). Right: resonant tunnel current through the double quantum
dot [35] (dots) as a function of inter-dot bias� at source–drain voltage 400�V. Lorentzian fit (line) and fit∼ cosh2(2�/kBT )

with T = 35 mK (dashed). From[35].

tunneling through a double quantum dot[39]. Blick et al. later verified the coherent tunnel coupling[40],
and Rabi-oscillations (with millimeter continuous wave radiation[41]) in double dots.

2.1.3. Resonant tunneling and phonon emission in double quantum dots
Fujisawa and co-workers[43] performed a series of experiments on spontaneous emission of phonons

in a lateral double quantum dot (similar experiments were performed with vertically coupled dots[44]).
Their device was realized in a GaAs/AlGaAs semiconductor heterostructure within the two-dimensional
electron gas[42]. Focused ion-beams were used to form in-plane gates which defined a narrow channel
of tunable width. The channel itself was connected to source and drain electron reservoirs and on top
of it, three Schottky gates defined tunable tunnel barriers for electrons moving through the channel. The
application of negative voltages to the left, central, and right Schottky gate defined two quantum dots
(left L and rightR) which were coupled to each other, to the source, and to the drain. The tunneling
of electrons through the structure was sufficiently large in order to detect an electron current yet small
enough to provide a well-defined number of electrons (∼ 15 and∼ 25) on the left and the right dot,
respectively. The Coulomb charging energy (∼ 4 meV and∼ 1 meV) for placing an additional electron
onto the dots was the largest energy scale, seeFig. 2.

By simultaneously tuning the gate voltages of the left and the right gate while keeping the central gate
voltage constant, the double dot could switch between the three states|0〉 = |NL,NR〉 (‘empty state’),
and |L〉 = |NL + 1, NR〉 and |R〉 = |NL,NR + 1〉 with only one additional electroneither in the left
or in the right dot (see the following section, where the model is explained in detail). The experimental
sophistication relied on being able to maintain the state of the system within the Hilbert-space spanned
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Fig. 2. Left: schematic diagram of a ‘double gate single electron transistor’ by Fujisawa and Tarucha[42]. The 2DEG is located
100 nm below the surface of an GaAs/AlGaAs modulation-doped heterostructure with mobility 8×105 cm2 (Vs)−1 and carrier
concentration 3× 1011cm−2 at 1.6 K in the dark and ungated. Ga focused ion beam implanted in-plane gates and Schottky
gates define the dot system. A double dot is formed by applying negative gate voltages to the gates GL, GC, and GR. The
structure can also be used for single-dot experiments, where negative voltages are applied to GL and GC only. From[42]. Right:
double quantum dots as used in the experiment by Fujisawa and co-workers[43] (top view). Transport of electrons is through
the narrow channel that connects source and drain. The gates themselves have widths of 40 nm. The two quantum dots contain
approximately 15 (Left,L) and 25 (Right,R) electrons. The charging energies are 4 meV (L) and 1 meV (R), the energy spacing
for single particle states in both dots is approximately 0.5 meV (L) and 0.25 meV (R). From[43].

by these states, and to vary the energy difference� = �L − �R of the dots without changing the other
parameters such as the barrier transmission. The measured average spacing between single-particle states
(∼ 0.5 and∼ 0.25 meV) was a large energy scale compared to the scale on which� was varied. The
largest value of� was determined by the source–drain voltage of 0.14 meV. The main outcomes of this
experiment were the following: at low temperatures down to 23 mK, the stationary tunnel currentI as a
function of � showed a resonant peak at� = 0 with a broad shoulder for�>0 with oscillations in� on
a scale of≈ 20.30� eV, seeFig. 3. As mentioned above, a similar asymmetry had in fact already been
observed in the first measurement of resonant tunneling through double quantum dots in 1995 by van der
Vaart and co-workers[35], cf. Fig. 1.

For larger temperaturesT, the current measured by Fujisawa et al. increased stronger on the absorption
side�<0 than on the emission side. The data for largerT could be reconstructed from the 23 mK data
by multiplication with the Einstein–Bose distributionn(T ) and 1+ n(T ) for emission and absorption,
respectively. Furthermore, the functional form of the energy dependence of the current on the emission
side was between 1/� and 1/�2. For larger distance between the left and right barrier (600 nm on a surface
gate sample instead of 380 nm for a focused ion beam sample), the period of the oscillations on the
emission side appeared to become shorter, seeFig. 3.

From these experimental findings, Fujisawa et al. concluded that thecoupling to a bosonic environment
was of key importance in their experiment. To identify the microscopic mechanism of the spontaneous
emission, they placed the double dot in different electromagnetic environments in order to test if a coupling
to photonswas responsible for these effects. Typical wavelengths in the regime of relevant energies�
are in the cm range for both photons and 2DEG plasmons. Placing the sample in microwave cavities
of different sizes showed no effect on the spontaneous emission spectrum. Neither was there an effect
by measuring different types of devices with different dimensions, which should change the coupling
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Fig. 3. Left: current at temperatureT = 23 mK as a function of the energy difference� in the experiment by Fujisawa et al.[43].
The total measured current is decomposed into an elastic and an inelastic component . If the difference� between left and right
dot energiesEL andER is larger than the source–drain-voltage, tunneling is no longer possible and the current drops to zero.
The red circle marks the region of spontaneous emission, characterized by the large ‘shoulder’ for�>0 with an oscillation-like
structure on top of it. Right: current atT = 23 mK as a function of the energy difference�. The curves in A have an offset and
are for different values of the couplingTc between the dots and the rate�R for tunneling out into the drain region. The dotted
curves are the negative derivatives of the currents with respect to energy� to enhance the structure on the emission side of the
current. B shows curves (i) and (ii) from A in a double–logarithmic plot, where the dashed lines are Lorentzian fits. From[43].

to plasmons. Instead, it was the coupling toacoustic phonons(optical phonons have too large energies
in order to be relevant) which turned out to be the microscopic mechanism responsible for the emission
spectrum. In fact, phonon energies in the relevant� regime correspond to wavelengths that roughly fit
with the typical dimensions (a few 100 nm) of the double dot device used in the experiments.

2.2. Transport theory for dissipative two-level systems

In the following, the dissipative double quantum dot as a model which is key to some of the following
sections is introduced. It describes electron transport through two-level systems (coupled quantum dots)
in the presence of a dissipative environment (phonons or other bosonic excitations).

2.2.1. Double dot model
The possibly simplest model defines a double quantum dot as a composite system of two individual dots

which for the sake of definiteness are called left and right dot (L andR) here and in the following, and which
are connected through a static tunnel barrier. The effective ‘qubit’Hilbert spaceH(2) ≡ span(|L〉, |R〉) of
this system is assumed to be spanned by two many-body states|L〉=|NL+1, NR〉 and|R〉=|NL,NR+1〉
with energies�L and�R, corresponding to the lowest energy states for one additional electron in the left
and the right dot (Fig. 4). In contrast, the ‘empty’ ground state|0〉 = |NL,NR〉 has one electron less and
NL electrons in the left andNR electrons in the right dot. Although this state plays a role in transport
through the dot as discussed below, there are no superpositions between|0〉 and the states inH(2) (charge
superselection rule). The left-right degree of freedom inH(2) defines a ‘pseudospin’1/2 [45] as described
by Pauli matriceŝ�z=n̂L−n̂R and�̂x=p̂+p̂†, which together with operators involving the empty state|0〉
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Fig. 4. Left: current on the emission side�>0 in the experiment by Fujisawa et al.[43]. The solid lines correspond to data for
different values ofTc. The dotted line represents data from asurface gate samplewhere the distance between left and right
barriers is larger (600 nm). Right: double dot model consisting of left and right dot, coupled by a tunnel matrix elementTc. Left
and right electron reservoirs with chemical potential�L (�R) act as source and drain for electrons tunneling from left to right at
rates�L and�R . The energies�L and�R have to be understood as chemical potentials for the addition of one additional electron
to the left and the right dots, respectively. The system is in the strong Coulomb blockade regime with only one additional electron
allowed to enter the double dot. Phonons couple to the electronic density in both dots.

form a closed operator algebra,

n̂i ≡ |i〉〈i|, p̂ ≡ |L〉〈R|, ŝi ≡ |0〉〈i|, i = L,R . (2.1)

Inter-dot tunneling betweenL andR is described by a single, real parameter which by convention is
denoted asTc here and in the following.1 The Hamiltonian of the double dot then reads

Hdot ≡ �Ln̂L + �Rn̂R + Tc(p̂ + p̂†) , (2.2)

the eigenstates of which are readily obtained by diagonalizing the two× two matrix

HTLS ≡ �

2
�̂z + Tc�̂x =

( �

2
Tc

Tc − �

2

)
, � ≡ �L − �R , (2.3)

where here and in the following the trivial constant term1
2(�L + �R) is omitted. The eigenstates|±〉 and

eigenvalues�± of HTLS are

|±〉 = 1

N±
[±2Tc|L〉 + (� ∓ �)|R〉], N± ≡

√
4T 2

c + (� ∓ �)2 , (2.4)

�± = ±1

2
�, � ≡

√
�2 + 4T 2

c , (2.5)

1 This choice might be confusing to physicists working in superconductivity, but has been used in much of the literature on
double quantum dots which is why it is used here, too.
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corresponding to hybridized wave functions, i.e. bonding and anti-bonding superpositions of the two,
originally localized states|L〉 and |R〉. The corresponding eigenvalues�± = ±1

2� of the double dot
represent two energy surfaces over theTc–� plane, with an avoided level crossing of splitting�. For
� = 0, one has|±〉 = (1/

√
2)(±sign(Tc)|L〉 + |R〉) such that for the choiceTc <0 the ground state

|−〉 = (1/
√

2)(|L〉 + |R〉) with energy�− = −1
2 � is thesymmetricsuperposition of|L〉 and|R〉.

Electron transport through the double dot is introduced by connecting the left (right) dot to an elec-
tron reservoir in thermal equilibrium at chemical potential�L (�R) with positive source–drain volt-
ageVSD ≡ �L − �R, inducing tunneling of electrons from the left to the right. One assumes that the
ground state energies�L of |L〉 and�R of |R〉 are in the window between source and drain energy, i.e.
�L > �L, �R > �R. Transport involves the state|0〉 and superpositions within the two-dimensional Hilbert
spaceH(2) ≡ span(|L〉, |R〉). This restriction is physically justified under the following conditions: first,
the source–drain voltageVSD has to be much smaller than the Coulomb charging energyUc to charge the
double dot with more than one additional electron. Second, many-body excited states outsideH(2) can
be neglected.

The coupling to the electron reservoirsHres is described by the usual tunnel HamiltonianHV ,

Hres=
∑

ki ,i=L/R

εki c
†
ki
cki , HV =

∑
ki

(V i
k c

†
ki
ŝi + H.c.), ŝi ≡ |0〉〈i|, i = L,R , (2.6)

where theV i
k couple to a continuum of channelsk in reservoiri. We note that the splitting of the whole

electron system into reservoir and dot regions bears some fundamental problems that are inherent in all
descriptions that use the tunnel Hamiltonian formalism[46–48].

Including the ‘empty’ state|0〉 = |NL,NR〉, the completeness relation of the ‘open’ double dot is now
1̂= n̂0 + n̂L + n̂R. In the above description, spin polarization of the electrons has been assumed so that
only charge but no spin degrees of freedom are accounted for. In the original ‘charge qubit’ experiment
[43], a magnetic field between 1.6 and 2.4 T was applied perpendicular to the dots in order to maximize
the single-particle spacing and to spin polarize the electrons. The combination of both (real) spin and
pseudo-spin degrees of freedom was discussed recently by Borda et al.[49] in the context of aSU(4)
Fermi liquid state and the Kondo effect in double quantum dots.

Linear coupling between the double dot and bosonic modes (photons, phonons) is described by a
Hamiltonian

Hdp =
∑
Q

(�LQn̂L + �RQn̂R + �Qp̂ + �∗−Qp̂†)(a−Q + a
†
Q) , (2.7)

where the coupling matrix elements�LQ, �RQ, and�Q and the frequency dispersions�Q of the free boson
Hamiltonian

HB =
∑
Q

�Qa
†
QaQ (2.8)

have to be calculated from microscopic theories, cf. the following sections.The total Hamiltonian becomes

H=Hdot +Hdp +HV +HB +Hres (2.9)
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and generalizes the usual spin-boson model HamiltonianHSB [50,51]

HSB =

 �

2
+
∑
Q

gQ

2
(a−Q + a

†
Q)


 �̂z + Tc�̂x +HB, gQ ≡ �LQ − �RQ (2.10)

due to the additional coupling to the electron reservoirs (termsHT + Hres) and the additional terms
�Q in Hdp which are off-diagonal in the localized basis{|L〉, |R〉}. The usual spin-boson modelHSB
corresponds to setting the off-diagonal-terms in Eq. (2.7) to zero,�Q = 0, whence

Hdp =
∑
Q

∑
i=L,R

�iQn̂i(a−Q + a
†
Q) , (2.11)

which is used as electron–boson coupling Hamiltonian in the following. As the ‘dipole terms’�Q are
proportional to the overlap of the wave functions between the left and the right dot which itself determines
the value ofTc, neglecting the�Q terms is argued to be justified for weak tunnel couplingTc [52,50,53].
On the other hand, for largerTc these terms become more important, cf. Section 2.2.12.

2.2.2. Master equation
The easiest way to describe electron transport through quantum dots is to use rate equations with tunnel

rates calculated from the Hamiltonian Eq. (2.9). These equations have to be extended in order to account
for coherences between the dots, i.e. the off-diagonal operatorsp̂ andp̂† in Eq. (2.2). This is similar to
Quantum Optics where the optical Bloch equations for a two-level system[36] generalize the ‘diagonal’
equations for the occupancies (Einstein equations). Gurvitz and Prager[54,55], and Stoof and Nazarov
[56] have derived these equations for double quantum dots in the limit of infinite source–drain voltage
(�L → ∞, �R → −∞), and for tunnel rates

�i ≡ 2	
∑
ki

|V i
k |2
(� − �ki ), i = L/R , (2.12)

assumed to be independent of energy, where the Born–Markov approximation with respect to the electron
reservoir coupling becomes exact. This limit, which is adopted throughout this Review, is particularly
useful for the discussion of coherent effectswithin the double dot system, as the role of the leads basically
is to supply and carry away electrons, whereas Kondo-type correlations between electrons in the leads
and in the dots are completely suppressed.

Due to the coupling to bosons (the termHdp in Eq. (2.9)), an exact calculation of the reduced density
operator̂�(t)of the dot is usually not possible, but one can invoke various approximation schemes, the most
common of which are perturbation theory in the inter-dot couplingTc (unitary polaron transformation),
and perturbation theory in the electron–boson coupling.

2.2.3. Method 1: polaron transformation
The polaron transformation is a well-known method to solve problems where bosonic degrees of

freedom couple to a single localized state[57–60]. One defines a unitary transformation for all operators
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Ô in the Hamiltonian Eq. (2.9),

Ō ≡ eSÔe−S, S ≡
∑

i=L,R

∑
Q

n̂i

(
�iQ
�Q

a
†
Q − �i−Q

�Q
aQ

)
, (2.13)

which removes the electron–boson term Eq. (2.11) and leads to the transformed total HamiltonianH,

H=H0 +HT +HV , H0 ≡ �Ln̂L + �Rn̂R +HB +Hres

HT ≡ Tc(p̂X + p̂†X†), �i ≡ �i −
∑
Q

|�iQ|2
�Q

. (2.14)

The energy difference� ≡ �L− �R (using the same symbol for notational simplicity) is now renormalized
with the dot energies�L and�R renormalized to smaller values. More important, however, is the appearance
of the factorsX andX† in the inter-dot coupling HamiltonianHT ,

X ≡
∏
Q

DQ

(
�LQ − �RQ

�Q

)
, DQ(z) ≡ exp(za†

Q − z∗aQ) , (2.15)

whereDQ(z) is the unitary displacement operator of a boson modeQ. The operation ofDQ(z) on the
vacuum of a boson field mode with creation operatora

†
Q and ground state|0〉Q creates acoherent state

|z〉Q =DQ(z)|0〉Q of that mode[61].
The Master equation can now be derived in the polaron-transformed frame, resulting into an explicit

set of equations for the double dot expectation values,

�

�t
〈nL〉t =−iTc{〈p〉t − 〈p†〉t } + �L[1− 〈nL〉t − 〈nR〉t ] , (2.16)

�

�t
〈nR〉t = iTc{〈p〉t − 〈p†〉t } − �R〈nR〉t , (2.17)

〈p〉t =−
∫ t

0
dt ′ei�(t−t ′)

[(
�R

2
〈p〉t ′ + iTc〈nL〉t ′

)
C(t − t ′)− iTc〈nR〉t ′C∗(t − t ′)

]
, (2.18)

〈p†〉t =−
∫ t

0
dt ′e−i�(t−t ′)

[(
�R

2
〈p†〉t ′ − iTc〈nL〉t ′

)
C∗(t − t ′)+ iTc〈nR〉t ′C(t − t ′)

]
, (2.19)

where the central quantity containing the coupling to the bosons is the equilibrium correlation function
of theX operators, Eq. (2.15), for a boson density matrix�B in thermal equilibrium at inverse temper-
ature�,

C(t − t ′) ≡ Tr(�BXtX
†
t ′), �B = e−�HB

Tr e−�HB
. (2.20)
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The functionC(t) can be evaluated explicitly and is expressed in terms of theboson spectral density
J (�),

C(t) ≡ e−Q(t), Q(t) ≡
∫ ∞

0
d�

J (�)

�2

[
(1− cos�t) coth

(
��

2

)
+ i sin �t

]
(2.21)

J (�) ≡
∑
Q

|�LQ − �RQ|2
(� − �Q) . (2.22)

Details of the derivation of Eqs. (2.16)–(2.19) are given inAppendixA. Several approximations have been
used: first, the initial thermal density matrix
̄(0)of the total system at timet=0 in the polaron-transformed
frame factorizes to lowest (zeroth) order in bothTc andV i

k according to


̄(0) ≡ e−�H

Z
≈ e−�H0

Z0
= R0 ⊗ �B ⊗ �dot , (2.23)

whereR0 is the equilibrium density matrix of the electron reservoirs. Furthermore, for all timest >0 a
decoupling approximation


̃(t) ≈ R0 ⊗ �B ⊗ �̃dot(t) (2.24)

is used. The back-action on both electron reservoirs and the boson bath (which are assumed to stay in
thermal equilibrium) is therefore neglected throughout. One then can factorize terms like〈n̂LXtX

†
t ′ 〉t ′ ≈

〈n̂L〉t ′ 〈XtX
†
t ′ 〉B in the equation of the coherences〈p̂〉t ; these equations, however, are then no longer

exact. In the original spin-boson problem (�L/R = 0), this amounts to second order perturbation theory
in the inter-dot couplingTc [50], which is known to be equivalent to the so-called non-interacting-blib-
approximation (NIBA)[50,51]of the dissipative spin-boson problem, whereas here the factorization also
involves the additional term�R/2〈p〉t ′ which describes the broadening of the coherence〈p̂〉t due to
electrons tunneling into the right reservoir.

Finally, two additional terms in Eq. (2.18) and (2.19) describing the decay of an initial polarization
of the system have been neglected. These terms in fact can be calculated exactly but they vanish in the
stationary limit for long timest → ∞.

2.2.4. Method 2: perturbation theory inHdp

An alternative way is a perturbation theory not in the inter-dot couplingTc, but in the couplingHdp to
the boson system. Assuming the boson system to be described by a thermal equilibrium, standard second
order perturbation theory and the Born–Markov approximation yield

d

dt
〈p〉t =

(
i� − �R

2
− �p

)
〈p〉t + iTc[〈nR〉t − 〈nL〉t ] + �+〈nL〉t − �−〈nR〉t , (2.25)

with the correspondingly complex conjugated equation for〈p†〉t , and the equations for〈nL/R〉t identical
to Eqs. (2.17), (2.16). The rates�p and�± are defined as

�p ≡ 1

�2

∫ ∞

0
dt (�2 + 4T 2

c cos�t)Re{K(t)} , (2.26)

�+ ≡ Tc

�2

∫ ∞

0
dt (� (1− cos�t)− i� sin �t) K(t) , (2.27)
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�− ≡ Tc

�2

∫ ∞

0
dt (�(1− cos�t)− i� sin �t) K∗(t) , (2.28)

and the bosonic system enters solely via the correlation function

K(t)=
∫ ∞

0
d�J (�)[nB(�)ei�t + (1+ nB(�))e

−i�t ] , (2.29)

wherenB(�)= [e�� − 1]−1 is the Bose distribution at temperature 1/�. The explicit evaluation of Eqs.
(2.26)–(2.29) leads to inelastic rates

�p ≡ 2	
T 2
c

�2 J (�) coth(��/2), �± ≡ − �Tc

�2

	

2
J (�) coth(��/2)∓ Tc

�

	

2
J (�) , (2.30)

which completely determine dephasing and relaxation in the system. Some care has to be taken when
evaluating the rates, Eq. (2.26), with the parametrized formJ (�)=2��1−s

ph �se−�/�c for the boson spectral
density in Eq. (2.29), cf. Eq. (2.52) in Section 2.2.7. In this case, it turns out that the Born–Markov
approximation is in fact only meaningful and defined fors�1. Fors <1, this perturbation theory breaks
down. In addition, the rates Eq. (2.30) acquire an additional term linear in the temperaturekBT = 1/� in
the Ohmic cases = 1, for which the rates explicitly read[62]

�p = 2�	

�2

(
�2

�
+ 2T 2

c �e−�/�c coth

(
��

2

))
(2.31)

Re{�±} = 2�
	Tc

�2

(
�

�
− �

2
�e−�/�c coth

(
��

2

)
∓ �2

2
e−�/�c

)
(2.32)

Im{�+ + �−} = 4�Tc

∫ ∞

0
d�

�e−�/�c

�2 − �2

(
1+ 2

e�� − 1

)
(2.33)

Im{�+ − �−} = −4�
�Tc�c

�2

[
1−

∫ ∞

0

d�

�c

�2e−�/�c

�2 − �2

]
. (2.34)

The last two integrals can be evaluated approximately[63] for small�/�c. One finds that up to order
�/�c,

Im{�+ − �−} =O

(
�

�c

)
, (2.35)

Im{�+} = Im{�−} = 2�Tc

[
ln

(
��

2	

)
− Re�

(
i��

2	

)
− C − ln

(
�

�c

)]
+O

(
�

�c

)
. (2.36)

Here,C = 0.577216 is the Euler number and�(x) is the logarithmic derivative of the Gamma function.
For the latter, one can use[64] Re�(iy)= Re�(1+ iy) and the expansions

Re�(iy)=




ln y + 1

12y2 + 1

120y4 + 1

252y6 + · · · , y → ∞ ,

−C + y2
∞∑
n=1

n−1(n2 + y2)−1, |y|<∞ .

(2.37)
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The combination of the first (large argumentsy) and the second expansion (small argumentsy) is useful
in numerical calculations.

2.2.5. Matrix formulation
It is convenient to introduce the vectorsA ≡ (n̂L, n̂R, p̂, p̂

†), � = �Le1 (e1, . . . ,e4 are unit vectors)
and a time-dependent matrix memory kernelM in order to formally write the equations of motion (EOM)
for the dot as[65]

〈A(t)〉 = 〈A(0)〉 +
∫ t

0
dt ′{M(t, t ′)〈A(t ′)〉 + �} , (2.38)

where〈...〉 ≡ Trdot . . . �̂(t) and�̂(t) is the reduced density operator of the double dot. This formulation is
a particularly useful starting point for, e.g., the calculation of shot noise or out-of-equilibrium situations
like driven double dots, where the bias� or the tunnel couplingTc are a function of timet and consequently,
the memory kernelM is no longer time-translation invariant[66], cf. Sections 2.3 and 2.4.

For constant� andTc, Eq. (2.38) is easily solved by introducing the Laplace transformationf̂ (z) =∫∞
0 dte−ztf (t). In z-space, one has〈Â(z)〉=[z−zM̂(z)]−1(〈A(0)〉+�/z)which serves as a starting point

for the analysis of stationary (1/z coefficient in Laurent series forz → 0) and non-stationary quantities.
The memory kernel has a block structure

zM̂(z)=
[−Ĝ T̂

D̂z �̂z

]
, Ĝ ≡

(
�L �L

0 �R

)
, (2.39)

where T̂ ≡ −iTc(1 − �x). The blocksD̂z and �̂z are determined by the equation of motion for the
coherences〈p̂〉 = 〈p̂†〉∗ and contain the complete information on inelastic relaxation and dephasing of
the system.

For weak boson coupling, the above perturbation theory (PER, Method 2) in the correct basis of the
hybridized states of the double dot yields

D̂PER= T̂c +
(

�+ −�−
�+ −�−

)
, �̂

PER=

 i� − �p − �R

2
0

0 −i� − �p − �R

2


 . (2.40)

On the other hand, for strong electron–boson coupling, the unitary transformation method (strong boson
coupling, POL, Method 1) with its integral equations Eq. (2.18), (2.19), yields matrices inz-space of the
form

D̂POL
z = iTc



−1

Ĉ∗−�(z)

Ĉ�(z)

1 − Ĉ−�(z)

Ĉ∗
� (z)


 , �̂

POL
z =

(
z− 1/C�(z)− �R/2 0

0 z− 1/C∗
� (z)− �R/2

)
,

(2.41)

where

C�(z) ≡
∫ ∞

0
dte−ztei�tC(t), C∗

� (z) ≡
∫ ∞

0
dte−zte−i�tC∗(t) . (2.42)
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In contrast to the PER solution, whereM(�)=M=zM̂(z) is time-independent,MPOL(�) is time-dependent
andzM̂(z) depends onz in the POL approach.

2.2.6. Stationary current
In the Master equation approach, the expectation value of the electron current through the double dot

is obtained in a fairly straightforward manner. One has to consider the average charge flowing through
one of the three intersections, i.e., left lead/left dot, left dot/right dot, and right dot/right lead. This gives
rise to the three corresponding electron currentsIL(t), IR(t), and the inter-dot currentILR(t). From the
equations of motion, Eq. (2.16), one recognizes that the temporal change of the occupancies〈nL/R〉t is
due to the sum of an ‘inter-dot’ current∝ Tc and a ‘lead-tunneling’ part. Specifically, the current from
left to right through the left (right) tunnel barrier is[66]

IL(t)=−e�L〈n0〉t =−e�L[1− 〈nL〉t − 〈nR〉t ], IR(t)=−e�R〈nR〉t , (2.43)

and the inter-dot current is

ILR(t)=−ieT c{〈p〉t − 〈p†〉t } = −e
�

�t
〈nR〉t + IR(t)= e

�

�t
〈nL〉t + IL(t) . (2.44)

In the stationary case for timest → ∞, all the three currents are the same,ILR = IR = IL ≡ I and can
be readily obtained from the 1/z coefficient in the Laurent expansion of the Laplace transformn̂R(z) of
〈n̂R〉t aroundz= 0,

〈Î 〉t→∞ =−e lim
z→0

�R�Lg+(z)
[z+ �R + g−(z)](z+ �L)+ (z+ �R + �L)g+(z)

(2.45)

g+[−](z)=±iTc(e1 − e2)[z− �̂z]−1D̂ze1[2] . (2.46)

The explicit evaluation of the two-by-two blockŝDz and�̂z, cf. Eq. (2.39), (2.40), (2.41), leads to

gPER± (z) ≡ 2Tc
Tc(�p + �R/2+ z)− ��±
(�p + �R/2+ z)2 + �2

(2.47)

gPOL+[−](z) ≡ T 2
c


 C

[∗]
[−]�(z)

1+ �R

2
C�(z)

+ (C ↔ C∗)


 . (2.48)

In the expression for the current, Eq. (2.45), the two ‘propagators’g± are summed up to infinite order
in the inter-dot couplingTc. For vanishing boson coupling, one hasg+ = g−, and the stationary current
reduces to the Stoof–Nazarov expression[56],

〈Î 〉SN
t→∞ =−e

T 2
c �R

�2
R/4+ �2 + T 2

c (2+ �R/�L)
. (2.49)
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The general expression for the stationary current through double dots in POL[45] reads2

〈I 〉t→∞ = eT 2
c

2Re(C�)+ �R|C�|2
|1+ �RC�/2|2 + 2T 2

c B�
(2.50)

B� ≡ Re

{
(1+ �RC�/2)

[
C−�

�R

+ C∗
�

�L

(
1+ �L

�R

)]}
, C� ≡ lim


→0
C(z= � + i
) . (2.51)

2.2.7. Boson spectral densityJ (�)
The boson spectral densityJ (�)=∑Q|�LQ − �RQ|2
(� − �Q), Eq. (2.22), is the key quantity entering

into the theoretical description of dissipation within the framework of the spin-boson model, Eq. (2.10).
J (�) determines the inelastic rates�p and�±, Eq. (2.26) in the PER approach, and the boson correlation
functionC(t) via Eq. (2.21) in the POL approach.

Models forJ (�) can be broadly divided into (A) phenomenological parametrizations, and (B) micro-
scopic models for specific forms of the electron–boson interaction (e.g., coupling to bulk phonons or
surface acoustic piezo-electric waves).

(A) ‘Spin-Boson model parametrization’[51] in the exponentially damped power-law form

J (�)= 2��1−s
ph �se−�/�c , (2.52)

where 0�s�1 corresponds to the sub-Ohmic,s=1 to the Ohmic, ands >1 to the super-Ohmic case. The
parameter�c is a high-frequency cut-off, and�ph is a reference frequency introduced in order to make
the coupling parameter� dimensionless. The advantage of the generic form Eq. (2.52) is the vast amount
of results in the quantum dissipation literature referring to it. Furthermore, this parametrization allows
for an exact analytical expression of the boson correlation functionC(t) = exp[−Q(t)], Eq. (2.21), for
arbitrary temperaturesT = 1/�. Weiss[51] gives the explicit form ofQ(z) for complex timesz,

Q(z)= 2��(s − 1)

(
�c

�ph

)s−1{
(1− (1+ i�cz)

1−s)+ 2(��c)
1−s�

(
s − 1,1+ 1

��c

)

− (��c)
1−s

[
�

(
s − 1,1+ 1

��c

+ i
z

�

)
+ �

(
s − 1,1+ 1

��c

− i
z

�

)]}
, (2.53)

where�(z, q) is Riemann’s generalized Zeta-function and�(z) Euler’s Gamma-function.
(B) Microscopic models naturally are more restricted towards specific situations but can yield interest-

ing insights into the dissipation mechanisms in the respective systems. Coupling of bulk acoustic phonons
to the electron charge density in double quantum dots was assumed in[45], with the matrix elements
�iQ = �Q

∫
d3xeiQx�i(x) expressed in terms of the local electron densities�i(x), i = L,R in the left and

right dot. Assuming the electron density in both (isolated) dots described by the same profile�dot(x)
around the dot centersxi , one finds that the two coupling constants just differ by a phase factor,

�RQ = �LQeiQd, d= xR − xL . (2.54)

2 This is the correct expression consistent with the definition Eq. (2.12) for the tunnel rates�R/L, whereas the original
version[45] contained additional factors of 2 in�R/L.
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With Q= (q, qz) and the vectord in thex–y plane of lateral dots, one has

J (�)=
∑
Q

|�Q|2�̂dot(q, qz)|1− eiqd|2
(� − �Q) . (2.55)

The interference term|1− eiqd|2 is due to the lateral ‘double-slit’ structure of the double dot geometry
interacting with three-dimensional acoustic waves; whether or not this interference is washed out inJ (�)
depends on the electron density profile and the details of the electron–phonon interaction. Analytical
limits for J (�) can be obtained in the limit of infinitely sharp density profiles, i.e.�̂dot(q, qz)= 1: using
matrix elements for piezoelectric and deformation potential phonons, one obtains[67]

Jpiezo(�)= 2�piezo�f

(
d�

c

)
, Jdef(�)= 2�def

�2
ph

�3f

(
d�

c

)
, f (x) ≡

(
1− sinx

x

)
, (2.56)

2�piezo≡ P

2	22c3�M
,

2�def

�2
ph

= 1

	2c3

�2

2�Mc22
. (2.57)

For the piezoelectric interaction, the contributions from longitudinal and transversal phonons with dis-
persion�Q ≡ c|Q| and speed of soundc = cl, ct , respectively, were added here. Bruus, Flensberg and
Smith [68] used a simplified angular averageP = (eh14)

2(12/35+ cl16/ct35) in quantum wires with
the piezoelectric coupling denoted aseh14. Furthermore,�M denotes the mass density of the crystal with
volumeV, and� is the deformation potential. The contribution from bulk deformation potential phonons
turns out to be small as compared with piezoelectric phonons where 2�piezo≈ 0.05.

Further microscopic models of the electron–phonon interaction in double-well potentials were done
by Fedichkin and Fedorov[69] in their calculation of error rates in charge qubits. Furthermore, in a series
of papers[70–74]Khaetskii and co-workers performed microscopic calculations forspin relaxation in
quantum dots due to the interaction with phonons.

The forms Eq. (2.56) forJ (�) represent examples ofstructuredbosonic baths, where at least one
additional energy scale (in this case2c/d, whered is the distance between two dots andc the speed of
sound) enters and leads to deviations from the exponentially damped power-law form Eq. (2.52). Note
that the microscopic forms Eq. (2.56) eventually also have a cut-off�c due to the finite extension of
the electron density in the dots. In[53] it was argued that the assumption of sharply localized positions
between which the additional electron tunnels should be justified by the strong intra-dot electron–electron
repulsion. Forc/d>�>�c, the generic power-laws Eq. (2.52) match the piezo-electric case withs = 1
(Ohmic) and the deformation potential case withs=3 (super-Ohmic). In the low-frequency limit, however,
due tof (x)= (1/6)x2 +O(x4) these exponents change tos = 3 and 5, respectively.

A further phenomenological example for a boson spectral density for a structured environment is the
Breit–Wigner form for a damped oscillator mode�,

J (�)= ��
�4

(�2 − �2)2 + 4�2�2
, (2.58)

which was discussed recently by Thorwart et al.[75], and by Wilhelm et al.[76], who gave a comparison
of the perturbative (Bloch–Redfield) and polaron (NIBA) method for the spin-boson model.
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2.2.8. P(E)-theory
The stationary current through double dots in POL, Eq. (2.50), can be expanded to lowest order in the

tunnel couplingTc and the rate�R,

〈I 〉t→∞ ≈ 2	eT 2
cP (�), P (�) ≡ 1

2	

∫ ∞

−∞
dtei�tC(t) . (2.59)

The real quantityP(�)=1/	 ReC� is the probability density for inelastic tunneling from the left dot to the
right dot with energy transfer� and plays the central role in the so-calledP(E)-theory of single electron
tunneling in the presence of an electromagnetic environment[77–79].

The functionP(�) is normalized and obeys the detailed balance symmetry,

P(−�)= exp(−�/kBT )P (�) , (2.60)

but has to be derived for any specific realization of the dissipative environment. In the case of no phonon
coupling, one has only elastic transitions andP(�) = 
(�). At zero temperature (� → ∞), a simple
perturbative expression forP(�) for arbitraryJ (�) can be found by expandingC(t), Eq. (2.21), to second
order in the boson coupling,C(t)= 1− ∫∞0 J (�)/�2[1− e−i�t ] +O(J 2) whenceP(�>0)= J (�)/�2.
The resulting expression for the inelastic current,

Iin(�)=−e2	T 2
c J (�)/�

2 , (2.61)

is valid at�?�R and is consistent with an earlier result by Glazman and Matveev for inelastic tunneling
through amorphous thin films via pairs of impurities[52].

Aguado and Kouwenhoven[80] have suggested to use tunable double quantum dots asdetectors
of quantum noisevia Eq. (2.59), where the functionP(�) in principle can be directly inferred from
measurement of the currentI as a function of� ≡ �L = �R. Deblock and coworkers[81] have used very
similar ideas to analyze their experiments on frequency dependent noise in a superconducting Josephson
junction and a Cooper pair box, cf. Section 2.3.2.

Again, since off-diagonal couplings�Q in the model, Eq. (2.11), have not been taken into account, the
information gained on the environment by this method might not be complete. On the other hand, the
P(�)/spin-boson description takes into account arbitrary bosonic coupling strengths. Furthermore, the
underlying correlation functionC(t) can describe both equilibrium and non-equilibrium situations. An
example of the latter discussed in[80] is (shot) noise, i.e. fluctuations in the tunnel current through a
quantum point contact that is capacitively coupled to a double quantum dot.

For Ohmic dissipations = 1, at zero temperature absorption of energy from the environment is not
possible andP(�) reads

P(�)= �2�−1

�2�
c �(2�)

e−�/�c�(�) , (2.62)

which is a Gamma distribution with parameterg = 2�. Another analytical solution forP(�) at finite
temperatures is obtained at� = 1/2 [82], where the residue theorem yields

P�=1/2(�>0)= e−�/�c

�c �(1+ 1/��c)
2

∞∑
n=0

(−1)n

n! �

(
n+ 1+ 2

��c

)
e−n�� , (2.63)



T. Brandes / Physics Reports 408 (2005) 315–474 337

which at low temperatures,kBT = 1/�>�c can be approximated by a geometric series,

P�=1/2 (�) ≈ e−�/�c

�c �(1+ 1/��c)
2(1+ e−��)

, (2.64)

with P�=1/2(�) following from Eq. (2.60), and

P�=1/2(� = 0)= �(1+ 2/��c)

2�c41/��c �(1+ 1/��c)
2 . (2.65)

2.2.9. Boson shake-up and relation to X-ray singularity problem
Bascones et al.[83] pointed out that electron tunneling through dots leads to excitations of electron–hole

pairs in the adjacent electron reservoirs. These bosonic excitations possess an Ohmic spectral function
J (�) and for small� therefore give the same exponents = 1 as the piezoelectric spectral function, Eq.
(2.56). Note, however, that this is only true for the bulk case where the structure functionf ≡ 1.

The appearance of a power-law singularity in the inelastic tunneling probabilityP(ε), Eq. (2.62), is well-
known from the so-called X-ray singularity problem.The latter belongs, together with the Kondo effect and
the non Fermi-liquid effects in one-dimensional interacting electron systems (Tomonaga–Luttinger liquid)
[57,84–87], to a class of problems in theoretical Solid State Physics that are essentially non-perturbative
[88]. That is, simple perturbation theory in interaction parameters leads to logarithmic singularities which
transform into power laws for Green’s functions or other correlation functions after higher order re-
summations, renormalization group methods, or approximation by exactly solvable models.

X-ray transitions in metals are due to excitations of electrons from the metal ion core levels (e.g.,
the p-shells of sodium, magnesium, potassium) to the conduction band (absorption of photons), or the
corresponding emission process with a transition of an electron from the conduction band to an empty ion
core level, i.e. a recombination with ancore hole. Energy conservation in a simple one-electron picture
requires that for absorption there is athresholdenergy (edge)2�T = EF + |Ec| for such processes,
whereEF is the Fermi energy andEc the core level energy, counted from the conduction band edge.
Following Mahan[57], the core hole interacts with the conduction band electron gas, which is described
in an effective Wannier exciton picture by a Hamiltonian[57]

H = Ecd
†d +

∑
k�

�kc
†
k�ck� + 1

Ld

∑
kk ′�

Vkk ′c
†
k�ck ′�d

†d . (2.66)

Here,d† denotes the creation operator of the core hole andc
†
k the creation operator of a conduction band

electron with Bloch wave vectork and spin�, leading to analgebraic singularityin the core hole spectral
function

Ah(�)= 2Re

∫ ∞

0
dtei�t 〈d(t)d†〉 = �(�)

2	

�(g)

e−�

�1−g
, � = (� − �̄T )/�0 , (2.67)

where�̄T is the (renormalized) photo-emission threshold energy, and�0 is a cutoff of the order of the
Fermi energy. Here, the dimensionless parameterg for a three dimensional situation and for an interaction
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potential withVkk ′ = V (k − k ′) is defined as[57]

g = m2

2	2

∑
|q|<2kF

V (q)2

q
, (2.68)

wherem is the conduction band electron mass. The core hole spectral functionAh(�) is thus strongly
modified by the interaction with the electron gas: the sharp delta peak for the case of no interactions
becomes a power-law curve. The corresponding absorption step is obtained by integration ofAh(�) [57],
it vanishes for non-zerog when approaching from above� → 0+. This vanishing of the absorption
is calledorthogonality catastrophe: the matrix elements for X-ray induced transitions in metals must
depend on the overlap of two wave functions, i.e. theN-particle wave functions|i〉 and|f 〉 before and
after the appearance of the core hole, respectively. Here,N is the number of electrons in the conduction
band. A partial wave scattering analysis then shows that|f 〉 (in the simplest case of s-wave scattering)
can be considered as a Slater determinant composed of spherical waves∝ sin(kr+ 
)/kr. The overlap of
the twoN-particle wave functions turns out to be〈f |i〉 =N−1/2�, � ≡ 2
2/	2. For largeN, this overlap
becomes very small though still finite for macroscopic numbers likeN ≈ 1023 and� ≈ 0.1 [57]. The
‘catastrophe’ of this effect consists in the fact that although all overlaps of initial and finalsingle particle
scattering waves are finite, the resultingmany-bodywave function overlap becomes arbitrarily small for
largeN. The fully dynamical theory takes into account the dynamical process of the excitations in the
Fermion system that are induced by the sudden appearance of the core hole after absorption of an X-ray
photon. In fact, these excitations are particle–hole pairs in the conduction band which can be regarded as
bosons. For a spherically symmetric case, the X-ray problem can be solved exactly by a mapping to the
Tomonaga model of interacting bosons in one dimension[57,89].

The analogy of inelastic tunneling through double quantum dots can be made by considering an
additional electron initially in the left state|L〉 of the isolated dot. The operatorp† = |R〉〈L| acts as
a creation operator for an electron in the right dot or, alternatively and as there is only one additional
electron in the double dot,p† can be regarded as a creation operator for aholein the left dot. The retarded
hole Green’s function

Gp(t)=−i�(t)〈p(t)p†〉 = −i�(t)〈pp†〉ei�t 〈XtX
†〉0 =−i�(t)ei�tC(t) , (2.69)

is calculated in absence of tunneling, with the electron in the left dot at timet�0 having excited its
phonon cloud that already time-evolves according to the correlation functionC(t) for the phase factors
X stemming from the polaron transformation. The correlations in time can be translated into a frequency
spectrum via the hole spectral function[57],

Ap(�)=−2ImGp(�)= 2iIm
∫ ∞

0
dtei�tei�tC(t)= 2	P(� + �) , (2.70)

using the detailed balance relationC(t)=C∗(−t) and the definition of the inelastic tunneling probability,
Eq. (2.59). Comparison of Eqs. (2.62), (2.70), and (2.67) shows that the spectral functions have identical
form if one identifies the cut-offs�0 =�c and�̄T with −�, the only difference being the definition of the
dimensionless coupling constantg.

As pointed out by Mahan[57], the power law behavior of Eq. (2.70) and Eq. (2.62) is due to the
logarithmic singular behavior of the functionQ(t) in C(t) = exp(−Q(t)), Eq. (2.21), which in turn
results from aninfrared divergenceof the coupling functionJ (�)/�2 for small�. This infrared divergence
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physically correspond to the generation of an infinite number of electron–hole pair excitations in the metal
electron gas by the interaction with the core hole in the X-ray problem. In semiconductors, the (bulk)
piezoelectric phonon coupling leads to the same kind of infrared divergence.

Again following Mahan[90], an alternative physical picture for the inelastic tunneling is obtained by
considering the tunneling process from the point of view of the phonon and not from the electron (hole)
system[91]: a sudden tunnel event in which an electron tunnels from the left to the right dot appears as
an additional energy term for the phonons,


H�� =
∑
Q

(�LQ − �RQ)(a−Q + a
†
Q) (2.71)

which is exactly the difference of the coupling energy before and after the tunnel event. This additional
potential is linear in the phonon displacementsa−Q+a

†
Q and ‘shakes up’ the phonon systems in form of a

dynamical displacement as expressed by the temporal correlation functionC(t)= 〈XtX
†〉 of the unitary

displacement operators,

X =
∏
Q

DQ

(
�Q − �Q

�Q

)
, DQ(z) ≡ eza

†
Q−z∗aQ . (2.72)

2.2.10. Interference oscillations in current
The functionf (x) in the spectral densityJ (�), Eq. (2.56), describes the interference oscillations in

the electron–phonon matrix elements, cf. Eq. (2.54). These were directly compared[45] via Eq. (2.61)
with the oscillations in the current profile on the emission side at low temperature in the experiment
by Fujisawa and co-workers[43]. Using parametersd = 200× 10−9 m andc = 5000 m/s, the energy
scale2�d ≡ 2c/d = 16.5�eV is in fact the scale on which the oscillations in[43] were observed. The
corresponding stationary current was obtained from Eq. (2.50) by numerical evaluation ofC�, Eq. (2.42),
with C(t) split into a zero-temperature and a finite temperature contribution (Appendix Appendix B),
cf. Fig. 5. At low temperatures, the broad oscillatory shoulder on the emission side�>0 reflects the
structure of the real part ofC�. At higher temperatures, on the absorption side the current increases to
larger values faster than on the emission side where the oscillations start to be smeared out. For�<0 and
larger temperature, a new shoulder-like structure appears on the absorption side, a feature similar to the
one observed in the experiment[43]. The theoretical result[45] for the inelastic current was based on
the simple assumption of bulk piezo-acoustic phonons and was still at least a factor two smaller than the
experimental one. This might indicate that other phonon modes (such as surface acoustic phonons), or in
fact higher order tunneling processes to and from the leads (co-tunneling) are important.

Another interesting observation was the scaling of the current a function of the ratio between temperature
and energykBT/|�|, re-confirming the equilibrium Bose–Einstein distribution for the phonon system. In
analogy to the Einstein relations for emission and absorption, one defines the spontaneous emission rate
A(�>0) ≡ [I (�>0, T0)− Iel(�>0)]/e, whereIel(�) is the elastic part of the current, i.e. the current for
vanishing electron–phonon coupling� = 0. One introduces similar definitions for the relative emission
N and absorptionN+,

N(�>0, T ) ≡ [I (�, T )− Iel(�)]/A(�), N+(�<0, T ) ≡ [I (�, T )− I (�, T0)]/A(|�|) , (2.73)
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whereT0 is the reference temperature. The numerical data for the stationary current scaled well to the
Bose distribution functionn(x) = 1/(ex − 1), i.e. N(�, T ) = n(|�|/kBT ) for absorption�<0 and to
N+(�, T ) = 1 + n(�/kBT ) for emission�>0 over an energy window 220�eV> |�|>20�eV with a
choice ofT0 = 10 mK. As in the experiment[43], the analysis in terms of Einstein coefficients worked
remarkably well[67].

A comparison between the perturbative (PER) and polaron transformation (POL) result for the sta-
tionary current, was performed in[53]. In both approaches, the currents Eq. (2.45) are infinite sums of
contributions from the two expressionsg±(z), Eq. (2.47), which were explicitly calculated. As PER
works in the correct eigenstate base of the hybridized system (level splitting�), whereas the energy scale
� in POL is that of the two isolated dots (tunnel couplingTc = 0), one faces the general dilemma of
two-level-boson Hamiltonians: one either is in the correct base of the hybridized two-level system and
perturbative in the boson coupling� (PER), or one starts from the ‘shifted oscillator’ polaron picture that
becomes correct only forTc = 0 (POL). The polaron (NIBA) approach does not coincide with standard
damping theory[92] because it does not incorporate the square-root hybridization form of�=√�2 + 4T 2

c

which is non-perturbative inTc. However, it was argued in[53] that for large|�|?Tc, � → |�| whence
POL and PER should coincide again and the polaron approach to work well even down to very low
temperatures and small coupling constants�. Fortunately, in the spontaneous emission regime of large
positive� the agreement turned out to be very good indeed, cf.Fig. 5.

2.2.11. Other transport theories for coupled quantum dots, co-tunneling and Kondo regime
The amount of theoretical literature on transport through coupled quantum dots is huge and would

provide material for a detailed Review Article of its own, this being yet another indication of the great
interest researchers have taken in this topic. In the following, we therefore give only a relatively compact
overview over parts of this field, which is still very much growing.

Inelastic tunneling through coupled impurities in disordered conductors was treated by Glazman and
Matveev[52] in a seminal work in 1988, which closely followed after the work of Glazman and Shekhter
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[58] on resonant tunneling through an impurity level with arbitrary strong electron–phonon (polaron)
coupling. Raikh and Asenov[93] later combined Hubbard and Coulomb correlations in their treatment of
the Coulomb blockade for transport through coupled impurity levels and found step-like structures in the
current voltage characteristics. References to earlier combined treatments of both the Coulomb blockade
and the coherent coupling between coupled dots can be found in the 1994 paper by Klimeck et al.[94],
who presented a calculation of the linear conductance. Their prediction for a splitting of the conductance
peaks both due to Coulomb interactions and the tunnel coupling was confirmed by exact digitalizations
by Chen and coworkers[95], and by Niu, Liu, and Lin in a calculation with non-equilibrium Green’s
functions[96], a technique also used by Zang et al.[97] in their theory of non-equilibrium transport and
population inversion in double dots. In 1996, Pals and MacKinnon[98] also used Green’s functions and
calculated the current through coherently coupled two-dot systems, and Matveev et al.[99] gave a theory
of the Coulomb blockade oscillations in double quantum dots.

The first systematic descriptions of transport through double quantum dots in terms of Master equa-
tions were given by Nazarov in 1993[100], and by Gurvitz and Prager[54] and by Stoof and Nazarov
[56] in 1996, the latter including a time-dependent, driving microwave field, cf. Section 2.4. These were
later generalized to multiple-dot systems by Gurvitz[55] and by Wegewijs and Nazarov[101]. Further-
more, Sun and Milburn[102] applied the open system approach of Quantum Optics[103] to current
noise in resonant tunneling junctions and double dots[104], and Aono and Kawamura[105] studied the
stationary current and time-dependent current relaxation in double-dot systems, using Keldysh Green’s
functions.

Transport beyond the Master equation approach leads to co-tunneling (coherent transfer of two elec-
trons) and Kondo-physics, which again even only for double quantum dots has become such a large
field that it cannot be reviewed here in detail at all. Pohjola, König, Salomaa, Schmid, Schoeller, and
Schön mapped a double dot onto a single dot model with two levels and predicted a triple-peak structure
in the Kondo-regime of non-linear transport[106], using a real-time renormalization group technique
(see below and[107]), whereas Ivanov[108] studied the Kondo effect in double quantum dots with the
equation of motion method. Furthermore, Stafford et al.[109] calculated co-tunneling corrections to the
persistent current through double dots embedded into an Aharonov–Bohm ring in an extension of the
Hubbard model used earlier by Kotlyar and Das Sarma[110].

The slave-boson mean field approximation was used by Georges and Meir[111] and by Aono and Eto
[112] for the conductance, and for the non-linear transport through double quantum dots in the Kondo
regime by Aguado and Langreth[113]and later by Orella et al.[114]who discussed non-linear bistability
behavior. Motivated by experimental results by Jeong et al.[115], Sun and Guo[116] used a model with
Coulomb interaction between the two dots and found a splitting of the Kondo peaks in the conductance.

Hartmann andWilhelm[117]calculated the co-tunneling contribution for transport at finite bias voltage
V in double quantum dots, starting from the basis of hybridized states, Eq. (2.4), and performing a
Schrieffer–Wolff transformation that took into account indirect transitions between final and initial dot
states including one intermediate state, cf.Fig. 6. They then used the transformed Hamiltonian in order to
obtain the stationary current by means of the usual Bloch–Redfield (Master equation) method, by which
they identified three transport regimes: no transport for the tunnel couplingTc < �/2, transport through
both hybridized states for�<2Tc <

√
V 2 − �2, and transport through one of the hybridized states for

2Tc >
√
V 2 − �2, cf. Fig. 6. Within the same formalism, they also analyzed dephasing and relaxation

of charge, with the double dot regarded as a spin-boson problem with two distinct baths (the electronic
reservoirs)[118].
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On the experimental side, co-tunneling and the Kondo regime in parallel transport through double
quantum dots were studied by Holleitner and co-workers recently[119,120], whereas Rokhinson et al.
[121] used a Si double dot structure to analyze the effect of co-tunneling in the Coulomb blockade
oscillation peaks of the conductance.

Another interesting transport regime occurs in Aharonov–Bohm geometries, where electrons move
through twoparallel quantum dots which are, for example, situated on the two arms of a mesoscopic
ring ‘interferometer’. Marquardt and Bruder[122] usedP(E) theory (Section 2.2.8), in order to describe
dephasing in such ‘which-path’ interferometers, also cf. their paper and the Review by Hackenbroich
[123] for further references.

2.2.12. Real-time renormalization-group (RTRG) method
Keil and Schoeller[124] calculated the stationary current through double quantum dots by using an

alternative method that went beyond perturbation theory (PER) and avoided the restrictions of the polaron
transformation method (POL). Their method allowed one to treat all three electron–phonon coupling
parameters (�LQ, �RQ, and�Q in Eq. (2.7)) on equal footing, and thereby to go beyond the spin-boson
model which has�Q= 0, Eq. (2.11). Furthermore, they avoided the somewhat unrealistic assumption of
infinite bias voltage in the Gurvitz Master equation approach and keptV =�L−�R at finite values. They
also explicitly took into account a finite width� of the electron densities in the left and the right dots,

�L/R(x)=
(

1

	�2

)3/2

e−(x−xL/R)2/�2
, (2.74)
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which (as mentioned above) leads to a natural high-energy cutoffD ≡ 2c/�, wherec is the speed
of sound.

The starting point of the RTRG method[125,124]was a set of two formally exact equations for the
time-dependent current〈Î 〉(t) and the reduced density matrix�̂(t) of the dot,

〈Î 〉(t)= Trdot

[∫ t

0
dt ′�I (t − t ′)�̂(t ′)

]
,

d

dt
�̂(t)+ iL̂0�̂(t)=

∫ t

0
dt ′�(t − t ′)�̂(t ′) , (2.75)

with the operator for the current density between the left lead and the left dot,

Î ≡ ie
∑
kL

((V L
k )∗|0〉〈L|c†

kL
− V L

k |L〉〈0|ckL) , (2.76)

the free-time evolution Liouville super-operatorL̂0· ≡ [H0, ·] for an effective dot HamiltonianH0, and
the two self-energy operators�I and� which described the coupling to the electron leads and the phonon
bath. Here,H0 differs from the dot HamiltonianHdot, Eq. (2.2), by a renormalized tunnel coupling
T eff
c = Tc − ��de−D/2�d arctanD/2�d and a renormalization∝ � of the energies of the states|0〉, |L〉,

and|R〉, where again� is the dimensionless electron–phonon coupling, and�d = c/d with d the distance
between the two dots.

Keil and Schoeller then generated renormalization group (RG) equations in the time-domain by in-
troducing a short-time cut-offtc. By integrating out short time-scales, they derived a coupled set of
differential equations for the Laplace transforms�(z), �I (z), L̂0, and additional vertex operators which
were defined in the diagrammatic expansion for the time-evolution of the total density matrix in the inter-
action picture. The RG scheme was perturbative as it neglected multiple vertex operators, which however
was justified for small coupling parameters�.

A comparison between experimental data[43] and the RTRG calculations for the stationary current is
shown inFig. 7(left). With smaller cut-offD (i.e. larger extension� of the electronic densities in the dots,
Eq. (2.74)), the off-diagonal electron–phonon interaction (matrix elements�Q) becomes more important

and the inelastic current is increased. Keil and Schoeller explained the deviations from the experimental
results by introducing an�-dependence of�, using� as a fit-parameter for all� (Fig. 7, right) in order
to match the experimental results. Larger energy separations�>0 then imply electron densities with
sharper peaks.

2.3. Shot-noise and dissipation in the open spin-boson model

Shot noise (quantum noise) of electrons has been recognized as a powerful tool in the analysis of
electronic transport in mesoscopic systems for quite some time (cf. the chapter on noise in Imry’s book
[8] on Mesoscopic Physics). Noise and fluctuations are also key theoretical concepts in Quantum Optics.
Noise in mesoscopic conductors has been recently reviewed by Blanter and Büttiker[126], and recent
developments are presented in a volume on ‘Quantum Noise in Mesoscopic Physics’[127].

A large theoretical activity on thedetection of entanglementin electron noise, or more generally in
the full counting statistics of electrons, has revealed the usefulness of quantum noise for the purpose of
quantum information processing in solids. For example, Burkard et al.[128] theoretically demonstrated
the possibility to detect entanglement in the bunching of spin singlets and anti-bunching of spin triplets
in an electron current passing a beam splitter.Creation of entanglementin solids has become a further
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and widespread area of (so far) still mostly theoretical activities, ranging from the Loss–DiVincenzo
proposal for spin-based qubits[22], superconducting systems[20], semiconductor spintronics[129] up
to entanglement of electron–hole pairs[130].

The spontaneous emission and, more generally, quantum dissipation effects discussed in the previous
section for stationary transport have of course also a large impact on quantum noise. Shimizu and Ueda
[131] investigated how dephasing and dissipation modifies quantum noise in mesoscopic conductors
and found a suppression of noise by dissipative energy relaxation processes. These authors furthermore
investigated the effect of a bosonic bath on noise in a mesoscopic scatterer[132]. Choi et al.[133]
showed how to extract quantum coherence and the dephasing timeT2 from the frequency-dependent
noise spectrum in a Cooper pair box. Elattari and Gurvitz[134] calculated shot noise in coherent double
quantum dots transport, and Mozyrsky and coworkers[135] derived an expression for the frequency-
dependent noise spectrum in a two-level quantum dot.

2.3.1. Current and charge noise in two-level systems
Current noise is defined by the power spectral density, a quantity sensitive to correlations between

carriers,

SI (�) ≡ 2
∫ ∞

−∞
d�ei��SI (�)=

∫ ∞

−∞
d�ei��〈{�Î (�),�Î (0)}〉 , (2.77)

where�Î (t) ≡ Î (t)− 〈Î (t)〉 for the current operator̂I . The Fano factor

� ≡ SI (0)

2qI
(2.78)

quantifies deviations from the Poissonian noise,SI (0)= 2qI of uncorrelated carriers with chargeq.



T. Brandes / Physics Reports 408 (2005) 315–474 345

The noise spectrumSI (�) for electron transport through dissipative two-level systems was calculated
by Aguado and Brandes in[65], with examples for concrete realizations such as charge qubits in a
Cooper pair box[20,136,133]or the double quantum dot system from the previous section. The theoretical
treatment is basically identical in both cases: for the Josephson Quasiparticle Cycle of the superconducting
single electron transistor (SSET) with charging energyEC?EJ (the Josephson coupling), only two
charge states,|2〉 (one excess Cooper pair in the SSET) and|0〉 (no extra Cooper pair), are allowed.
The consecutive quasiparticle events then couple|2〉 and |0〉 with another state|1〉 through the cycle
|2〉 → |1〉 → |0〉 ⇔ |2〉. Tunneling betweenL andR in the double dot system is analogous to coherent
tunneling of a Cooper pair through one of the junctions, and tunneling to and from the double dot is
analogous to the two quasiparticle events through the probe junction in the SSET[133].

In Quantum Optics, the quantum regression theorem[103] is a convenient tool to calculate temporal
correlation functions within the framework of the Master equation. Tunneling of particles to and from the
two-level system requires to relate the reduced dynamics of the qubit to particle reservoir operators like
the current operator. In[65], this lead to an expression for the noise spectrum in terms of two contributions:
the internal charge noise as obtained from the quantum regression theorem, and the current fluctuations
in the particle reservoirs which were calculated by introducing an additional counting variablen for the
number of particles having tunneled through the system. In fact,SI (�) in Eq. (2.77) had to be calculated
from the autocorrelations of thetotal currentI, i.e. particle plus displacement current[126] under the
current conservation condition. Left and right currents contribute to the total current asI = aIL + bIR,
wherea andb are capacitance coefficient (a+b=1) of the junctions (Ramo–Shockley theorem), leading
to an expression ofSI (�) in terms of the spectra of particle currents and the charge noise spectrum
SQ(�),

SI (�)= aSIL(�)+ bSIR(�)− ab�2SQ(�) (2.79)

with SQ(�) defined as

SQ(�) ≡ lim
t→∞

∫ ∞

−∞
d�ei��〈{Q̂(t), Q̂(t + �)}〉 = 2Re{f̂ (z= i�)+ f̂ (z=−i�)} , (2.80)

whereQ̂= n̂L + n̂R andf̂ (z) is the Laplace transform of

f (�)=
∑

i,j=L,R

〈n̂i(t)n̂j (t + �)〉 = (e1 + e2)[CL(�)+ CR(�)] (2.81)

C�(�) ≡ 〈n̂�(t)A(t + �)〉 . (2.82)

The equations of motions of the charge correlation functionsC�(�) [137] (quantum regression theorem
[103]),

Ci(�)= Ci(0)+
∫ �

0
d�′{M(� − �′)Ci(�

′)+ 〈ni(t)〉�}, � = �Le1 , (2.83)

are solved in terms of the resolvent[z− zM̂(z)]−1, cf. Eq. (2.39).
The qubit dynamics was related with reservoir operators by introducing a counting variablen

(number of electrons that have tunneled through the right barrier[20,134]) and expectation values,
O(n) ≡ ∑

i=0,L,RTrbath〈n, i|Ô�(t)|n, i〉 with 〈Ô〉 = ∑n O
(n). This lead to a system of equations
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of motion,

ṅ
(n)
0 = − �Ln

(n)
0 + �Rn

(n−1)
R , ṅ

(n)
L/R =±�L/Rn

(n)
0 ± iTc(p

(n) − [p(n)]†) (2.84)

and similar equations forp(n) and[p(n)]†, which together withPn(t)= n
(n)
0 (t)+ n

(n)
L (t)+ n

(n)
R (t) gave

the total probability of findingn electrons in the collector by timet. In particular,IR(t) = e
∑

n nṖn(t)

such thatSIR could be calculated from the Mac-Donald formula[138],

SIR(�)= 2�e2
∫ ∞

0
dt sin(�t)

d

dt
[〈n2(t)〉 − (t〈I 〉)2] = 2eI {1+ �R[n̂R(−i�)+ n̂R(i�)]}

zn̂R(z)= �Lg+(z)/{[z+ �R + g−(z)](z+ �L)+ (z+ �R + �L)g+(z)} , (2.85)

where theg+[−](z) are defined in Eq. (2.46). In thezero frequency limitz → 0, the result

SI (0)= 2eI

(
1+ 2�R

d

dz
[zn̂R(z)]z=0

)
(2.86)

indicated the possibility to investigate the shot noise of open dissipative two-level systems forarbitrary
environments. In [65], it was pointed out that Eq. (2.86) cannot be written in the Khlus–Lesovik form
SI (0) = 2e2

∫
dE/2	t (E)[1 − t (E)] with an effective transmission coefficientt (E) as is the case for

non-interacting mesoscopic conductors, cf. also[131].
For� = 0, i.e. without coupling to the bosonic bath, Eq. (2.47) yields

g±(z)= T 2
c

2z+ �R

(z+ �R/2)2 + �2
, (2.87)

which reproduces earlier results by Elattari and Gurvitz[134],

d

dz
[zn̂R(z)]z=0 =−4T 2

c �L

�R

4�2(�R − �L)+ 3�L�2
R + �3

R + 8�RT
2
c

[�L�2
R + 4�L�2 + 4T 2

c (�R + 2�L)]2
, (2.88)

and similarly one recovers the results for shot noise in the Cooper pair box obtained by Choi et al.[133].
In particular, for�=0 and� ≡ �L=�R (left Fig. 8a, solid line), the smallest Fano factor has a minimum
at�=0 where quantum coherence strongly suppresses noise with maximum suppression (�=1/5) reached
for � = 2

√
2Tc. On the other hand, for large�>0 (�<0) the charge becomes localized in the right (left)

level, andSI (0) is dominated by only one Poisson process, the noise of the right(left) barrier, and the Fano
factor tends to unity,� → 1. For�  = 0, spontaneous emission (for�>0) reduces the noise well below
the Poisson limit, with a maximal reduction when the elastic and inelastic rates coincide, i.e.,�p = �R.

On the other hand, forfinite frequencies�, � was found to have a peak around� = 0 and a dip at the
frequency� = �, where� = √�2 + 4T 2

c is the level splitting, which was shown to directly reflect the
resonance of the subtracted charge noiseSQ(�) around� (inset leftFig. 8 b), cf. Eq. (2.79). The dip
in the high frequency noise at� = � is progressively destroyed (reduction of quantum coherence) as�
increases due to localization of the charge, or as the dissipation increases.

It was therefore argued[65] thatSI (�) reveals the complete internal dissipative dynamics of the two-
level system, an argument that was supported by a calculation of the symmetrized pseudospin correlation
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function

Sz(�)= 1/2
∫ ∞

−∞
d�ei��〈{�̂z(�), �̂z}〉 (2.89)

(right Fig. 8, right inset) which is often used to investigate the dynamics of the spin-boson problem[51]
and which also shows the progressive damping of the coherent dynamics with increasing dissipation. A
further indication was the extraction of thedephasing ratefrom the half-width ofSI (�) around� = �,
and therelaxation ratearound� = 0, indicated by the arrows and consistent with the relation between
relaxation and dephasing time,T1 = 1

2T2, in the underlying Markov approximation in the perturbative
approach (PER).

Results for the strong coupling (POL) regime were also discussed in[65], where near� = 0, POL
and PER yielded nearly identical results for the noiseSI (�) at very small�, but with increasing� a
cross-over to Poissonian noise near�= 0 was found and interpreted as localized polaron formation. The
delocalization–localization transition[50,51]of the spin-boson model at�=1 therefore also shows up in
the shot noise near zero bias, where the functionC� has a change in its analyticity.A similar transition was
found by Cedraschi and Büttiker in the suppression of the persistent currentI (|�|) ∝ ImC−|�| through a
strongly dissipative quantum ring containing a quantum dot with bias� [139].

Whereas the validity of the quantum regression theorem is guaranteed in the Markovian case, its
application to the non-Markovian strong coupling regime was argued to be unreliable[140]. Although
the original derivation by Lax[141]appears to be generally valid even in the non-Markovian case, counter-
examples appear to show the contrary, with additional terms appearing in the calculation of the noise
correlation functions. From this argument, the results in the POL regime of[65] appear to be less reliable.
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Novotný [140] furthermore calculated the Fano-factor of the ‘transport’ Spin-Boson model in the
Markovian regime, using a previously developed superoperator technique[142]. He found a breaking of
an exact junction-independence ofS(0) for any finite dissipation�>0, with unphysical results (negative
Fano factors) for the noise at the central tunnel junction of the double dot, whereas agreement with the
results from[65] was restored in the weak-coupling limit and the Master equation in the|±〉 basis.

2.3.2. Shot noise experiments
Deblock et al.[81] measured the current noise spectrum in the frequencies range 6–90 GHz by using

a superconductor–insulator–superconductor (SIS) tunnel junction, which converted a noise signal at
frequency� into a DC, photo-assisted quasi-particle tunnel current. They tested their on-chip noise
analyzer for three situations: the first was a voltage (VJ ) biased Josephson junction for|eV J | below
twice the superconducting gap, leading to an AC current and (trivially) two delta-function noise peaks at
frequencies� = ±2eV J /2. This measurement served to extract a trans-impedanceZ(�) of the system
which was later used to analyze the data without additional fit parameters. The second case was a DC
current (IJ ) biased Josephson junction in the quasi-particle tunneling regime for|eV J | above twice the
superconducting gap . Using the sameZ(�), good agreement with the experimental data was obtained
with anon-symmetrizednoise spectrumS(�)= eIJ , which is half the Poisson value,S(�)= 2eIJ .

Finally and most important, they used a Cooper pair box to confirm the peak in the spectral noise
density as predicted by Choi et al.[133]. The resonance ofS(�) appeared around the level splitting

2�=
√

4EC(Q/e − 1)2 + E2
J , withEC the charging energy,Q the charge in the box, andEJ the Josephson

coupling between the two states ofN andN + 1 Cooper pairs in the box, thus again demonstrating the
coherent quantum mechanical coupling between the two states.

2.4. Time-dependent fields and dissipation in transport through coupled quantum dots

The interaction of two-level systems with light is one of the central paradigms of Quantum Optics; the
study of transport under irradiation with light therefore is a natural extension into the realm of quantum
optical effects in mesoscopic transport through two-level systems as treated in this section. In the simplest
of all cases, the light is not considered as a quantum object but as a simple monochromatic classical field
with sinusoidal time-dependence, and one has to deal with time-dependent Hamiltonians. These systems
are often called ‘ac-driven’ and have received a lot of attention in the past. In the context of electronic
transport and tunneling, this field has recently been reviewed by Platero and Aguado[144]. Furthermore,
Grifoni and Hänggi reviewed driven quantum tunneling in dissipative two-level and related systems[145].

An additional, time-dependent electric field in general is believed to give additional insight into the
quantum dynamics of electrons, and in fact a large number of interesting phenomena like photo-sidebands,
coherent suppression of tunneling, or zero-resistance states in the quantum Hall effect have been inves-
tigated. In this context, an essential point is the fact that the field is not from the beginning treated as a
perturbation (e.g., in linear response approximation), but is rather considered as inherent part of the sys-
tem itself. By this, one has to deal with conditions of anon-equilibrium systemunder which the quantity
of interest, e.g. a tunnel current or the screening of a static potential, has to be determined.

For our purposes here, a simple distinction can be made between systems where the field is a simple,
monochromatic ac-field, or where it shows a more complicated time-dependence such as in the form of
pulses with certain shapes. The latter case plays a mayor role in a variety of adiabatic phenomena such
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Fig. 9. Left: stationary current through a microwave irradiated double quantum dot (zero transport voltage) for different microwave
frequenciesf as a function of the energy difference� (=�E here) in the experiment by Oosterkamp and co-workers[143]. Positive

or negative peaks occur wheneverhf matches the energy difference,hf =±�=
√

�2 + 4T 2
c , between bonding and anti-bonding

state in the double dot, cf. Eq. (2.4. From[37]). Right: the relation�(≡ �E) =
√
(hf )2 − 4T 2

c is tested for various inter-dot
coupling constantsTc (denoted asT in the picture). Inset shows the double dot sample. From[143].

as charge pumping[32,146–154], adiabatic control of state vectors[155,156], or operations relevant for
quantum information processing in a condensed-matter setting[21,20,157–161]and will be dealt with
in Section 7. On the other hand, a monochromatic time-variation is mostly discussed in the context of a
high frequency regime and photo-excitations.

Theoretical approaches to ac-driven quantum dots comprise a large number of works that cannot be
reviewed here, but cf.[144]. Earlier works include, among others, the papers by Bruder and Schoeller
[162], Hettler and Schoeller[163], Stafford and Wingreen[164], and Brune and coworkers[165]. The
first systematic theory on transport throughdoublequantum dots with ac-radiation in the strong Coulomb
blockade regime was given by Stoof and Nazarov[56], which was later generalized to pumping of elec-
trons and pulsed modulations by Hazelzet et al.[166]. On the experimental side for double quantum dots,
Oosterkamp and co-workers[143] used microwave excitations in order to probe the tunnel-coupling in-
duced splitting into bonding and antibonding states, cf.Fig. 9and the Review by van der Wiel and cowork-
ers[37]. Blick and co-workers[41] demonstrated Rabi-oscillations in double dots with ac-radiation, and
later Holleitner and co-workers[167] studied photo-assisted tunneling in double dots with an on-chip
microwave source.

Qin et al.[168] furthermore reported the probing of bonding and anti-bonding states in double quantum
dots with photon-assisted tunneling. They also found a remarkable combination of phonon and photon-
assisted tunneling for microwave frequencies below 8 GHz. In their experiments, charging diagrams were
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measured as a function of the tunnel couplingTc and the inter-dot bias�.At higher microwave frequencies

f = 15 and 20 GHz, the relation� =
√
(hf )2 − 4T 2

c confirmed the coherent coupling of the two-level
systems, cf. alsoFig. 9. However, atf = 3 GHz a modification of this square-root dependence was
observed, and Qin and co-workers suggested a sequential process with photon absorption and a coherent
coupling of the dot levels by a fundamentalphononfrequencyfph, or alternatively a completely coherent
coupling of phonon and photon, giving rise to ‘square-root laws’ of the form[168]

�seq=
√
(2hf ph)

2 − 4T 2
c + 2hf , �coh=

√
(2hf ph + 2hf )2 − 4T 2

c , (2.90)

respectively, both of which were within the error bars of the experimental data. The phonon frequency
fph ≈ 10 GHz was found to match well with the geometrical dimension of the double dot, which was
argued to act like a phonon cavity for piezo-acoustic phonons, also cf. Section 5.

2.4.1. Transport model for driven two-level system with dissipation
The combination of ac driving and transport in a dissipative two-level system (double quantum dot)

was modeled by Brandes et al.[66] in a generalization of earlier work on closed, dissipative two-level
systems with ac driving by Grifoni and Hänggi[145], and coherently ac-driven double dots by Stoof and
Nazarov[56]. The model considered in[66],

H(t)=HSB(t)+Hres+HV (2.91)

was identical with the double-dot transport model in Section 2.2.1, but with a time-dependent spin-
boson partHSB(t), cf. Eq. (2.10), of which only the inter-dot bias�(t) was considered as time-varying
according to

�(t)= � + � sin(�t) , (2.92)

where� is the angular frequency of an external electric field that leads to a symmetric modulation of
the bias with amplitude�. The question of whether or not the simple assumption Eq. (2.92) is sufficient
in order to describe the effect of an ac-field is a non-trivial issue. Stoof and Nazarov[56] argued that
Eq. (2.92) describes the effect of a sinusoidal modulation of a gate voltage. Experimentally, however, the
coupling to ac-fields is complicated, and in principle one has to expect additional modulations of other
parameters such as the tunnel couplingTc, or the tunnel rates�L/R. From the quantum optical point of
view, one would in fact start from the bonding-antibonding basis|±〉, Eq. (2.4), and argue that the ‘light’
induced transitions between them.A more precise model would involve detailed microscopic calculations
of a) the electromagnetic field modes coupling into the system, e.g., its polarization, possible propagation
effects etc., and b) the dipole (or higher if required) matrix elements for electron–photon coupling in the
double-dot many-body system. Eventually, however, one would expect to recover models like Eq. (2.91),
possibly with some modifications and microscopic expressions for the parameters.

In [66], the evaluation of the photo-current through the dots under irradiation was performed within
the Master equation approach in a generalization of the polaron transformation formalism developed in
Section 2.2.3. Using the boson correlation function, Eq. (2.20), one then can define ‘polaron propagators’
that incorporate the finite lifetime of the electron–boson quasi-particle due to tunneling out of the double
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dot at rate�R,

D̂�(z) ≡ Ĉ�(z)

1+ �RĈ�(z)/2
, Ê�(z) ≡ Ĉ∗−�(z)

1+ �RĈ�(z)/2
,

D̂∗
� (z) ≡

Ĉ∗
� (z)

1+ �RĈ∗
� (z)/2

, Ê∗
� (z) ≡

Ĉ−�(z)

1+ �RĈ∗
� (z)/2

, (2.93)

whereC�(z), etc. are defined in Eq. (2.42) and the hat denotes the Laplace transformation. The propagators
Eq. (2.93), transformed back into the time-domain, appear in closed equations for the occupancies〈nL/R〉,

zn̂L(z)− 〈nL〉0 =−
∫ ∞

0
dte−zt [〈nL〉t K̂(z, t)− 〈nR〉t Ĝ(z, t)] + �L

[
1

z
− n̂L(z)− n̂R(z)

]

zn̂R(z)− 〈nR〉0 =
∫ ∞

0
dte−zt [〈nL〉t K̂(z, t)− 〈nR〉t Ĝ(z, t)] − �Rn̂R(z)

K̂(z, t) ≡
∫ ∞

0
dt ′e−zt ′ [Tc(t + t ′)T ∗

c (t)D�(t
′)+ T ∗

c (t + t ′)Tc(t)D∗
� (t

′)]

Ĝ(z, t) ≡
∫ ∞

0
dt ′e−zt ′ [Tc(t + t ′)T ∗

c (t)E�(t
′)+ T ∗

c (t + t ′)Tc(t)E∗
� (t

′)] , (2.94)

where the combination

Tc(t + t ′)T ∗
c (t

′)= T 2
c ei

∫ t+t ′
t ds� sin(�s) = T 2

c

∑
nn′

in
′−nJn

(
�

�

)
Jn′
(

�

�

)
e−in�t ′e−i(n−n′)�t

involves Bessel functions, as is typical for ac-tunneling problems. Decomposing into Fourier series, a
closed set of equations for asymptotic, stationary quantities

n̂
asy
L (z)=

∑
m

�m
z+ im�

, n̂
asy
R (z)=

∑
m

�m
z+ im�

(2.95)

is then obtained in the form of an infinite system of linear equations for the Fourier coefficients�m and
�m,

− iM��M =−
∑
n

[�nKM−n(−iM�)− �nGM−n(−iM�)] + �L[
M,0 − �M − �M ]

[�R − iM�]�M =
∑
n

[�nKM−n(−iM�)− �nGM−n(−iM�)] , (2.96)

which can be transformed into an infinite matrix equation that describes the contribution from all
photo-side bands at frequencies±n� with coefficients given by the Fourier components ofK̂(z, t)
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andĜ(z, t),

Km(−im′�)= i−mT 2
c

∑
n

[
Jn

(
�

�

)
Jn−m

(
�

�

)
D̂�+(m′−n)� + Jn

(
�

�

)
Jn+m

(
�

�

)
D̂∗

�−(m′+n)�

]
,

Gm(−im′�)= i−mT 2
c

∑
n

[
Jn

(
�

�

)
Jn−m

(
�

�

)
Ê�+(m′−n)� + Jn

(
�

�

)
Jn+m

(
�

�

)
Ê∗

�−(m′+n)�

]
.

(2.97)

The closed expression for the stationary currentĪ averaged over one period� ≡ 2	/�,

Ī =−e�R

K0(0)−∑n =0 [K−n(0)/rn +G−n(0)]�n
�R +K0(0)/r0 +G0(0)

, (2.98)

then is the starting point for a numerical and analytical analysis of ac-driven dissipative transport through
two-level systems.

2.4.2. Stationary current
In absence of the time-dependent (driving) part in�(t), i.e. for�= 0, one recovers the previous results

for the stationary charge current, Eq. (2.50). In the time-dependent case, the analysis is complicated by
the fact that there are six energy scales,Tc, �, �, �L/R, and�c, the boson cut-off in the Ohmic(s = 1)
boson spectral densityJ (�), Eq. (2.52).

An expansion in lowest order of the tunnel couplingTc leads to the usualTien–Gordon result[169]
for ac-driven tunneling, which in fact has often been used in the literature as the first starting point in the
analysis of driven tunnel systems. This result is valid for

Tc

√
2+ �R

�L

>�,�R, |� + n�|, n=±0,1,2, . . . , (2.99)

a condition that one obtains when considering the expansion of the current in the un-driven case, Eq.
(2.49) and which indicates that at the resonance points� = n� such a perturbation theory must break
down, as is corroborated by numerical results. In this limit, one finds[66]

I
TG ≡

∑
n

J 2
n

(
�

�

)
I0|�=0

�→�+n� , (2.100)

where the current in the driven system is expressed by a sum over contributions of currentsI0 in the
un-driven case but evaluated at the side-band energies�+n�, weighted with squares of Bessel functions.

A non-adiabatic limit is obtained for high frequencies,

�?Tc, �,�R,�L , (2.101)

where Fourier components other than the centraln= 0 are neglected and

Ī ≈ Ī fast ≡ −e�RK0(0)

�R +G0(0)+K0(0)[1+ �R/�L] , (2.102)

which in actual fact within lowest order ofTc coincides with the Tien–Gordon expression, Eq. (2.100).
Eq. (2.102) corresponds to a geometric series-like summation of an infinite number of terms∝ T 2

c which
is due to the integral equation structure of the underlying Master equation.
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Fig. 10. Left: average current through double dot in Coulomb blockade regime with bias�+ � sin�t . Coupling to left and right
leads�L = �R = �. Dotted lines indicate Tien–Gordon result, Eq. (2.100). Right: comparison between RWA and exact result
for first current side-peak. From[66].

In order to systematically go beyond the Tien–Gordon approximation, Eq. (2.100), one has to perform
an expansion of the current in powers ofT 2

c , which is cumbersome when done analytically but can be
easily achieved bytruncatingthe infinite matrix equation, Eq. (2.96), and solving it numerically. A third,
analytical approximation discussed in[66] is based on results by Barata and Wreszinski[170,171]on
higher order corrections to dynamical localization in aclosedand coherent driven two-level system. In
that case, a third order correction of the tunnel couplingTc appears,


T (3)
c ≡ −2T 3

c

�2

∑
n1,n2∈Z

J2n1+1(�/�)J2n2+1(�/�)J−2(n1+n2+1)(�/�)

(2n1 + 1)(2n2 + 1)
, (2.103)

which can be used in order to define a renormalized functionK
(3)
0 (0),

K
(3)
0 (0) ≡

∑
n

[
TcJn

(
�

�

)
+ 
T (3)

c

]2

2ReD�+n� , (2.104)

andG(3)
0 (0) correspondingly that give rise to an expression for the tunnel current with the coupling

between the dots renormalized,

Ī (3) ≡ −e�RK
(3)
0 (0)

�R +G
(3)
0 (0)+K

(3)
0 (0)[1+ �R/�L]

. (2.105)

Fig. 10, left, shows results for the exact average stationary current and the Tien–Gordon expression,
Eq. (2.100), in the coherent case� = 0 (no dissipation). Symmetric photo-side peaks appear at±n2�.
The Tien–Gordon approximation overestimates the current close to these resonances, where terms of
higher order inTc become important due to the non-linearity (inTc) of the exact bonding and antibonding
energies±√�2 + 4T 2

c of the isolated two-level system.
Fig. 10, right, compares the exact result with a rotating wave approximation (RWA) for the first side-

peak as obtained by Stoof and Nazarov[56], where in an interaction picture the fast-rotating terms with
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quantum dot. ParametersTc=0.1,�=z0� (all rates in units of�); (c) coherent case�=0 for different tunnel rates�=�L=�R ,
dots indicate third order results Eq. (2.105), squares indicate the Tien–Gordon result Eq. (2.100) for the case� = 0.005, (d)
disappearance of central peak with increasing dissipation�. From[66].

angular frequency±� are transformed away, and terms with higher rotation frequencies (such as±2�)
are neglected. For smaller driving amplitude�, the agreement is very good but becomes worse with
increasing� when the position of the side-peak resonance point (which is independent of� in the RWA)
starts to shift towards slightly larger values of the bias�. For strong electric fields, the RWA in fact is
known to break down[172]. For example, the first corrections to the RWA in isolated two-level systems
lead to the well-known Bloch–Siegert shift[36] of the central resonance towards larger energies, which
is consistent with the exact result inFig. 10.

Figs. 11a, b, show the average current for� = 0 in the dynamical localization regime defined by
� = z0�, wherez0 = 2.4048. . . is the first zero of the Bessel functionJ0. For this specific value of the
ac-driving�, to lowest order inTc the average current is strongly suppressed for|�|�� as compared with
the un-driven case�=0. For smallTc, this suppression is well-described by the Tien-Gordon expression
(not shown ): since at� = z0�, then= 0 term in the sum Eq. (2.100) is absent, the current is dominated
by the shifted (un-driven) current contributions at bias�+ n� with |n|�1, which however are very small
due to the resonance shape of the un-driven current.

Dynamical localization (also called coherent destruction of tunneling) occurs in quantum system driven
by a periodic electric field of a certain amplitude[144,173]. An analysis in terms of Floquet states and
energies shows that when two quasi-energies approach degeneracy, the time-scale for tunneling between
the states diverges. For an isolated two-level system, a monochromatic, sinusoidal field�(t)=�+� sin(�t),
Eq. (2.92), leads to an effective renormalization of the couplingTc of the two levels,

Tc → Tc,eff ≡ TcJ0

(
�

2�

)
. (2.106)

which shows that at the first zero of the Bessel functionJ0 the effective tunnel splitting vanishes, leading
to a complete localization of the particle in the initial state.



T. Brandes / Physics Reports 408 (2005) 315–474 355

0

2

4

-1.5 -1 -0.5  0  0.5  1  1.5

I [
10

-3
Ω

-1
]

ε/Ω

α=0.05
α=0.10
α=0.20

α=0.05(DL)
α=0.10(DL)
α=0.20(DL)

0

2

4

-0.4 -0.2  0  0.2  0.4

I [
10

-3
Ω

-1
]

ε/Ω

α=0.05, Γ=0.01Ω∆=0.0 Ω
∆=0.4 Ω
∆=0.8 Ω
∆=1.6 Ω
∆= z0 Ω
∆=2.8 Ω
∆=3.2 Ω
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The coherent suppression of the current is howeverlifted again very close to� = 0, where a small and
sharp peak appears that becomes broader with increasing tunnel couplingTc, but with its height being
suppressed for increasing reservoir coupling�, cf. Fig. 11b. Fig. 11shows details for the central current
peak around� = 0 at dynamical localization for coherent (� = 0, c) and incoherent (�>0, d) tunneling.
Again the Tien–Gordon description breaks down close to� = 0 where higher order terms inTc become
important, in particular for�=0 where the only relevant energy scale of the isolated two-level systems is
Tc itself. In contrast, thethird order approximationEq. (2.105) reproduces very well the additional peak
at�=0, which indicates the importance of higher order terms in that regime. At�=0, the charge between
the two dots is strongly de-localized in the un-driven case, and this tunneling-induced quantum coherence
persists into the strongly driven regime where its signature is a lifting of the dynamical localization close
to � = 0.

Fig. 12shows the stationary current as a function of bias� for various Ohmic dissipation strengths� at
zero temperature and finite ac driving amplitudes�. For�=�, apart from the central resonant tunneling
peak, side-bands at� = n� appear which reproduce the asymmetry of the central peak around� = 0, cf.
Fig. Eq. (2.45) in Section 2.2.10. For ac driving amplitude� = z0� (z0 the first zero of the Bessel
functionJ0) the current suppression strongly depends on the static bias�: suppression occurs for�>0
and, in general,larger values of the current for�<0 as compared to the case of smaller ac amplitudes
�. A small driving amplitude��0.2 nearly does not change the current at all. However, the originally
strongly asymmetric current curve is flattened out when� is tuned to larger values up to the dynamical
localization value�= z0�, where the ac field nearly completely destroys the strong asymmetry between
the spontaneous emission (�>0) and the absorption side (�<0) of the current. The centraln= 0 photo-
band is completely suppressed and the dominant contribution to the current stems from then = ±1
bands. For�<0, the current for�> |�| is then due to photo-excitation of the electron into the first upper
photo-sidebands and subsequent spontaneous emission of bosons of energyE1 ≡ � − |�| to the bath.



356 T. Brandes / Physics Reports 408 (2005) 315–474

On the other hand, for�> �>0, photon emission blocks the current because atT=0 there is no absorption
of bosons from the bath. The remaining photon absorption channel then leads to boson emission at an
energyE2 ≡ �+ �. This energy is larger as compared to the case for�<0,E2>E1, and therefore has a
smaller probabilityP(E) ∝ E2�−1e−E/�c , cf. Eq. (2.62), leading to a smaller current.

3. Superradiance, large spin models, and transport

Whereas the previous section dealt with individual two-level systems and their interactions with boson
and electron reservoirs, this section introduces the concept of collective effects in spontaneous emission
(superradiance) and various realizations of superradiance in mesoscopic systems.

3.1. Dicke superradiance

Superradiance is the collective decay of an initially excited system ofN atoms due to spontaneous
emission of photons. For largeN, the emission as a function of time is not of the usual exponential form,
but has the form of a very sudden peak (‘flash’) that occurs on a very short time-scale∝ 1/N and has a
maximum∝ N2. The phenomenon of superradiance was predicted by Dicke in a seminal paper in 1954
[174], shortly after his 1953 paper on spectral line-narrowing[175]. Both effects are related to each other
and referred to in the literature as ‘Dicke-effect’. In this section, we will discuss the Dicke superradiance
effect only, whereas the Dicke spectral line effect will be dealt with in Section 4.

The first observation of superradiance in an optically pumped hydrogen fluoride gas by Skribanovitz
et al.[176] was the starting point of considerable activities (both experimental and theoretical) since the
1970s on this collective, quantum optical effect, a good account of which is given in the text-books by
Benedict et al.[177], Andreev et al.[178], and the Review Article by Gross and Haroche[179]. The
wealth of physical concepts related to superradiance may in part have contributed to the quite recent
revival of the effect, in particular in Solid State Physics. For example, coherent effects in semiconductors
optics [180,181]have become accessible experimentally by ultrafast spectroscopy. Most prominently
in semiconductor optics, the superradiance effect has been found in radiatively coupled quantum-well
excitons[182–184]recently.

Conceptually, superradiance is the generalization of spontaneous emission from a single to a many-
body system, similar to the way that lasing is the extension of the concept of stimulated emission to a
large ensemble of atoms. It has to be emphasized though, that superradiance and lasing are two different
concepts which should not be confused.

The clearest outline of the central idea behind superradiance is perhaps given in the introduction of
Dicke’s original paper. Let us take a similar route here and first consider an excited atom, as described in
the form of a two-level system (ground and excited state), which can decay due to spontaneous emission of
photons. The decay rate� is determined by the interaction of the atom with the light and can be calculated
from the corresponding transition matrix elementsgQ. Considering nowtwo (instead of one) atoms at
positionsr1 andr2, this interaction (in dipole approximation with dipole momentsd̂1 andd̂2 of the two
atoms) is proportional to the sums of termsd̂1ei(Qr1) andd̂2ei(Qr2), which interfere and thereby lead to
a splitting of the spontaneous decay into a fast, ‘superradiant’, decay channel, and a slow, ‘subradiant’
decay channel. This splitting is called ‘Dicke-effect’.
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Using Pauli matrices for two-level atoms, the Hamiltonian for two atoms interacting with the electro-
magnetic field reads[185]

H =H0 +Heph+Hph, H0 ≡ 1

2
�0(�̂z,1 + �̂z,2), Hph ≡

∑
Qs

�Qa
+
QsaQs , (3.1)

Heph≡
∑
Qs

gQs(a−Qs + a+Qs)[eiQr1�̂x,1 + eiQr2�̂x,2] , (3.2)

where the dipole operators ared̂i = d�̂x,i , and�̂z,i and�̂x,i are the Pauli matrices in the 2× 2 space of
the upper/lower level| ↑ 〉i ,| ↓ 〉i of atomi,

�̂x,i ≡
(

0 1
1 0

)
(i)

, �̂y,i ≡
(

0 −i

i 0

)
(i)

, �̂z,i ≡
(

1 0
0 −1

)
(i)

. (3.3)

Here,�0 is the transition frequency between the upper and lower level. Furthermore,�Q = c|Q| with
the speed of lightc, anda+Qs creates a photon with wave vectorQ and polarizations, andgQs= g̃Qsd

is the coupling matrix element with̃gQs = −i(2	cQ/V )1/2εQs and light polarization vectorεQ,s in a
volumeV → ∞. The form Eq. (3.1) of the Hamiltonian induces a preferential basis in the Hilbert space
H2 = C2 ⊗ C2 of the two two-level systems, i.e. pseudo-spin singlet and triplet states according to

|S0〉 ≡ 1√
2
(| ↑↓〉 − | ↓↑〉) ,

|T1〉 ≡ | ↑↑〉, |T0〉 ≡ 1√
2
(| ↑↓〉 + | ↓↑〉), |T−1〉 ≡ | ↓↓〉 , (3.4)

which are a special example ofj =N/2 Dicke states (angular momentum states|jm〉 with j =1). Using
this basis, one can easily calculate the non-zero matrix elements ofHeph. Simple perturbation theory
(Fermi’s Golden Rule) then yields two transition rates�± for spontaneous emission of photons into a
photon vacuum,

�±(Q)= 2	
∑
Qs

|gQs |2
2

|1± exp[iQ(r2 − r1)]|2
(�0 − �Q), Q= �0/c , (3.5)

with superradiant decay at rate�+(Q) and subradiant decay at rate�−(Q). This splitting into two decay
channels is the precursor of the more general case ofN radiators (ions, atoms,...), where the phenomenon is
known asDicke superradiance. Already forN = 2, one can easily understand how the time-dependence
of the collectivedecay of radiators differs from the decay of single, independent radiators: The time
dependence of the occupation probabilities (T1(t), T0(t), T−1(t), andS0(t)) of the for states, Eq. (3.4),
are governed by a set of rate equations

Ṫ1 =−(�− + �+)T1, Ṡ0 = �−(T1 − S0) ,

Ṫ0 = �+(T1 − T0), Ṫ−1 = �−S0 + �+T0 . (3.6)

For simplicity, let us consider the case where the subradiant channel is completely suppressed,�− = 0
and�+ = 2�, where� is the emission rate of one individual radiator. This situation corresponds to the
so-calledsmall–sample limit|Q(r2 − r1)|>1 where the wave length of the emitted light is much larger
than the distance between the two radiators. The rate equations can be easily solved[186],

T1(t)= e−�+t , T0(t)= �+te−�+t , T−1(t)= 1− e−�+t (1+ �+t) , (3.7)
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where initial conditionsT1(0)=1,T0(0)=S0(0)=T−1(0)=0 were assumed. The totalcoherent emission
rateI2(t) at timet is the sum of the emission rates fromT1 andT0 (the lowest levelT−1 does not radiate),

I2(t)= E0�+e−�+t (1+ �+t), �+ = 2� , (3.8)

whereE0 is a constant with dimension energy. This has to be compared with theincoherent sum2I1(t)

of the emission ratesI1(t) from two independent radiators, which would give 2I1(t) = 2E0�e−�t . Not
only does the superradiant decay have a rate�+ twice as large as in the incoherent case; the overall time-
dependence is changed due to the term linear int. ForN >2 this change is even more drastic and leads
to the superradiance ‘flash’, see below. Note that energy conservation requires the total emitted energies
to be the same in both the coherent and the incoherent case, i.e.

∫∞
0 dtI2(t)=

∫∞
0 dt2I1(t)= 2E0.

3.1.1. N atoms and the Dicke effect
The generalization of the interaction Hamiltonian in dipole approximation, Eq. (3.1), toN atoms at

positionsr i with dipole momentŝdi = d�̂x,i is given by the−dE interaction,

Heph=
∑
Qs

gQs(a−Qs + a+Qs)
N∑
i=1

�̂x,ie
iQr i . (3.9)

In order to describe the full interaction of bound charges with the electromagnetic field, one has to add a
self-energy termHself on top of Eq. (3.9), as was first shown by Power and Zienau and discussed in detail
in the book by Agarwal[185]. Alternatively, one can describe the interaction in thepA gauge but then
has to include electrostatic dipole–dipole interaction terms[179]. Depending on various conditions, these
terms are important for a realistic description ofN-atom systems. They lead, together with theN-particle
Lamb shifts from the real parts in the Master equation[179] derived from Eq. (3.9), to a modification
of the ‘pure’ superradiance scenario as first discussed by Dicke. The ‘pure’ superradiance case, however,
is conceptually most transparent and relevant for a generalization of collective decay to other types of
interactions (e.g. with phonons).

Assume a situation in whichall the phase factors eiQr i in Eq. (3.9) are identical (say, unity for sim-
plicity), for example when the maximal distance between any two atoms is much less than a typical wave
length. Then, the couplingHeph to the photon field does no longer depend on the individual coordinates
of the atoms but only on thecollectivepseudo-spin coordinate. One has to add upN pseudo-spins 1/2 to
a single, large pseudo-spin which is described by angular momentum operators

J� ≡ 1

2

N∑
i=1

�̂�,i , � = x, y, z , (3.10)

J± ≡ Jx ± iJy, [Jz, J±] = ±J±, [J+, J−] = 2Jz (3.11)

with angular momentumj eigenstates which in this context are called Dicke states|jm; �〉 defined via

J 2|jm; �〉 = j (j + 1)|jm; �〉, Jz|jm; �〉 =m|jm; �〉 , (3.12)

whereJ 2 = J 2
x + J 2

y + J 2
z is the total angular momentum squared andj is sometimes called cooperation

number[174]. Here,� denotes additional quantum numbers apart fromj andm which are necessary to
completely labelall the states of the 2N dimensional Hilbert spaceHN = (C2)⊗N . ForN identical two-
level systems, the additional quantum numbers are provided by the permutation groupPN , as was shown
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by Arecchi et al.[187]. The decomposition of the total Hilbert spaceHN into irreducible representations

Dj for angular momentumj with dimension 2j+1, and permutations of dimension dim��1,�2=
(

�1+�2
�2

)
−(

�1+�2
�2−1

)
, is reflected in the dimension formula[187]

∑
2j=�1−�2 �0

dim Dj dim ��1,�2 = 2N . (3.13)

More generally, a system ofN atomn-level systems can be effectively described group-theoretically by
the standardYoung tableaux which characterize the irreducible representations of the groupSN ⊗SU(n),
a short summary of which is given in the paper by Keitel et al. on triggered superradiance[188].

In discussing superradiance, one usually considers a subspace of constantj which is also invariant
under permutation operations, omitting the labels�and thereby dealing with a constant angular momentum
Hilbert space[187]. The total Hamiltonian forNatoms interacting with the photon field then simply reads

HDicke = �0Jz + ÂJx +Hph , (3.14)

whereÂ is a photon operator andHph the photon field Hamiltonian. Radiative transitions are due to
transitions between Dicke states with the selection rulem → m± 1, leavingj constant. Using

J±|jm〉 = c±jm|jm± 1〉, c±jm ≡ √j (j + 1)−m(m± 1) , (3.15)

and considering the initial state|jj〉 with j = N/2, spontaneous emission leads to a decrease of
the quantum numberm step by step, with the corresponding emission intensityIjm from a state|jm〉
given by

Ijm = 2�0�(j +m)(j −m+ 1) , (3.16)

where� is the spontaneous emission rate of onesingleatom from its excited state.Although this simplified
argument only uses transition rates between pure states, it grasps the essential physics: in the course of
the spontaneous decay starting from the initial state, the intensityIjm reaches a maximum proportional
toN2 at theDicke peakm=0, which is abnormally large in comparison with the intensityN�2�0 of the
radiation ofN independently decaying radiators.

The time dependence of the emission peak can be obtained from a simple quasi-classical argument
that regards the quantum numberm as a time-dependent, classical quantity. The energy of an ensemble
of identical atoms isH0 = �0Jz. Equating the average energy loss rate,−2�0ṁ(t), with the radiated
intensity, Eq. (3.16), one obtains an equation of motion form(t),

− d

dt
m(t)= �[j +m(t))(j −m(t)+ 1] . (3.17)

The solution of this equation gives the hyperbolic secant solution to the superradiance problem, that is a
time-dependent intensity

I (t)= I0
N2

2cosh2(N�[t − td ]/2)
, (3.18)

where the delay timetd depends on the initial condition at timet = 0. As was discussed by Gross and
Haroche[179], the quasi-classical description of the decay process holds if the system is prepared initially
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in a state|jm0〉 with a large number of photons already emitted. If one starts from the totally inverted
state|jj〉, the initial time evolution is dominated by strong quantum fluctuations (the phases of the single
atoms are completely uncorrelated) which are not described by Eq. (3.18).

The Dicke peak occurs on a short time scale∼ 1/N and consists of photons with different wave vectors
Q. The mean numberNQ(t) of photons as a function of time can be calculated exactly in the small-sample
limit of superradiance where the phase factors eiQr i in Eq. (3.9) are neglected. For example, for the case
of N = 2 atoms, one finds[185]

NQ(t → ∞)= 2|gQ|2[(�0 − |Q|c)2 + 40�2]
[(�0 − |Q|c)2 + 16�2][(�0 − |Q|c)2 + 4�2] , (3.19)

where� is the decay rate of one single atom. In reality, the small sample limit is never reached exactly,
and instead of the collective operatorsJz and J±, one introducesQ-dependent operatorsJ±(Q) ≡∑N

i=1 J± exp i(Qr i). An initial excitation with radiation in the form of a plane wave with wave vector
Q then leads to a collective state∝ J+(Q)p|j,−j〉 for somep. Subsequent spontaneous emission of
photons with wave vectorQ then is collective, conservesj and decreasesm → m− 1, while emission of
photons with wave vectorQ′  = Q can changej.

As a transient process, superradiance only occurs if the observation time scalet is shorter than adephas-
ing time scale�� of processes that destroy phase coherence, and longer than the time� which photons need
to escape from the optical active region where the effect occurs[178], such that recombination processes
are unimportant. It is clear from the discussion so far that Dicke superradiance is a dissipative process
and generalizes the Wigner–Weisskopf theory of spontaneous emission of a single atom to the many
atom case. In this approach, the photon system itself is in its vacuum state throughout the time evolution.
Any photon once emitted escapes from the system and thereby leaves no possibility of re-absorption of
photons.

In the Master equation description of superradiance as a dissipative process, the back-action of the
pseudospin onto the boson bath is usually disregarded. In a somewhat complementary approach, the
dynamics of the photon field is treated on equal footing with the spin dynamics, and one has to solve
the coupled Maxwell–Bloch equations, i.e. the Heisenberg equations of motion in some decoupling
approximation, of the total system (spin + photon field). This approach is more suitable for the description
of propagation effects for, e.g., an initial light pulse that excites the system, or re-absorption effects.

The condition

�>t>��,�
−1 , (3.20)

determines the superradiant regime, together with the last inequality which involves�−1, the time scale
for the decay of anindividualatom. For timest much larger than the dephasing time��, there is a transition
to the regime ofamplified spontaneous emission[177]. In fact, the restriction Eq. (3.20) of thetime-scale
for the superradiant process can be seen in analogy to the restrictionl>L>L� defining thelength scale
L of amesoscopic systemwhere physics occurs between a microscopic (e.g. atomic) length scalel and a
dephasing lengthL� [8]. Within this analogy, a superradiant system can be called ‘mesoscopic in time’.

3.1.2. Sub- and superradiance forN = 2 trapped ions
De Voe and Brewer[189] measured the spontaneous emission rate of two ions as a function of the

ion–ion distance in a trap of planar geometry which was strong enough to bring the ions(Ba+138) to
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Fig. 13. Double ion trap experiment by DeVoe and Brewer[189]. The two-ion molecule is confined within a 80�m radius planar
trap (left) and excited with a laser pulse (center). The time-to-digital converter (TDC) records the time of arrival of spontaneously
emitted photons. Right: comparison of theory, Eq. (3.21), and measured data for the identification of sub- and superradiance
(Dicke effect). A laser beam excites the system att = 0; the start of the exciting pulse and the arrival of the spontaneous photons
are recorded on a time to digital converter, which is fitted to an exponential decay. The dashed line indicates the life-time of a
single ion in the same trap. Full circles with error bars are data for laser polarization perpendicular to the axis connecting the two
ions, crosses are for parallel polarization. The points below the dashed line belong to the superradiant decay channel, whereas
the points above the dashed line indicate belong to the subradiant channel. From[189].

a distanced of the order of 1�m of each other. The idea of their experiment was to determine�±(Q),
Eq. (3.5), and to compare it to the spontaneous emission rate�0(Q) of asingleion within the same setup.
This was done in a transient technique by exciting the ion molecule by a short laser pulse and recording
the subsequent signal, i.e. the time of arrival of spontaneously emitted photons (Fig.13).

It turned out that the best way to distinguish between the sub- and the superradiant decay channel was
to choose the initial states of the system as the two statesS0 (singlet) andT0 (triplet), which yield the
subradiant and the superradiant emission rate, respectively. This was achieved by coherent excitation of
the two-ion molecule, exciting dipole moments in the two ions with a phase difference of 0 or	. Due
to level degeneracy of the relevant 62P1/2 to 62S1/2 transition and due to loss of coherence because of
micro-motion Doppler shifts, the theoretical value for the factor� in the explicit form of the rates,

�(Q)± = �0(Q)

[
1± �

sin(Qd)

(Qd)

]
, (3.21)

turned out to be� = 0.33. Diffraction limited images of the molecule, viewed through a window with a
microscope, provide the information on the distance between the ions[189].

Measurements of the spontaneous rate� at three different ion distances turned out to be in good
agreement with the (parameter free) theoretical prediction[177], Eq. (3.21). The data (statistical and
systematic tests were performed) were averaged over a large number of runs.

3.2. Dicke effect in quantum dot arrays

The prominent role that phonon emission plays in transport through double quantum dots has been
discussed in Section 2.Collectivephonon emission effects and their impact on quantum transport were
discussed for arrays of double quantum dots by Brandes, Inoue, and Shimizu[190], and most explicitly
for the case ofN = 2 double quantum dots interacting via a common phonon environment by Vorrath
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and Brandes[191]. In the latter case,chargewave function entanglement occurs in a preferred formation
of either a (pseudo) singlet or triplet configuration (depending on the internal level splittings of the dots
and the coupling to electron reservoirs), which is a realization of the Dicke effect in a stationary state of
quantum transport.

3.2.1. Model and Master equation for N double quantum dots
The model[191] describes a ‘register’ ofN double quantum dots, cf.Fig. 14, coupled to independent

left and right electron reservoirs as well as a common phonon reservoir, with the crucial assumption of
the ‘small sample’ limit, i.e., identical electron–phonon matrix elements�LQ, �RQ in the generalization of
Eq. (2.11) toN double quantum dots,

HN
dp =

N∑
i=1

∑
Q

(�LQn̂L,i + �RQn̂R,i)(a−Q + a
†
Q) , (3.22)

wheren̂L/R,i refers to the number operator for the left/right level in theith double dot. Correspondingly,
the other parts of the HamiltoniansHdot, Eq. (2.2), andHres andHV , Eq. (2.6), are generalized to
their respective sums over the register indexi. Ideally, a stacked layer of closely spaced double dots on
top of each other would be a realization of the small sample limit. Phonon mediated collective effects
between the members of the register should persist as long as a description in terms of a few many-body
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states relevant for transport is possible. In[191], the Coulomb correlations between the double dots were
neglected for simplicity.

The Master equation for the reduced density operator�(t)of the register in Born–Markov approximation
was derived in analogy to Section 2,

�̇(t)= i

N∑
i=1

{
[�(t), �L,i n̂L,i + �R,i n̂R,i + Ti(p̂i + p̂

†
i )]

+ �L,i

2

(
2ŝ†

L,i�(t) ŝL,i − ŝL,i ŝ
†
L,i�(t)− �(t)ŝL,i ŝ

†
L,i

)
+ �R,i

2

(
2ŝR,i�(t)ŝ

†
R,i − ŝ

†
R,i ŝR,i�(t)− �(t)ŝ†

R,i ŝR,i

)}

−
∑
i,j

{[
(n̂L,i − n̂R,i), Âj�(t)

]
−
[
(n̂L,i − n̂R,i), �(t)Â

†
j

]}
,

Âj ≡ 2Tj
�2
i

(2Tj�C,j (n̂L,j − n̂R,j )− �C,j �j (p̂j + p̂
†
j )+ i�j�S,j (p̂j − p̂

†
j )) , (3.23)

whereTi is the tunnel coupling within double doti, �i = (�2
i + 4T 2

i )
1/2, and the inelastic rates are

�C,i ≡ 	

2
J (�i) coth

(
��i

2

)
, �S,i ≡ −i

	

2
J (�i) , (3.24)

with the spectral functionJ (�) of the bosonic (phononic) environment, cf. Eq. (2.22). The mixed terms
i  = j in Eq. (3.23) lead to collective effects (sub- and superradiance) in the stationary current through the
system. The dimension of the density matrix scales as 9N whence analytical solutions are cumbersome
but were calculated forN = 2 by Vorrath et al.[191] for limiting cases. In general, for largeN even a
numerical solution of Master equations like Eq. (3.23) becomes non-trivial. Special numerical techniques
like Arnoldi iteration have been shown to be advantageous in this case[142].

3.2.2. Cross coherence and current superradiance forN = 2 double quantum dots
For N = 2, the currents through double dots 1 and 2 are expressed in terms of the matrix elements

�jii′j ′=2〈j |⊗1〈i|�|i′〉1 ⊗ |j ′〉2 (i, j ∈ {L,R,0}) of the density operator and read

I1 =−2eT 1 Im{�LRLL + �RRLR + �0RL0}, I2 =−2eT 2 Im{�RLLL + �RRRL + �R00L} .
(3.25)

The numerical solution of Eq. (3.23) yields the stationary current as a function of the bias�1 in the first
double dot while the bias�2 in the second is kept constant, as shown inFig. 14. The overall shape of the
current is very similar to the case of one individual double quantum dot (cf. Section 2), with its strong
elastic peak around�1 = 0 and a broad inelastic shoulder for�1>0, but a new feature appears here in
form of an additional peak at resonance�1 = �2. This is due to the simultaneous coupling of both double
dots to the same phonon environment, which induces an effective interaction between the two double
quantum dots. The analysis of the effect starts from the observation that in spite of the large size of the
density matrix, this interaction is connected to six matrix elements (and their complex conjugates) only,
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i.e.,�RLLL, �LRLL, �RRLR, �RRRL, and the two ‘cross coherence’ matrix elements

�RLRL = 〈p†
1p2〉, �RRLL = 〈p1p2〉 . (3.26)

An approximate solution is then obtained by neglecting the cross interaction between the double dots in
all but those six matrix elements, leading to an expression for the currentchangein double dot 1,

�I1 = 2eT 1�2

2�1
(Re〈p†

1p2〉 − Re〈p1p2〉) , (3.27)

which is proportional to the (real parts of the) cross coherences. The increase of the current at�1 = �2 is
due to a corresponding peak of the〈p†

1p2〉.
A further analysis is possible by introducing pseudo singlet and triplet states,

|T+〉 = |L〉1|L〉2, |T−〉 = |R〉1|R〉2 ,

|T0〉 = 1√
2
(|L〉1|R〉2 + |R〉1|L〉2), |S0〉 = 1√

2
(|L〉1|R〉2 − |R〉1|L〉2) . (3.28)

For �1 ≈ �2, one has�I1 ∝ 2Re〈p†
1p2〉 = 〈PT0〉 − 〈PS0〉, where P is the projection operator on the triplet

(singlet) state, and it follows that the current enhancement�I1 is due to an increased probability of finding
the two electrons in a (pseudo) triplet rather than in a (pseudo) singlet state. This is in direct analogy
to theN = 2 Dicke effect for trapped ions as discussed above, with the difference that in the double
dot system a third ‘empty’ state|0〉 exists which allows current to flow through the system. One can use
the singlet–triplet basis, Eq. (3.28), together with five states|00〉, |0L〉, |L0〉, |0R〉, and|R0〉 (indexes
referring to the state of the first and the second double quantum dot) to derive nine coupled rate equations
for the corresponding occupation probabilities[191]. Assuming identical tunnel rates� to all four leads,
one obtains the inelastic current (for positive intra-dot bias�) through the first double dot, as well as the
triplet-single occupation difference,

I1 = e�
x(4x + 1)

9x2 + 5x + 1
, pT0 − pS0 =− 2x(x + 2)(x − 1)

9x3 + 23x2 + 11x + 2
, x = �/� , (3.29)

where� ≡ 8	(T /�)2J (�) is the inelastic decay rate within one double dot. This result is in excellent
agreement with the numerical solution of the full Master equation, cf.Fig. 15. It explicitly demonstrates
that superradiance exists in arrays of artificial atoms, and can be probed as an enhanced current through
the two double quantum dots at resonance�1 = �2.

Tuning the individual tunnel rates can be used to generate currentsubradiance, which occurs in a
configuration where the two double quantum dots form a singlet state and electrons in the second double
dot are prevented from tunneling into the right lead (inset ofFig. 15, right). The current peakI1 then
develops into a minimum as the tunneling rate�R,2 is decreased to zero, which leads to an increased
probability of the singlet state|S0〉 and anegativecross coherence〈p†

1p2〉 at resonance.
A second configuration with fixed negative bias�2<0 in the second double dot can be used to generate

a current switch. The resulting blockade of the second double dot can be lifted by the first one if the
resonance condition�1 = −�2 for the cross-coherence〈p1p2〉 in Eq. (3.27) is fulfilled, when energy is
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transferred from the first to the second double dot, allowing electrons to tunnel from the left to the right
in the second double dot.

3.2.3. Oscillatory superradiance for large N
Another extension of the Dicke model was discussed by Brandes et al. in[190] for a superradiant

‘active region’ ofNi identical two-level systems coupled to an ‘in’ (left,L) and ‘out’ (right,R) particle
reservoirsHres by a tunnel Hamiltonian

HT =
∑
ki

(tLk c
†
k,Lci,↑ + tRk c

†
k,Rci,↓ + H.c.) , (3.30)

wherec†
k,� creates an electron in reservoir� andc†

i,� creates an electron in the upper/lower state�= (↑,↓)
of theith two-level system. The real electron spin is assumed to play no role here and crucially, the tunnel
matrix elements inHT are assumed to bei-independent.

In the extended Dicke model, the active region without electron reservoir coupling is assumed to be
superradiant due to collective emission of bosons (photons, phonons). For a total number ofN>Ni

electrons, this is the usual Dicke superradiance situation as described by a density operator in the basis
of Dicke states|JMN〉, Eq. (3.12), where however additional quantum numbers other thanN (and
represented by the index� in Eq. (3.12)) are already neglected. Tunneling of electrons into and out of the
active region now provides a mechanism for pseudo-spin ‘pumping’: assuming large positive (negative)
reservoir chemical potentials�L (�R), electrons tunnel into the active region via upper levels�= ↑,
whereas they tunnel out of the active region from lower levels�= ↓.
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Transitions between eigenstates ofHDicke, Eq. (3.14), due to electron tunneling are described by rates
�JMN→J ′M ′N ′ ,

��
JMN→J ′M ′N ′ = T �

∣∣∣∣∣
∑
i�

〈J ′M ′N ′|c†
i�|JMN〉

∣∣∣∣∣
2

f�(EJ ′M ′N ′ − EJMN)

+ T �

∣∣∣∣∣
∑
i�

〈J ′M ′N ′|ci�|JMN〉
∣∣∣∣∣
2

[1− f�(EJMN − EJ ′M ′N ′)] , (3.31)

T � ≡ 2	
∑
k

t�k (t
�
k )

∗
(E − ��k), � = L/R , (3.32)

where the��k are single particle energies in reservoir� and the dependence ofT � on the energy difference
�E between final and initial state is neglected. This approach to tunneling of electrons through a region
characterized by many-body states is in close analogy to (real) spin-dependent transport through quantum
dots containing electrons interacting via Coulomb interaction as introduced by Weinmann and co-workers
in their work on spin-blockade[192]. In the extended Dicke model here, the role of the real electron spin
is replaced by the (upper-lower level) pseudo spin, the total pseudo spin and its projection being denoted
asJ andM, respectively.

Similar to spin-blockade related transport, the rates Eq. (3.31) are determined by theClebsch–Gordan
coefficientsfor adding or removing a single pseudo-up or down spinj = 1/2 to the active region,∣∣∣∣∣∣

∑
j�

〈J ′M ′N ′|c†
j�|JMN〉

∣∣∣∣∣∣
2

≈ 
N+1,N ′

∣∣∣∣∣∣
∑

�=±1/2

〈J ′M ′|JM, j = 1

2
m= �〉

∣∣∣∣∣∣
2

(3.33)

= 1

2J + 1
(
J ′,J+1/2[
M ′,M+1/2(J +M + 1)

+ 
M ′,M−1/2(J −M + 1)]
+ 
J ′,J−1/2[
M ′,M+1/2(J −M)

+ 
M ′,M−1/2(J +M)]) . (3.34)

where any further dependence on the specific form of the many-particle wave function in the active region
is neglected and the proportionality factor is absorbed into the constantT �, Eq. (3.32).

Within these approximations, the dynamics of the active region is described in terms of rate equations
for the probabilities�(JMN)t which are the diagonal elements of the reduced density operator at timet
in the basis of the Dicke states|JM〉 at a given numberN of electrons,

d

dt
�(JMN)= − 1

�0
[IJM�(JMN)− IJM+1�(JM + 1N)]

+
∑

J ′M ′N ′
[�J ′M ′N ′→JMN�(J ′M ′N ′)− �JMN→J ′M ′N ′�(JMN)] , (3.35)

whereIJM denotes the superradiant emission intensity, Eq. (3.16). The rate equations Eq. (3.35) can be
either solved numerically or be used to derive an analytical solution in a quasi-classical approximation for
largeJ?1. In this limit, fluctuations ofM andJ are neglected and the probability distribution is entirely
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determined by the expectation valuesJ (t), M(t) andN(t) only [179], i.e. �(JMN)t = 
M,M(t)
J,J (t)

N,N(t). Assuming identical tunnel matrix elementsT for in- and out-tunneling, one obtains a set of two
differential equations (theN equation decouples),

Ṁ(t)=−�[J (t)+M(t)][J (t)−M(t)+ 1] + T , J̇ (t)= TM(t)/J (t) (3.36)

which are governed by the two parameters� andT, the emission rate and the tunnel rate, respectively.
These equations havedamped oscillatorysolutions, cf.Fig. 16. In contrast to oscillatory superradiance
in atomic systems[178], the oscillations are not due to re-absorption of photons, but due to tunneling of
electrons into an active region characterized by a total pseudo spinJ.Also in contrast to the original Dicke
problem,J is no longer conserved but develops a dynamics that is driven by the tunneling process which
leads to a coupling ofJ andM as described by Eq. (3.36). The total numberN of electrons varies through
single electron tunneling that changes the quantum numbersJ andM and can lead to doubly occupied or
empty single particle levels. The changeJ̇ of J is proportional toM itself, which follows from angular
momentum addition rules (Clebsch–Gordan coefficients), whereasM increases by electrons tunneling
into the upper and out of the lower levels at the tunnel rateT.

Instead of simple superradiant relaxation of the emission intensity (as described by Eq. (3.18)), the
transient behavior is now determined by a superradiant emission peak, followed by emission oscillations.
In fact, after eliminatingJ from Eq. (3.36) for largeJ, one obtains a single oscillator equation,

M̈ − 2�MṀ + �2M = 0, � =√
2�T , (3.37)
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which for T >2� describes a harmonic oscillator with angular frequency� and amplitude dependent
damping. For smallerT, the oscillations are no longer visible and Eq. (3.37) does no longer hold. For
T → 0, there is a smooth crossover to the usual Dicke peak, Eq. (3.18), with vanishing intensity at large
times and without oscillations.

In [190], two physical systems were suggested for an experimental realization of tunnel-driven, oscilla-
tory superradiance. The first scenario described a forward biasedpn junction in a system of electrons and
holes in semiconductor quantum wells under strong perpendicular magnetic fields, the latter guaranteeing
dispersion-less single electron levelsi with inter-band optical matrix elements diagonal ini. An initial
optical or current excitation of the system was predicted[190] to lead to a superradiant peak of emitted
light that would become strongly enhanced if the tunneling rate became higher. The correspondence with
the pseudo-spin model was established by mapping its four basic single particle states to the states of the
electron–hole system;

|empty〉 → |0, h〉, | ↓〉 → |0,0〉, |double〉 → |e,0〉, | ↑〉 → |e, h〉 , (3.38)

i.e., the empty state becomes the state with and additional hole|0, h〉, the pseudo-spin down electron
becomes the empty state|0,0〉, the doubly occupied state becomes the state with an additional electron
|e,0〉, and the pseudo-spin up electron becomes the state|e, h〉with an additional electron and hole which
can radiatively decay. This realization, however, neglects Coulomb interactions that can lead to strong
correlations among electrons. The kinetics of four-wave mixing for a two-dimensional magneto-plasma
in strong magnetic fields was calculated by Wu and Haug[193] in a regime where incoherent Coulomb
scattering leads to dephasing that increases with the magnetic field. Still, the possibility of collective
quantum optical effects in the quantum Hall regime remains an open though not entirely new problem,
since Landau-level lasing was suggested by Aoki already back in 1986[194].

The second possible realization for superradiance with ‘electron pumping’ was proposed[190] as an
array of identical quantum dots with the ability to collectively radiate, with the dots having well-defined
internal levels that allow transitions under emission of photons, cf. also Sections 3.2.

3.3. Superradiance and entanglement in other quantum dot systems

3.3.1. Double quantum dot excitons
Chen et al. further investigated the formal analogy, Eq. (3.38), between the pseudo-up/down spins

and the electron–hole (|eh〉) and ‘empty’|00〉 states, and predicted superradiance in the electric current
through excitonic double quantum dots[195]. Superradiant enhancement of excitonic decay in reduced
dimensions is well-known, butcurrentsuperradiance was argued[195] to be an alternative tool for the
detection of such collective effects. The main idea was to employ two spatially separated quantum dots (1
and 2) which are radiatively coupled, cf.Fig. 17, but with only dot 1 being coupled to hole and electron
reservoirs, which in fact is similar to the ‘Current Switch’ configuration for the two double quantum dots
considered above. Introducing the four states

|0〉 = |0, h;0,0〉, |U1〉 = |e, h;0,0〉, |U2〉 = |0,0; e, h〉, |D〉 = |0,0;0,0〉 , (3.39)

where |0, h;0,0〉 denotes the state with one hole in dot 1,|0,0;0,0〉 represents the ground state
with no hole and electron in the quantum dots, and the exciton state|e, h;0,0〉 (in dot 1) can be
converted to|0,0; e, h〉 (in dot 2) through exciton–photon interactions. The latter was described
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Fig. 17. Left: double quantum dot exciton device structure suggested by Chen et al.[195]. Right: stationary current, Eq. (3.46),
and interference effect due to decay rates Eq. (3.45) as a function of the dot distance (inset). From[195].

by a Hamiltonian[196]

HI =
∑
k

1√
2
g{Dkbk [(1+ eik·r )|S0〉〈D| + (1− eik·r )|T0〉〈D|] + H.c.} , (3.40)

with super- and subradiant states as|S0〉 = 1√
2
(|U1〉 − |U2〉) and|T0〉 = 1√

2
(|U1〉 + |U2〉), respectively.

Furthermore,bk is the photon operator,gDk the coupling strength,r is the position vector between the two
quantum dots, andg is a constant with the unit of the tunneling rate. Note that the dipole approximation
was not used and the full eik·r terms kept in the Hamiltonian. The coupling of dot 1 to the electron and
hole reservoirs was described by the standard tunnel Hamiltonian

HV =
∑
q

(Vqc
†
q|0〉〈U1| +Wqd

†
q|0〉〈D| + H.c.) , (3.41)

wherecq anddq are the electron operators in the left and right reservoirs, respectively, giving rise to
tunneling rates�U (electron reservoir) and�D (hole reservoir). The state|e,0;0,0〉 was argued to play
no role for a dot configuration with thick tunnel barriers on the electron side. Equations of motion for
the time-dependent occupation probabilitiesnj (t), j= 0,D, S0, T0 were then obtained in close analogy
with Eq. (2.16) and transformed intoz-space,

znS0/T0(z)=∓ig[pS0,D(z)− pD,S0(z)] + �U

[
1

z
− nS0(z)− nT0(z)− nD(z)

]
, (3.42)

znD(z)=−ig[pS0,D(z)− pD,S0(z)+ pT0,D(z)− pD,T0(z)] −
2�D

z
nD(z) , (3.43)

pj0,D(z)= ig�jnj0(z)− �D�jpj0,D(z), j = S, T , (3.44)

wherepS0,D=p∗
D,S0

andpT0,D=p∗
D,T0

are off-diagonal matrix elements of the reduced density operator,
and a decoupling approximation similar to the one in Section 2.2.3 was performed[197]. The decay rates
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for superradiant and the subradiant channels,

g2�T/S = �0

(
1± sin(2	d/�0)

2	d/�0

)
, (3.45)

depends on the ratio of inter-dot distanced and the wave length�0 of the emitted light in an oscillatory
form (�0 is the exciton decay rate in a single quantum dot). This is in close analogy to the ion trap
experiment discussed in Section 3.1.2, cf. Eq. (3.21). In the stationary limit, the current as defined by
the temporal change ofn̂D(t) was obtained[195] as

〈I 〉t→∞ = 4g2�T �S
�S + �T [1+ 2�S(g

2/�D + g2/�U + �D)] , (3.46)

which itself showed oscillations ind/�0 via Eq. (3.45), cf.Fig. 17, in close analogy to the two-ion case in
Section 3.1.2. The current is suppressed as the dot distanced is much smaller than the wavelength�0. The
emitted photon is reabsorbed immediately by the other dot and vice versa, with the current being blocked
by this exchange process. The superradiant and the subradiant transport channels are in series in the limit
where transport is determined by radiative decay,g2�S/T>�U/D, with I ≈ 4[1/g2�S + 1/g2�T ]−1.

Chen et al.[195] suggested to include the double-dot system into a photon micro-cavity with strong
electron–photon coupling. For a cavity of length�0, the three-dimensional version Eq. (3.45) for the two
decay rates would then become

g2�cav,± = �0

	
|1± ei2	d/(

√
2�0)|2 . (3.47)

A further property of the excitonic double dot system was the fact that the interaction with the common
photon field lead to emission-induced entanglement between the two dots. The maximum entangled state
(|S0〉) was reached asd>�0 which was checked by calculating the occupationsnS/T in the stationary state.
This entanglement was induced by the cooperative spontaneous decay which however can be controlled
by, e.g., a voltage applied to a metallic gate that effectively tunes the band gap of dot 2[195].

Chen and co-workers also calculated quantum noise in their electron–hole systems in close analogy to
the formalism developed in Section 2.3 for dissipative transport in double dots[196]. The Fano factorF
in their model was enhanced by a factor of 2 for dot distancesd>� (phonon wavelength) due to photon
enhanced entanglement, cf.Fig. 18, with the approximate expression

F ≡ SID(0)

2e〈I 〉 ≈ 2− 2g2�S

[
1

g2�T
+ 3

(
1

�D

+ 1

�U

)
+ 2�D

g2

]
, (3.48)

analogous to the result for current noise in the Cooper pair box by Choi et al.[133].
In addition, one can compare the current noise with thephotonnoise in the fluorescence spectrum,

cf. inset ofFig. 18, defined as

Sph(�)= 1

	
Re
∫ ∞

0
G(1)[�]ei�� d� , (3.49)

G(1)[�] ∝ |1+ ei2	d/�|2〈pS0,D(0)pD,S0(�)〉 + |1− ei2	d/�|2〈pT0,D(0)pD,T0(�)〉 (3.50)

and use the quantum regression theorem in order to calculateG(1)[�]. For small dot distancesd>�, the
exciton does not decay and the photon noise approaches zero.
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Fig. 18. Left: current noise Fano factor as a function of inter-dot distance. The vertical and horizontal units areSID (0)/2eI and
�, respectively. Inset: photon noiseSph(�) is equal to that in the one-dot limit ford → ∞ (dashed line), while it approaches
zero noiseas d = 0.005� (red line). Right: effect of measurements on current noiseSID(�) ( ”maximum” superradiance,
g2�T = 2g2�0, g2�S = 0). Solid and dashed lines correspond to�D = 20 �0 and�D = �0, respectively. Right inset : the case of
no superradiance. Left inset : expectation value of the excited states〈nS〉 and〈nT 〉 as a function of�D . From[196].

A further interesting observation was the dependence of the current noise on the rate�D of hole
tunneling, the effect of which can be thought of as a continuous measurement similar to thequantum
Zeno effect. Large�D turned out to narrow the noise spectrumSID(�), cf. Fig. 18, right, and to localize
the exciton in its excited state, with〈nS/T 〉 approaching1

2.

3.3.2. Nuclear spins in quantum dots
Eto et al.[198] suggested a collective entanglement mechanism for nuclear spins by single electrons

tunneling on and off a quantum dot. In their model, they assumed a hyperfine interaction

Hhf = 2
N∑
k=1

�kS · I k (3.51)

betweenN nuclear spinsI k and the dot electron spinSwith interaction constants�k for nuclei at positions
r k. They used a simple model for a double quantum dot with Zeeman-splitting
E and on-site Coulomb
repulsionU, cf. Fig. 19left, where tunneling of an electron into the left dot leads to spin blockade when
the additional spin is parallel to the one in the right dot. This spin blockade is lifted by a spin flip of the
electron in the left dot under emission of a phonon, giving rise to a leakage electron current that can be
measured. In lowest order perturbation theory inHhf and the electron–phonon interactionHep, the rate
� for an electron spin flip, e.g. from up to down, is a simple product of rates,

� = �ep�hf , �hf = |〈�i ↑ |Hhf | ↓ �f 〉|2 , (3.52)

where�ep is the rate for phonon emission (required for energy conservation), and the rate�hf depends on
the state of the nuclear spins before/after the spin flip,�i/f . A simple approximation for the dynamics
of the coupled electron–nuclei system is now found by following the temporal change of the nuclear
state when electron spins tunnel on and off: assuming identical�k = � for small dots, an initial state
�(0) =∑jm;� cjm;�|jm; �〉 with random coefficientscjm� in the basis of the collective states|jm; �〉,
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Fig. 19. Left: spin blockade in double quantum dots in the collective nuclear spin entanglement model by Eto, Ashiwa, and
Murata[198]: the spin of an electron entering the left dotL is parallel to that of the electron trapped in dotR.EZ is the Zeemann
splitting andU the on-site Coulomb interaction. The interaction viaHhf , Eq. (3.51), and emission of phonons of energy
E

leads to a leakage current through the dots. Right: spin-flip rate�(n) = �ep�
(n)
hf , �(n)hf = �2f (n)/f (n−1), Eq. (3.53), as a function

of numbern of transported electrons accompanied by spin flip. From[198].

cf. Eq. (3.12), is transformed into�(1) = 1/
√
F (0)

∑
jm;� cjm;�|jm ± 1; �〉, depending on whether the

spin flip is up or down. The next electron spin transforms�(1) into another collective spin state�(2)

of the nuclei, and so on, and recursive equations for the corresponding expansion coefficientsc
(n)
jm;� and

factorsF (n) = �(n)hf /�
2 aftern flips are derived as

c
(n)
jm∓1;� = c∓jm

√
f (n−2)

f (n−2)
c
(n−1)
jm;� , f (n) ≡ 1

2N
∑
jm

N !(2j + 1) (c∓jm)
2

(N/2+ j + 1)!(N/2− j)! , (3.53)

wherec±jm ≡ √
j (j + 1)−m(m± 1), cf. Eq. (3.15), andN is the total number of nuclei in the dot

interacting with the electron spin. The total spin flip rate�(n), Eq. (3.52), aftern flips increases linearly
with n, �(n) ≈ n�(0) for 1>n>N/2, and saturates forN/2>n as�(n) ≈ (N/2)�(0), a behavior which
is reflected in the electronic currentI (t) through the dot, cf.Fig. 19right.

3.4. Large-pseudo-spin models

In the previous sections, the two-level system and its interaction with a dissipative environment played a
prominent role. In fact, the famous spin-boson system[50,51]is one of the best studied models for quantum
dissipation, and its importance has never been more obvious than in the light of experimental success in
the generation of quantum superpositions and entanglement in noisy solid state environments, such as
Cooper pair boxes[21] or semiconductor double quantum dots[199]. On the other hand, the cooperative
phenomena (super and subradiance) discussed above relied on collective effects in combination with
dissipation and therefore required a description in terms of spin-boson models for (pseudo) spinj > 1

2.
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3.4.1. Collective spins and dissipation
There are several physical systems where dissipation of large spins plays a key role[82]. Intrinsic spins

greater than one half appear, e.g., in the elements Gallium andArsenic (nuclearspin of 3/2). Experiments
by Kronmüller et al.[200,201]and Smet et al. demonstrated the prominent role nuclear spins can have
in thequantum Hall effect.

Apel and Bychkov[202]discussed collective spin relaxation in quantum Hall systems due to spin-orbit
interaction,VSO= −e2/2mc2S · E × p for electrons with spinS= 1

2 � and momentump in an electric
fieldE due to piezo-electric lattice distortions. They used time-dependent perturbation theory inVSO for
electrons in the lowest Landau level split by the Zeemann energy� with a free electronic Hamiltonian
H0=−�

∑
p (c

†
p↑cp↑−c

†
p↓cp↓). Near filling factor�=1 and in Hartree–Fock approximation, they found

the time-dependent spin relaxation of
z(t)= Sz(t =∞)− Sz(t) given by

�t

z(t)=−1

�

z(t)[� + 
z(t)], � ≡

√
4N̄(1+ N̄)+ (� − 1)2 , (3.54)

where the relaxation time� depends on the dispersion of the collective spin-exciton modes, andN̄ is the
average phonon number. The form of the kinetic equation Eq. (3.54) is identical to the one obtained from
a simple non-interacting model for (incoherent) excitonic relaxation.

Nuclear spin relaxation was also studied by Apel and Bychkov[203] who generalized the Bloch
equations to higher spin. Furthermore, Maniv et al.[204] considered the hyperfine interaction, cf.
Eq. (3.51), and predicted a strong enhancement of the nuclear spin relaxation rate due to collective
spin rotations of a single Skyrmion in a quantum Hall ferromagnet.

Another large-spin example ismolecular magnetsthat contain a small number of metallic ions which
couple magnetically, the most prominent examples, Mn12 and Fe8, being described by a spin of size
10 [205,206]. Chudnovsky and Garanin[207] considered a system ofN magnetic atoms (or molecules)
with spinS, in nearly degenerate situations where each magnetic atom is described by an effective two-
level system (pseudo-spin12 �i), giving rise to an effective HamiltonianHeff ≡ −�Jx −WJz with total

pseudo-spinJ� = 1
2

∑N
i=1 ��,i , � = x, y, z, cf. Eq. (3.10). They considered the spin-photon[207] and

spin-phonon[208] interaction of the atoms in the small-sample limit of superradiance and described the
dynamics for large total pseudo-spinj?1 by the Landau-Lifshitz equation,

ṅ = n× �0 − �n× (n× �0), �0 ≡ �ex +Wez, n ≡ J/j , (3.55)

with the dimensionless damping coefficient� = j�1/
√

�2 +W2 proportional toj = N/2 indicating
superradiance (�1 is the relaxation rate for a single atom).

High-spin systems are also candidates for so-called ‘qu-dits’ which are discussed in the context of
quantum information processing and extend the standard qubit (spin1

2) to a higher-dimensional Hilbert
space. Ensembles of two-state systems whose polarization is described by a large pseudo-spin can also
be found in crystals and amorphous solids[209]. Ahn and Mohanty have suggested collective effects of
two-level systems as a possible friction mechanism in micro-mechanical resonators[210].

3.4.2. Large-spin-boson model: weak dissipation
Vorrath[211] studied thelarge-spin-boson Hamiltonian

H = �Jz + 2TcJx + Jz
∑
q

�q(a
†
q + a−q)+

∑
q

�qa
†
qaq , (3.56)
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that generalizes the usual spin-boson HamiltonianHSB, Eq. (2.10), to arbitrary spinj� 1
2. Various other

generalization of the spin-boson Hamiltonian were already studied by other authors in dissipative tight-
binding models for multi-state systems[212–214,51], or double-well potentials with additional, excited
states[215,216]. In the form Eq. (3.56), the HamiltonianH at zero bias� = 0 is canonically equivalent
to the Dicke model,

HDicke = �DJz + Jx
∑
q

�q(a
†
q + a−q)+

∑
q

�qa
†
qaq = e−i	/2JyHei	/2Jy (3.57)

with the identification�D =−2Tc, also cf. Eq. (3.14).
Vorrath [211] derived the Master equation in second-order Born and Markov approximation for the

reduced spin density matrix�(t) corresponding to the Hamiltonian Eq. (3.56) as

�̇(t)= i[�(t), �Jz + 2TcJx] − 1

�2 (�
2� + 4T 2

c �c)[Jz, Jz�(t)] − 2Tc�

�2 (� − �c)[Jz, Jx�(t)]

+ 2Tc
�

�s[Jz, Jy�(t)] + 1

�2 (�
2�∗ + 4T 2

c �∗
c)[Jz, �(t)Jz]

+ 2Tc�

�2 (�∗ − �∗
c)[Jz, �(t)Jx] −

2Tc
�

�∗
s [Jz, �(t)Jy] , (3.58)

where an initial factorization condition was assumed and rates

�c = 	

2
J (�) coth

(
��

2

)
− i

2
−
∫ ∞

0
d�J (�)

(
1

� + �
+ 1

� − �

)
,

�s = 1

2
−
∫ ∞

0
d�J (�) coth

(
��

2

)(
1

� + �
− 1

� − �

)
− i

	

2
J (�), � ≡ �c(� → 0) (3.59)

with � =√4T 2
c + �2 were defined.

For spinj = 1
2 and a spectral density

J (�)=
∑
q

|�q |2
(� − �q)= 2��1−s
ph �s exp(−�/�c) (3.60)

for weak Ohmic dissipations = 1 with �>1, cf. Eq. (2.52), Vorrath derived Bloch equations for the
expectation values〈Ji〉 as a function of time and compared the solutions with those obtained by Weiss
within NIBA approximation for intermediate temperatureskBT = 2Tc, and with the solutions beyond
NIBA [51] at zero temperature. The Born–Markov approximation turned out to correctly describe the
spin-boson dynamics for weak dissipation at all temperatures, cf.Fig. 20, although systematic quantitative
comparisons were not made.

For larger spinj >1/2 and�  = 0, the spinz-component〈Jz〉 showed superradiant behavior in the form
of increasingly faster, collective decay (as a function of time) with increasing spinj [211]. Furthermore,
a detailed analysis for spinj = 1 and bias�= 0 revealedquantum beatsin the time-evolution of the spin,
cf. Fig. 21, with similar beats occurring for higher spin. Non-resonant bosons lead to corrections of the
energies for the spin eigenstates|+〉, |0〉, |−〉, which in second order perturbation theory are given by

E
(2)
|±〉 = −1

2
−
∫ ∞

0
d�J (�)

1

� ∓ 2Tc
, E

(2)
|0〉 = E

(2)
|+〉 + E

(2)
|−〉 , (3.61)
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Fig. 20. Dynamics of a spin12 according to the Bloch equations (as derived from Eq. (3.58), solid line) and the approximate
solutions by Weiss (dashed line); a and b:� = Tc, � = 0.05 (inset:� = 0.2), �c = 50Tc, andkBT = 2Tc (dashed line: Eqs.
(21.132) and (21.134) of Ref.[51]); c and d:�=0,�=0.05,�c=50Tc, andkBT =0 (dashed line: Eqs. (21.172) and (21.173) of
Ref. [51]). From[211].

thus leaving the eigenstates not equidistant any longer. The beat frequency

�b = ��c + �Tc

[
e2Tc/�cEi

(−2Tc
�c

)
− e−2Tc/�cEi

(
2Tc
�c

)]
, (3.62)

which for large cut-off�c?Tc is well approximated by�b=��c, was found to be in excellent agreement
with numerical solutions of the Master equation.

3.4.3. Large-spin-boson model: strong dissipation
For the large-spin-boson model in the regime of strong dissipation, Vorrath and Brandes[82] used

perturbation theory forH =H0 + V , Eq. (3.56), with respect to the tunneling partV = 2TcJx . Using a
polaron transformation, cf. Section 2.2.3, one obtains

H̄0 = e�JzH0e−�Jz = �Jz − �J 2
z +

∑
q

�qa
†
qaq, � ≡

∑
q

�q
�q

(a†
q − a−q) , (3.63)

with � =∑q |�q |2/�q = 2��c for Ohmic dissipation. Spin and boson subsystems become independent

and can be treated separately. A new non-trivial term,−�J 2
z , appears in the spin part of the transformed

Hamiltonian (3.63). In the spin-boson model with spinj = 1/2, this term is constant and has no physical
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Fig. 21. Time evolution ofJz (black line) andJx (grey line) for different interaction strengths with the environment (j =1, �=0,
�c = 50Tc, andkBT = 0). From[211].

consequences, whereas for larger spinsj >1/2 it dominates the properties of the system. The eigenen-
ergiesEm of the spin subsystem directly follow from̄H0 as

Em = �m− �m2, −j�m�j , (3.64)

whereas in the transformed picture the tunnel term

V̄ = Tc (J+X + J−X†), X = e� , (3.65)

now contains the unitary boson displacement (‘shake-up’) operatorsX, cf. Section 2.2.3. The Markov
approximation is applied by assuming that the memory time of the environment corresponding to the
width of the correlation functionC(t) is the shortest time-scale in the problem, which however isnot
identical to the replacement ofC(t) by a Delta-function.

The Master equation for the spin density operator is calculated in the basis of the Dicke states|jm〉,

˙̃�m,m(t)= 2	T 2
c

[
−c−jm

2
P(� − �(2m− 1))�̃m,m(t)− c+jm

2
P(−� + �(2m+ 1))�̃m,m(t)

+ c−cm
2
P(−� + �(2m− 1))�̃m−1,m−1(t)+ c+jm

2
P(� − �(2m+ 1))�̃m+1,m+1(t)

]
, (3.66)
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where in addition to the superradiant factorsc±jm, Eq. (3.15), the rateP(E) for inelastic transitions due to
boson emission or absorption from the dissipative environment appears, cf. Eq. (2.59) in Section 2.2.7.
Here,E is the energy differenceE=�−�(2m±1) between the Dicke states|jm〉 and|jm±1〉. The range
of validity of Eq. (3.66) is restricted to that of the NIBA (strong couplings,��1 at zero temperature and
intermediate to strong couplings at finite temperatures).

For spinj = 1/2, one recovers the usual results of the spin-one-half boson model[51], with the
Master equation predicting an exponential relaxation ofJz to the equilibrium value〈Jz〉∞ = (P (−�) −
P(�))/2(P (−�) + P(�)) with relaxation rate� = 2	T 2

c (P (−�) + P(�)): 1) for the zero temperature
version ofP(�), Eq. (2.62), the spin remains in its initial state at zero bias,�=0, which is the well-known
localization phenomenon of the spin-boson model at��1 [217,218]. For a finite bias�  = 0, the system
relaxes with rate

�T=0 =
2	T 2

c �2�−1

�2�
c �(2�)

e−�/�c , (3.67)

which agrees in leading order in�/�c with the relaxation rate of the spin-boson model[50]. 2) at�=1/2,
the Spin-Boson model has an exact solution and corresponds to the Toulouse limit of the anisotropic
Kondo model. Using the analytic expression Eq. (2.64), at zero bias the relaxation rate is

��=0 = 4−1/��c
2	T 2

c �(1+ 2/��c)

�c|�(1+ 1/��c)|2 , (3.68)

which correctly converges to the zero temperature result of the spin-boson model,�=2	T 2
c /�c, cf. [219].

While spinsj = 1/2 are localized for��1 and� = 0, spinsj >1/2 relax towards one of the two
energy minima ofH̄0, i.e. the polarized states|j,±j〉 on the inverted parabola, cf.Fig. 22, depending
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on the initial spin value. For an initial value|jm0〉 on the ascending branch,m0>0, the Master equation
describes transitionsm → m+ 1 at rate

�m→m+1 = 2	T 2
c c

+
jm

2
P(−� + �(2m+ 1)) , (3.69)

which at zero temperature, Eq. (2.62), obeys�m→m+1>�m−1→m such that each transition happens
much slower than the previous one. As a consequence, the transitionm − 1 → m is completed before
the next transition,m → m+ 1, becomes effective. The spin therefore cascades down to its equilibrium
value+j , with the timet (m) needed to relax to a state|jm〉 approximately being independent of the
initial state and only governed by the last transition. An estimate is obtained from Eq. (3.69),

t (m) ≈ 1

2	T 2
c c

−
jm

2
P(−� + �(2m− 1))

. (3.70)

Furthermore, for Ohmic dissipation one can derive an approximation for

〈Jz〉 ≈ 1

4�
ln(t)+ C , (3.71)

where all other parameters are absorbed in the constantC. The logarithmic relaxation, cf.Fig. 22, is due
to the exponential cut-off in the boson spectral densityJ (�)=2��e−�/�c , cf. Eq. (2.52). Other forms of
J (�) will therefore lead to other time-dependences of large-spin relaxation in the strong coupling limit.

At finite temperatures, the spin can also absorb energy from the environment and transitions in both
directionsm ↔ m+ 1 are possible. Due to the detailed balance relation, Eq. (2.60), the absorption rate
is much smaller than the emission rate and does not deviate much from the zero temperature ‘ultra-slow
radiance’ behavior[82].

3.4.4. Collective decoherence of qubit registers
Reina et al.[220] considered an exactly solvable spin-boson model where the coupling to a number of

L spin-12s (qubits) to a bath of boson modesq is via the individual spin-z components�nz only,

H =
L∑

n=1

�n�
n
z +

∑
q

L∑
n=1

�nz (g
n
qa

†
q + gnq

∗
aq)+

∑
q

�qa
†
qaq . (3.72)

The absence of tunneling term with coupling to�nx makes this model somewhat unrealistic from the point
of view of applications to real physical situations. Models like Eq. (3.72) are sometimes called ‘pure
dephasing models’ in the literature; the fact that they can be solved exactly makes them attractive for, e.g.
illustrating the temporal decay of off-diagonal elements of a density matrix due to dissipative environment
coupling.

The exact solution is accomplished by calculating the time evolution operator, which is given byUI (t)

=T̂ exp[−i
∫ t

0 dt ′HI(t
′)] in the interaction picture with respect to the free spin and boson part of Eq.

(3.72), where care has to be taken to properly take into account the time-ordering operationT̂ , cf. the
discussion in[220].A case of particular interest occurs for ‘collective decoherence’where all the coupling
constantsgnq ≡ gq are identical and the matrix elements�in,jn(t) of the reduced density operator of the
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spin systems evolve as

�in,jn(t)= exp


i�(t)


(∑

m

im

)2

−
(∑

m

jm

)2

− �(t)

[∑
m

(im − jm)

]2

 �in,jn(0) ,

(3.73)

�(t) ≡
∫ ∞

0
d�

J (�)

�2 [�t − sin�t], �(t) ≡
∫ ∞

0
d�

J (�)

�2 (1− cos�t) cosh

(
��

2

)
.

(3.74)

The result Eq. (3.73) reflects the abelian nature of the dephasing: the time evolution of the density operator
only consists in a multiplication of the initial density operator with an exponential factor exp{. . .} which,
however, itself depends on the coordinatesin, jn. Note that the real ‘decay rate’�(t) is given by the real
part of the functionQ(t) in Eq. (2.21),�(t) = ReQ(t), which therefore with the explicit expression
Eq. (2.53) can be calculated analytically.

Reina et al.[220] discussed the case ofL= 1 and 2 qubits fors = 1 (Ohmic) ands = 3 (super-Ohmic)
dissipation in detail. An interesting result is the fact that, apart from the diagonal elements of the density
operator Eq. (3.73), the matrix elements〈↑↓ |�(t)| ↓↑〉 and〈↓↑ |�(t)| ↑↓〉 do not decay at all. For
identicalgnq , the interaction part of the Hamiltonian Eq. (3.72) in fact gives zero on the states| ↑↓〉 and
| ↓↑〉. In contrast, the matrix elements〈↑↑ |�(t)| ↓↓〉 (and correspondingly〈↓↓ |�(t)| ↑↑〉) decohere
fast according to

〈↑↑ |�(t)| ↓↓〉 = exp[−4�(t)]〈↑↑ |�(0)| ↓↓〉 , (3.75)

which has been called ‘super-decoherence’ in an earlier paper by Palma et al.[221].

3.4.5. Superradiance in arrays of Cooper pair boxes
Rodrigues et al.[222] proposed a model for collective effects in the Cooper-pair tunnel current in an

array of Cooper-pair boxes coupled to a large, superconducting reservoir with BCS HamiltonianHBCS.
They started from a total Hamiltonian

H=Harray+HBCS+HT , (3.76)

Harray=
lB∑
i=1

Ech
i �zi , HT =−

∑
k,i

Tk,i(�
+
i c−k↓ck↑ + H.c.) , (3.77)

where inHarrayand the tunneling HamiltonianHT each of thelb Cooper-pair boxes was described as a
two-level system with pseudo spin12. Fori-independent charging energiesEch

i and tunnel matrix elements
Tk,i , the Cooper-pair array was described by a collective spinSb of sizelb/2. In addition, they wrote the
BCS Hamiltonian usingk-dependent Nambu spins�+k =c

†
k↑c

†
−k↓ etc. and assumed a strong coupling limit

in which the dispersion of the particle energies�k (counted from the chemical potential) and the pairing
field �k became negligible, giving rise to a spin representationHBCS ≈ 2�Szr − S+r � − S−r �∗ (the total
spinSr = lr/2 → ∞ represented half the degeneracy in the reservoir), which they checked to reproduce
standard BCS results.
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Fig. 23. Left: line narrowing due to collisions of a Doppler-broadened spectral line in the original 1953 Dicke paper[175]. The
radiating gas is modeled within a one-dimensional box of widtha; � is the light wavelength. From[175]. Right: imaginary part
of the polarizability
(k,�) in units ofd2/� (d: dipole moment) around� = �0 for a one-dimensional model (see text). All
frequencies are in units of the collision rate� of the radiating atoms with the atoms of the buffer gas. The spontaneous emission
rate� = 0.1; the atom massM and the light wave vectork enter into the frequency�0 = kp0/M which determines the width of
the momentum distribution. For broad distributions (larger�0), the sharp ‘Dicke-peak’ appears on top of the Doppler-broadened
line-shape.

Neglecting furthermore thek-dependence of theTk,i allowed them to work with an effective Hamilto-
nian with two large spins representing the box-array (b) and the reservoir (r),

Heff = EchSzb + 2�Szr − S+r � − S−r �∗ − T (S+b S
−
r + S+r S−b ) . (3.78)

Using lowest order time-dependent perturbation theory inHT , they then calculated the expectation value
of the tunnel current operatorÎ ≡ T (S+b S−r −S−b S+r ) for various initial conditions (number and coherent
states for array and reservoir). They found a current proportional to thesquareof the numberlb of boxes
in the array which demonstrated the Dicke superradiance effect in their system. In a further calculation,
Rodrigues et al. also made explicit predictions for a collective, time-dependent quantum revival effect in
analogy with the quantum optical revivals in the Jaynes–Cummings model[61].

4. Dicke effect and spectral line-shapes

4.1. Introduction

The original Dicke effect as predicted by Dicke in 1953[175] is a phenomenon that occurs in the
line shapes of absorption spectra in a gas of atoms. Line shapes for the absorption of light with wave
vectork are subject to Doppler broadening due to frequency shiftskv, wherev is the velocity of an
individual atom. Dicke showed that velocity-changing collisions of the radiating atoms with the atoms
of a (non-radiating) buffer gas can lead to a substantialnarrowingof the spectral line shape in the form
of a very sharp peak on top of a broad line shape, centered around the transition frequency of the atom,
cf. Fig. 23. Theincoherentcoupling of two independent relaxation channels (spontaneous emission and
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velocity-changing collisions) leads to a splitting into two combined decay channels for the whole system,
cf. Section 4.2. This phenomenon is somewhat in analogy with thecoherentcoupling of two (real) energy
levels (level repulsion), leading to the formation of a bonding and an anti-bonding state. The difference is
that the Dicke effect is related to the splitting of decay rates (‘imaginary energies’), and not real energies,
into a large (fast, superradiant) and a small (slow, subradiant) decay rate. In fact, the splitting into two
decay modes can be considered as a precursor of the phenomenon of Dicke superradiance[174], where
a symmetric mode ofN radiators gives rise to an abnormally large decay on a time scale 1/N .

From the theoretical point of view, spectral line-shapes are determined by poles of correlation functions
in the complex frequency plane. The poles are eigenvalues of a collision matrix which, for the simplest
case of only two poles, belong to symmetric and anti-symmetric eigenmodes. As a function of an external
parameter (e.g. the pressure of an atomic gas), these poles can move through the lower frequency half-
plane, whereby the spectral line-shape becomes a superposition of a strongly broadened and a strongly
sharpened peak.

From an abstract point of view, the Dicke effect has its roots in the properties of eigenvalues and
eigenvectors of matrices of a special form. Consider aN ×N matrix

A=




1 q q q · · ·
q 1 q q · · ·
q q 1 q · · ·
q q q 1 · · ·
· · ·


 , (4.1)

representing a coupling amongNobjectsi=1, . . . , N with identical real coupling strengthsAi  =j =q and
unity ‘self-coupling’.The eigenspace ofA is spanned by a single, ‘superradiant’and symmetric eigenvector
(1,1,1, . . . ,1) with eigenvalue 1+ q(N − 1), andN − 1 degenerate, ‘subradiant’ eigenvectors, e.g.
(1,−1,0, . . . ,0), (1,0,−1, . . . ,0), etc. with eigenvalue 1− q. This splitting into sub- and superradiant
subspaces is a very generic feature due to the high symmetry ofA, and has important consequences for
physical systems where such symmetries play a role.

Although the Dicke spectral line effect has been known and experimentally verified for a long time
in atomic systems[177,178,223], only recently predictions were made for it to occur in transport and
scattering properties of mesoscopic systems such as for resonant electron tunneling via two impurities
[224], resonant scattering in a strong magnetic field[225], or the emission from disordered mesoscopic
systems[226]. This section represents an introduction to the effect by an explicit calculation of the
collision-induced narrowing of the polarizability
(�) of an atomic gas (as was considered in Dicke’s
1953 paper), a short overview over the results from the seminal paper by Shabazyan and Raikh, and recent
work related to the effect.

4.2. Atomic line shapes and collision effects

The Dicke effect (line narrowing due to collisions), its experimental consequences and the conditions
under which it can been observed have been reviewed by Berman[223]. Here, we provide a short review
of the theoretical aspects of the original effect by using the Boltzmann equation for a gas of two-level
atoms of massM as described by a one-particle density matrix, defined as a trace of the statistical
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operator�,

���′(r1, r2; t) ≡ Tr(��+
�′(r2t)��(r1t)) , (4.2)

where the field operator�+
� (r2) creates an atom at positionr2 with the upper level (�= ↑) or the lower

level (�= ↓) occupied. The ‘spin’-index� thus denotes the internal degree of freedom of the atom. An
electric fieldE(x, t) now gives rise to dipole transitions within an atom at positionx. If the corresponding
matrix element is denoted asd (for simplicity we setd ≡ d↑↓ ≡ d↓↑), and the transition frequency is
�0, the Hamiltonian of the system in second quantization is

H =
∑
�=±

∫
d3x�+

� (x)
[
�

�0

2
− �

2M

]
��(x)

+
∫

d3x(dE(x, t))[�+
↑ (x)�↓(x)+ �+

↓ (x)�↑(x)] , (4.3)

where� is the Laplacian and we have set2= 1. The quantum-mechanical distribution function

f (p, r , t)= 1

(2	)3

∫
d3r ′e−ipr ′�(r , r ′; t) (4.4)

with r = (r1 + r2)/2 andr ′ = r1 − r2 obeys an equation of motion as derived from the Heisenberg
equations of the field operators��(x),(

�

�t
− i�0 + vp∇r

)
f↓↑(p, r , t)= idE(r , t)[f↑↑(p, r , t)− f↓↓(p, r , t)] ,(

�

�t
+ i�0 + vp∇r

)
f↑↓(p, r , t)=−idE(r , t)[f↑↑(p, r , t)− f↓↓(p, r , t)] (4.5)

with vp=p/M and corresponding equations forf↑↑ andf↓↓. The electric fieldE(x, t) has been assumed
to spatially vary on a length scale which is much larger than the de-Broglie wave length of the atoms;
apart from this Eq. (4.5) is exact.

The Dicke effect has its origin in collisions of the atoms with a buffer gas. These collisions are assumed
to change only the momentump of the atoms and not their internal degree of freedom�. Furthermore,
the buffer gas is optically inactive; a situation that in a condensed matter setting would correspond to
elastic scattering of electrons at impurities in electronic systems like metals or semiconductors. In the
theoretical description of these scattering events, one introduces acollision term

L[f�,�′ ](p, r , t) ≡ −
∫

dp′W(p,p′)[f�,�′(p, r , t)− f�,�′(p
′, r , t)] (4.6)

on the r.h.s. of the kinetic equation Eq. (4.5), whereW(p,p′) is the probability for scattering fromp to
p′, which can be calculated in second order perturbation theory (Fermi’s Golden rule) from a scattering
potential. Furthermore, the spontaneous decay due to spontaneous emission of light from the upper level
of the atoms leads to a decay of the polarization at a rate�. This dissipative process is introduced as an
additional collision term forf↑↓ andf↓↑

L′[f↓↑] = −�f↓↑, L′[f↑↓] = −�f↑↓ . (4.7)
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Thepolarizationof the atom gas

P(r , t)= d
∫

dp[f↑↓(p, r , t)+ f↓↑(p, r , t)] (4.8)

is obtained inlinear responseto the electric field, i.e., the occupation probabilities of the upper and lower
level are assumed to be constant in time and space,f↑↑(p, r , t) − f↓↓(p, r , t) =N(p). The resulting
equation of motion forf↑↓ then becomes(

�

�t
+ i�0 + � + vp∇r

)
f↑↓(p, r , t)=−idE(r , t)N(p)+L[f↑↓](p, r , t) , (4.9)

which is a linearizedBoltzmann equationfor the distribution functionf↑↓. Dicke originally considered the
scattering processes in a one-dimensional model: atoms bouncing back and forth within a one-dimensional
container[175], a situation that easily allows one to understand the line narrowing from Eq. (4.9). Due
to energy conservation,W(p, p′) ∝ 
(p2 − p

′2), which one can write as

W(p, p′)= �(p)[
(p − p′)+ 
(p + p′)] , (4.10)

where�(p) = �(−p) is a scattering rate with dimension 1/time. In the collision integral, only the
back-scattering term remains, i.e.,

L[f�,�′ ](p, r, t) ≡ −
∫

dp′�(p)
(p + p′)[f�,�′(p, r, t)− f�,�′(−p, r, t)]
= − �(p)[f�,�′(p, r, t)− f�,�′(−p, r, t)] . (4.11)

The solution of Eq. (4.9) is easily obtained in Fourier-space where�t → −i� and�r → ik;

(−i� + i�0 + � + �(p)+ ivpk)f↑↓(p, k,�)− �(p)f↑↓(−p, k,�)=−idE(q,�)N(p) . (4.12)

This can be solved by writing a second equation forf↑↓(−p, k,�) by simply changingp → −p. The
result is a two-by-two system of equations forf↑↓(p) andf↑↓(−p) (omitting all other variables for the
moment),(−i�p + �(p) −�(p)

−�(p) −i�−p + �(p)

)(
f↑↓(p)
f↑↓(−p)

)
=
(

g(p)

g(−p)

)
, (4.13)

with the abbreviationsg(p) ≡ −idE(k,�)N(p) and�p ≡ �−�0− vpk+ i�. Note that the velocityvp
is an odd function ofp, vp ≡ p/M =−v−p. Inverting the two× two matrix yields

f↑↓(p, k,�)= idE(k,�)N(p)
−i(� − �0 + vpk + i�)+ 2�(p)

[� − �+(p, k)][� − �−(p, k)] , (4.14)

where the two poles�±(p, k) in the denominator of Eq. (4.14) are given by

�±(p, k) ≡ �0 − i� − i(�(p)±
√

�(p)2 − v2
pk

2) , (4.15)
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Fig. 24. Zeros�±−�0 according to Eq. (4.15) appearing in the distribution function Eq. (4.14) and the polarizability Eq. (4.16).
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parametric in the elastic collision rate�(p); the arrows indicate the direction of increasing�(p). For�(p)?|vpk|, both curves
approach theDicke limitEq. (4.17), where the imaginary part of�− − �0 becomes the negative of�, and the imaginary part of
�+ − �0 flows to minus infinity.

and the result forf↓↑(p, k,�) is obtained from Eq. (4.14) by changing�0 → −�0 andN(p) → −N(p).
Using these results, one can now express a linear relation between the Fourier transform of the polarization,
Eq. (4.8), and the electric fieldE(k,�),

P(k,�)= 
(k,�)E(k,�)


(k,�)= d2
∫

dpN(p)
� − �0 + vpk + i� + 2i�(p)

[� − �+(p, k)][� − �−(p, k)] − (�0 → −�0) . (4.16)

The spectral line shape is determined by thepolarizability
(k,�), the form of which in turn depends on
the position of the poles�±(p, k) in the complex�-plane. It is useful to consider two limiting cases:

(1) the collision-less limit�2(p)>v2
pk

2, cf. Fig. 24: in this case,�±(p, k) ≈ �0 ± vpk − i�. The line-
width is determined by the broadening through spontaneous emission� and is shifted from the central
position�0 by theDoppler-shifts±vpk. Note that the final result for the polarizability still involves
an integration over the distribution functionN(p) and therefore depends on the occupations of the
upper and lower levels. This leads to the finalDoppler broadeningdue to the Doppler-shifts±vpk.

(2) theDicke-limit �2(p)?v2
pk

2, cf. Fig. 24, is a more interesting case, where in the square-root in the
two poles the Doppler-broadening can be neglected and

�+ = �0 − i� − 2i�(p), �− = �0 − i� . (4.17)

The first pole�+ corresponds to a broad resonance of width�+2�(p), the second pole�− corresponds
to a resonance whose width is solely determined by the ‘natural’ line-width�, i.e. a resonance which
is no longer Doppler-broadened.
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The splitting into two qualitatively different decay channels is the key feature of the Dicke effect. We
have already encountered it in the emission of light from a two-ion system, Section 3.1.2, where the
spontaneous decay split into one fast (superradiant) and one slow (subradiant) channel. In fact, in the
Dicke-limit the polarizability is given by a sum of the two resonances�±: from Eq. (4.16), one obtains


(k,�)= d2
∫

dpN(p)
� − �0 + vpk + i� + 2i�(p)

�+ − �−

[
1

� − �+
− 1

� − �−

]
− (�0 → −�0)

(4.18)

In the Dicke-limit, this becomes


(k,�) ≈ d2
∫

dp
N(p)

−2i�(p)

[
vpk

� − �+
− 2i�(p)

� − �−

]
− (�0 → −�0) . (4.19)

The two resonances thus correspond to ananti-symmetric termvpk/(� − �+) (odd function ofp) and
a symmetric term2i�(p)/(� − �−) (even function ofp). Note that the anti-symmetric term gives no
contribution to
(k,�) for even distributionN(p) = N(−p). Still, the appearance of a definite type of
symmetry together with each type of resonance is typical for the Dicke effect and has its origin in the
coupling of the two componentsf (p) andf (−p) in the matrix equation Eq. (4.13). The latter can be
re-written (again considering only the componentf↑↓),

(A− �1)

(
f↑↓(p)
f↑↓(−p)

)
=−ig(p)

(
1
1

)
, A ≡

(
vpk − i�(p) i�(p)

i�(p) −vpk − i�(p)

)
(4.20)

whereN(p)=N(−p) and� ≡ �−�0 + i�. In the limit �(p)?|vpk|, the matrixA has the eigenvectors
(1,1) and(1,−1) with eigenvalues 0 and−2i�(p), respectively. For the symmetric eigenvector(1,1),
the effect of the collisions is therefore annihilated to zero, and this eigenvector solves Eq. (4.20) with
−�f↑↓(p)=−ig(p), meaning

f↑↓(p)= dE(k,�)N(p)

� − �0 + i�
. (4.21)

This agrees with the previous result Eq. (4.14) in the Dicke-limit�(p)?|vpk|: the collision broadening
has disappeared and the line is determined by the remaining natural line width�. It is instructive to
discuss a quantitative numerical example, using a Gaussian distribution functionN(p) = f↑↑ − f↓↓ =
−(2	p0)

−1/2e−p2/2p2
0. The imaginary part


′′
1(k,�) of the first term in the polarizability Eq. (4.16),


′′1(k,�) ≡ d2 Im
∫

dpN(p)
� − �0 + vpk + i� + 2i�(p)

[� − �+(p, k)][� − �−(p, k)] , (4.22)

corresponds to the resonance around� ≈ �0. The result (which requires one numerical integration)
for constant�(p) = � is shown inFig. 23(right) for different widths�0 ≡ p0k/M of the distribution
N(p). For a sharp momentum distribution (small�0), the line-width is determined by the spontaneous
emission rate� and there is basically no Doppler-broadening (Dicke-limit). In the opposite case of a broad
momentum distribution, the form of the line is determined by a sharp peak of width∼ � on top of a broad
curve of width∼ v0, which reflects the appearance of thetwo poles�+ and�− in 
(k,�).
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Fig. 25. Resonant tunneling through two impurity levels, from Shahbazyan and Raikh[224]. Left: tunnel junction with two
resonant impurities 1 and 2 in a distanced in horizontal and distances12 in vertical direction. Right: linear conductance
for identical impurity levelsE as a function ofE = EF − E, whereEF is the Fermi energy of the tunneling electron. The
characteristic shape of the spectral function Eq. (4.26), as known from the Dicke effect, appears here in the conductance
with increasing parameterq = 0, q = 0.75,q = 0.95, cf. Eq. (4.25).� is the tunneling rate through the left and the right barrier.
From[224].

4.3. Spectral function for tunneling via two impurity levels

The appearance of the Dicke effect in a spectral function for electronic states was first found by
Shahbazyan and Raikh in their paper from 1994[224]. They considered two-channel resonant tunneling
of electrons through two impurities (localized states) coupled to electron reservoirs, cf.Fig. 25. If Coulomb
interactions among the electrons are neglected, theconductanceof the whole system can then be expressed
by its scattering properties[15,16,227].

We follow the discussion of Shahbazyan and Ulloa who later generalized this problem to the case of
scattering properties in a strong magnetic field[225]. The starting point for the analysis of the conductance
is the spectral function of the system, which can be expressed by the imaginary part of the retarded Green’s
function[57,88]. For the case of two energy levels�1 and�2 that are assumed to belong to two spatially
separated localized impurity states, the spectral function is defined by a two-by-two matrix in the Hilbert
space of the two localized states,

S(�)=−1

	
Im

1

2
Tr

1

� − �̂ + iŴ
. (4.23)

Scattering between the localized statesi → |k〉 → j is possible via virtual transitions to extended states
(plane waves|k〉) of the electron reservoir. Then,�̂ is diagonal in the�i , andŴ is a self-energy operator
that describes the possibility of transitions between localized levelsi andj via extended states with wave
vectork. In second order perturbation theory, the self-energy operatorŴ is given by

Wij = 	
∑
k

tik tkj
(� − Ek) , (4.24)

where2=1 and the dependence on� of Ŵ is no longer indicated. The quantitiestik are overlaps between
the localized statesi and the plane waves|k〉, their dependence on the impurity positionr i is given by
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the phase factor from the plane wave at the position of the impurity, i.e.tik ∝ exp(ikr i). Note that this
spatial dependence of the matrix elementtik is similar to the relations�LQ ∝ exp(iQrL), �RQ ∝ exp(iQrR)
that lead to the interference in the matrix elements for electron–phonon coupling in double quantum dots
as discussed in Section 2, cf. Eq. (2.54). The non-diagonal elementsW12 can be shown to be oscillating
functions of the impurity distancerij ,

W12 = q
√
W1W2, q = J0(r12kF ) , (4.25)

wherekF is the Fermi wave vector andJ0 the Bessel function that results from an angular integral in the
plane of the two impurities. If the diagonal elementsW11 andW22 and both energies are assumed to be
identical,�1 = �2 = � andW11 =W22 =W , one has

Ŵ =W

(
1 q

q 1

)
, S(�)= 1

2	

[
W−

(� − �)2 +W2−
+ W+

(� − �)2 +W2+

]
, (4.26)

withW±=(1±q)W . This spectral function consists of a superposition of two Lorentzians (one narrow line
with widthW−, corresponding to a subradiant channel, and one broad line with widthW+, corresponding
to a superradiant channel) and therefore represents another example of the Dicke spectral line effect
discussed in the previous section. Furthermore, this splitting is analogous to the spitting of a radiating
decay channel of two coupled radiators as discussed in Section 3.1. If the parameterq is small,q>1, one
hasW+ ≈ W− ≈ W and the spectral function is a simple Lorentzian if widthW. The crossover to the
Dicke regime with the splitting into a sharp and a broad part ofS(�) is thus governed byq = J0(r12kF )

and therefore by the ratio of the distance of the impurities to the Fermi wavelength of the electron. This
again shows that the effect is due to interference. The two localized impurity states are coupled by the
continuum of plane waves.As for their scattering properties, they have to be considered as a single quantum
mechanical entity, as long as their distance is of the same order or smaller than the wavelength of the
scattering electrons. In this case, the (linear) conductanceG(EF ) for resonant tunneling shows the typical
feature of the Dicke effect as a function of the energyEF of a tunneling electron: asG(EF ) is determined
by the spectral functionS(�) [227], the Dicke peak becomes directly visible in the conductance, cf.Fig.
25. If the energies�1 and�2 of the two impurity levels differ from each other, the resonant peak even shows
a more complex behavior; as a function of the parameterq there is a crossover to a sharp transmission
minimum[224].

Several authors have built upon the 1994 paper by Shahbazyan and Raikh and found features in
electronic transport which in one way or the other are related to the Dicke effect. Shahbazyan and Ulloa
[225] studied the Dicke effect for resonant scattering in a strong magnetic field, using an exact solution
for the density of states in the lowest Landau level as calculated from a zero-dimensional field-theory
[228]. Furthermore, Kubala and König studied a generalization including an Aharonov–Bohm flux� in a
ring-geometry connected to left and right leads with resonant scattering through single electronic levels
�1 and�2 of two embedded quantum dots[229,230]. They calculated the transmissionT (�) through the
ring within the usual Meir-Wingreen formalism[231],

T (�)= Tr[Ga(�)�RGr (�)�L], Gr (�) ≡

� − �1 + i

�

2
i
�

2
cos

�

2

i
�

2
cos

�

2
� − �2 + i

�

2




−1

(4.27)
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with 2 × 2 matrices�L/R for the coupling to the leads and retarded and advanced Green’s functions,
Gr/a(�). The imaginary part ofGr (�)−1 contains the sum of the tunnel rates,� = �L + �R and again
has ‘Dicke’ form, cf. Eq. (4.1), leading to a sharp suppression of transport around�1 = �2 = 0.

4.4. Cooperative light emission from disordered conductors

A large part of mesoscopic physics deals with universal properties of disordered, coherent electronic
systems. The related topic of ‘random lasing’has attracted a lot of attention recently; some shorter Review
Articles by Hackenbroich and Haake, and by Apalkov et al. can be found in[232].

Shabazyan et al.[226] studied a related problem, i.e.,spontaneouscooperative emission from a dis-
ordered mesoscopic system, motivated by experimental evidence for collective excitonic light emission
from strongly disordered polymers. They used a completely classical description of superradiance as a
collective phenomenon, which was in the spirit of a generalization of the classical description of spon-
taneous emission from a single, classical radiator. The microscopic, quantum mechanical description
of superradiance in fact is two-fold and can be performed following two alternative schemes[179]: in
theSchrödinger picture, a Master equation for the reduced density operator of the electronic system is
derived. The degrees of freedom of the electromagnetic field are regarded as dissipative bath leading to
spontaneous emission; they are integrated out whence the coupling to the electromagnetic field basically
enters as one single parameter (the decay rate of a single radiator). On the other hand, in theHeisenberg
picture, the equations of motion for the field operators of the polarization, occupation numbers, and the
polarization are derived, and the electromagnetic field is dealt with on a classical level by using Maxwell’s
equations. This second approach is in particular useful in order to study the classical aspects of superradi-
ance, and furthermore additional aspects like propagation effects for the electromagnetic field, etc. Both
alternatives are valid (though entirely different) routes towards cooperative emission (superradiance),
cf. the discussion in the Review article by Gross and Haroche[179].

The starting point in the work by Shabazyan et al. was a system ofN?1 classical harmonic oscillators of
chargee, massm, dipole orientationni at random positionsr i and with random frequencies�i , interacting
via their common radiation fieldE(r , t). The equations of motions for the oscillator displacements,

üi(t)+ �2
i ui(t)=

e

m
niE(r i , t) , (4.28)

are closed by using the wave equation for the electric field,

�E(r , t)− 1

c2 Ë(r , t)=
4	

c2 J̇(r , t), J(r , t) ≡ e
∑
i

ni u̇i(t)
(r − r i) , (4.29)

where the source term (the macroscopic polarization) is again determined by the oscillator displacements.
As mentioned above, the combination of the two sets of equations, Eq. (4.28) and (4.29), for light–matter
interaction constitutes the ‘classical’ approach to superradiance and is complementary to the completely
quantum mechanical approach based on collective spontaneous emission as presented in the introduction
to Section 3.1.



T. Brandes / Physics Reports 408 (2005) 315–474 389

After Laplace transforming and expansion into eigenmodes of the field, one arrives at a simple set of
linear equations for the (re-scaled) oscillator displacementsvi(i�),

(�i − �)vi + 1

�

∑
j

(�ij + i�ij )vj =− i

2
e−i�i , (4.30)

where�ij and�ij are the imaginary and the real part of the effective interaction matrix elements between
the radiators as mediated by the electric field,� is the radiative life time of an individual oscillator, and
�i the initial oscillator phases.

The limit of pure Dicke superradiance then follows from neglecting the dephasing terms�ij (which
are due to effective dipole–dipole interactions) and by setting

�ij = �ninj , �ii = 1 (4.31)

with (1− �) ∼ L2/�2
0>1, whereL is the system size and�0 the wavelength corresponding to the central

oscillator frequency�0. For identical oscillators�i = �0 and identical dipole moment orientationsni ,
the eigenvalue problem Eq. (4.30) is identical to the one for the matrixA discussed in the introduction,
cf. Eq. (4.1), and one obtains an emission spectrum

I (�) ∝
[

(N − 1)(1− �)/�

(�0 − �)2 + (1− �)2/�2
+ (1− � + �N)/�

(�0 − �)2 + (1− � + �N)2/�2

]
, (4.32)

which is a superposition of a wide Lorentzian (corresponding to the single superradiant mode) and a
narrow Lorentzian (corresponding toN − 1 subradiant modes), cf.Fig. 26.

Disorder in the orientationsni alone was shown to have no qualitative effect on the emission spectrum.
For frequencies�i randomly distributed in an interval(�0 − �,�0 + �), however, strikingmesoscopic
features appear inI (�). Instead of the naively expected smearing of the sharp (subradiant) Dicke peak Eq.
(4.32), the coupling of the oscillators leads to a multitude of sharp peaks inI (�), cf. Fig. 26. Shabazyan
et al. showed that the splitting into a single superradiant andN − 1 subradiant modes persists even in
the disordered case, as long as themean frequency spacing�/N is much smaller than the inverse life
time (individual oscillator line-width)�−1. The precise form ofI (�) depends on the specific (random)
choice of the�i and is therefore a ‘fingerprint’ of the frequency distribution. On the other hand, a detailed
analysis showed that some universal features ofI (�) depend on�, �, L, andN only. In particular, in an
intermediate regime���N���(1 − �)−1/2, the width of the many peaks was shown to decrease with
increasingN, with the system behaving as a ‘point sample’, whereas for largerN a cross-over occurs into
a regime with peaks becoming broader with increasingN.

4.5. ac-Drude conductivity of quantum wires

The Dicke spectral line effect also appears in the ac conductivity�(�) of quantum wires in a magnetic
field, which is yet another example of electronic transport in a mesoscopic system. Quantum wires are
electronic systems where the motion of electrons is confined in two perpendicular direction of space
and free in the third[5–8,60,181]. In the presence of impurity scattering and when only the two lowest
subbands of the wire are occupied, the absorptive part of�(�) shows (as a function of�) the Dicke effect
in analogy to the spectral line narrowing discussed above. The parameter that drives the effect is the
magnetic fieldB. Impurity back-scattering becomes more and more suppressed with increasingB, which
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Fig. 26. Mesoscopic superradiance from disordered systems after Shahbazyan et al.[226]. Left: spectral intensity ofN identical
oscillators, Eq. (4.32), vs.�� = � − �0 for N = 10, � = 0 (long-dashed line),� = 0.5 (dashed line),� = 0.8 (dotted line),
and�= 0.9 (solid line). Right: spectral intensity for several sets of random oscillator frequencies�i with ��= 5.0 and�= 0.8.
From[226].

leads to a crossover in�(�) from a broad Lorentzian to a very sharp and high peak on top of a broad
Lorentzian. This is due to inter-subband scattering, by which the transport rates for the two subbands
become coupled and split into one fast and one slow mode, corresponding to the superradiant and the
subradiant channel in the superradiance problem.

A model for this effect takes a quantum wire inx-direction within a quantum well in thex–y-plane
under a magnetic field inz direction, cf.Fig. 27left, with the wire defined by a harmonic confinement
potential of frequency�0. The single electron eigenstates|nk〉 with eigenenergies�nk of the clean system
(no impurities, Landau gauge) have two quantum numbersn (Landau band) andk (momentum in direction
of the wire)[14]. In the Drude model for the conductivity�(�) of the wire, quantum interference effects
and localization of electrons are disregarded, and the electronic transport is determined by the average
electron scattering rate at the impurities[233–236]. Thememory function formalismby Götze and Wölfle
[237,238]is an alternative to a calculation of�(�) via the Boltzmann equation, as has been done by, e.g.,
Bruus et al.[68] or Akera and Ando[239] for � = 0. One of the advantages of the memory function
formalism is that non-trivial interaction effects can in principle be incorporated into the formalism by
interaction dependent correlation functions. This in particular is useful to combine exact results, e.g. for
correlation functions of interacting one-dimensional systems, with a perturbative description of impurity
scattering[240,241]. Such effects, however, are neglected in the calculation below, and the final result can
be shown to coincide with the one obtained from the Boltzmann equation in the limit of zero temperature
and small frequencies�.
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The Hamiltonian of the wire is given by

H =
∑
nk

�nkc
+
nkcnk +

1

Ls

∑
nmkq

Vnm(q)c
+
nkcmk+q , (4.33)

whereLs is the length of the wire,cnk the electron creation operator for bandn, andVnm(q) the matrix
element for impurity scattering with momentum transferq from a state with quantum numbernk to a state
mk+q. To simplify the notation, the spin index� in the operatorsc(+)

nk� has not been written out explicitly.
The scattering potential is assumed to be spin-independent and summation over the spin is included in all
k, k′–sums. The linear response of an electronic system to a monochromatic electric fieldE(x) cos(�t) in
general is governed by a non-local conductivity tensor�(x, x′,�). Many electronic transport properties
of quantum wires (many-subband quasi one-dimensional systems) have to be discussed in terms of the
conductance� (the inverse resistance)[15,16,242–245]rather than the conductivity, although the former is
related to the latter in special cases[246–250].The conductance is regarded as the proper transport property
to explain, e.g., phenomena like step-like features in the electronic transport properties, i.e. a quantization
of � in multiples of 2e2/h [87]. This and other phenomena like localization due to disorder[12] in general
exist due to phase coherence[251–253]. In presence of phase breaking processes, a crossover to a regime
that can be described by a Drude-like theory is expected even for one-dimensional systems when their
lengthLs becomes larger than the distanceL� over which phase coherence is maintained. In this case,
the conductivity�(�) becomes a meaningful quantity. Furthermore, the conductivity as physical quantity
in quantum wires is also used to describedeviationsfrom ideal, unperturbed situations, e.g. deviations
from conductance plateaus due to scattering processes where a low order (sometimes renormalized)
perturbation theory[254] is possible.
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The homogeneous conductivity as a function of complex frequencyz is expressed in terms of the
current-current correlation function[237,238],

�(z)=−i
e2

z

(

(z)− ne

m∗
)

, (4.34)

where

−
(z)= 〈〈ĵ ; ĵ〉〉z ≡ −iLs

∫ ∞

0
dteizt 〈[ĵ (t), ĵ (0)]〉0 (4.35)

is the (Zubarev) correlation function of theq=0 component of the mass current density operatorĵ=ĵ (q=
0). Furthermore,ne is the electron density,−e <0 the electron charge andm∗ its conduction band mass.
The multichannel wire is described as a set of quasi one-dimensional subbands (channels)n= 1, . . . , Nc

of dispersion�nk and corresponding electron velocitiesvnk = ��nk/�k (we set2= 1). The current in the
total system is the sum of the currents of all channels,

ĵ = 1

Ls

∑
n,k

vnkc
+
nkcnk ≡

∑
n

jn , (4.36)

which allows one to write the conductivity as

�(z)=−i
e2

z

(∑
n,m


nm(z)−
ne

m∗

)
, 
nm(z) ≡ −〈〈jn, jm〉〉z (4.37)

in terms of a matrix of current–current correlation functions. The total number of electronsNe is given
by Ne =∑n,|k|<kn . Here, the Fermi momentumkn in subbandn is related to the Fermi energy�F as
�nk = �F , k = kn, which in turn is determined by the total number of electrons viaNe =∑n,|k|<kn

and
the magnetic field dependent band structure�nk. One has

ne

m∗ ≡
∑
nm


0
nm, 
0

nm ≡ 
nm
s

	
vn, vn = vnk=kn = kn/m

∗, s spin degeneracy, (4.38)

wherevn is the Fermi velocity in subbandn and the sum in Eq. (4.38) runs over all occupied subbands. In
Appendix C, a multichannel version of the memory function formalism[237] is used to find the expression
for the frequency dependent conductivity�(�) at zero temperatureT =0 and small excitations2� around
the Fermi surface, i.e. frequencies�>|�F − �n=0,k=0|/2. In the following, excitations much smaller

than the inter-subband distance2�B = 2
√

�2
0 + �2

c are assumed, where�c = |e|B/m∗c is the cyclotron
frequency for magnetic fieldB. An estimate for the relevant frequency range forB = 0 is2�0 = 1 meV,
i.e.�0=1500 GHz, and frequencies� from 0–100 GHz>�0 are in the microwave spectroscopy regime.

The general expression for�(�) is given in Appendix C, Eqs. (C.15), (C.7), together with (4.38). In
the case where the two lowest subbandsn= 0 and 1 are occupied, the expression for the conductivity is

�(z)= ie2 zs/	(v0 + v1)+ i[v0/v1L11 + v1/v0L00 − 2L01]
(z+ i	L00/sv0)(z+ i	L11/sv1)+ 	2L2

01/s
2v0v1

(4.39)
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with

L00 = s

	
Ls

v0

v1

(
|V01(k0 − k1)|2 + |V01(k0 + k1)|2 + 2s

	
V00(2k0)

2
)

,

L11 = s

	
Ls

v1

v0

(
|V01(k0 − k1)|2 + |V01(k0 + k1)|2 + 2s

	
V11(2k1)

2
)

,

L01 = s

	
Ls(|V01(k0 + k1)|2 − |V01(k0 − k1)|2) . (4.40)

Here,s = 2 if the electrons are taken as spin degenerate, ands = 1 if the electrons are assumed to be
spin-polarized. In lowest order perturbation theory (Born approximation) in the scattering off random
impurities, it is sufficient to know the impurity averaged square of the matrix element

|Vnn′(k − k′)|2 = n2D
i

∑
q

|u(q)|2|〈nk|e−iqx|n′k′〉|2 , (4.41)

that enters into the expressionsLij in Eq. (4.40). Here,u(q) is the two-dimensional Fourier transform
of the static potential of a single impurity potentialu(x, y). All impurities are assumed to be identical
scatterers and distributed with a concentrationn2D

i per areaL2. Finite quantum well thickness corrections
(form factors) are neglected here for simplicity. The averaged matrix elements are calculated in Appendix
C.2 for Delta-scatterers, where the Fourier component|u(q)|2 ≡ V 2

0 is a constant. The dependence on
the magnetic field is only through the ratio� ≡ (�c/�0)

2. We express the scattering matrix elements by
the scattering rate�−1 without magnetic field,

�−1 ≡ n2D
i V 2

0 m
∗/
√

4	23 , (4.42)

where in comparison with[68], �−1 is defined with an additional factor of 1/
√

4	 for convenience.
The frequency dependence of the real part of the conductivity, Eq.(C.25), is shown inFig. 27 for

the Fermi energy fixed between the bandsn = 1 and 2, i.e.�F = 22�B . The real partRe�(�) has a
Lorentzian shape for small magnetic fields. For increasing magnetic field, i.e. larger�c/�0, this shape
develops into a very sharp Lorentzian on top of a broad Lorentzian, indicating that one of the two poles
z± in �(z) approaches zero which again is theDicke effectas discussed above. Here, in the Dicke limit
the subradiant pole is zero and has no small finite imaginary part, since scattering processes other than
impurity scattering is not included, which is in contrast to Eq. (4.17), where spontaneous emission at a
rate� lead to a finite imaginary part−i� in both zeros.

The two poles of�(z) determine the width ofRe�(�). For large magnetic fieldsB, one can neglect the
terms which are not due to intersubbandforwardscattering inL̃00, L̃11, L̃01, and

L̃01 ≈ −s

Ls	
|V01(k0 − k1)|2, L̃00 = v0

v1
L̃01, L̃11 = v1

v0
L̃01 . (4.43)

The quadratic equation that determines the poles of�(z) then has the solutions

z− = 0, z+ = −i|V01(k0 − k1)|2
Ls

(
1

v0
+ 1

v1

)
. (4.44)

In this limit one of the poles becomes zero, corresponding to the very sharp peak inRe�(�).
This analysis demonstrates that the coupling of the two subbands by the intersubband impurity scattering

is essential for the appearance of the Dicke effect in this example of electronic transport. Furthermore,
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for large magnetic fields, backscattering with momentum transfer 2k0, 2k1, andk0 + k1 from one side to
the other side of the wire becomes largely suppressed due to the exponential dependence of the matrix
elements on the square of the momentum transfer, cf. Eq. (C.23), (C.20). With increasing magnetic fields,
such scattering processes become much weaker than intersubband forward scattering, i.e. scattering
between the bandsn = 0 and 1. This absence of backward scattering, of course, leads to a larger DC
conductivity.

In the Dicke-limit Eq. (4.43), simple algebraic manipulations lead to an expression for�(z) with the
Fermi velocitiesv0 andv1 in subbandn= 0 and 1,

�(z) ≈ ie2 s

	

(
v+

z− z+
+ v−

z− z−

)
,

v+ ≡ (v0 − v1)
v0/v1 − 1

v0/v1 + 1
, v− ≡ 4v0v1

v0 + v1
. (4.45)

The conductivity then becomes a sum of two contributions from the ‘superradiant’mode correspond-
ing to z+ and the ‘subradiant’ mode corresponding toz−. Note that these modes are superpositions of
contributions from both subbandsn= 0 and 1 (Fig. 28).

Another observation is the fact that it is possible to simulate the behavior ofRe�(�) as a function of
� by aclassical electrical circuitcomposed of two impedances in parallel: this circuit consists of one
huge inductanceL0 which is in series with a small resistanceR0, the whole being in parallel with a small
inductanceL, a large resistanceR, and a capacitanceC in series. Such classical circuits were in fact used
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in the past to simulate the ac transport properties of more complicated systems such as mesoscopic tunnel
barriers[245,255]. The complex impedance

Z−1(�)= i�C

1+ i�RC − �2LC
+ 1

R0 + i�L0
(4.46)

contains the time scaleRCand the three parameters

� ≡ L/R2C, � ≡ L0/RR0C, �0 ≡ R/R0 , (4.47)

by which a fit that qualitatively compares well withRe�(�) can be achieved. Note that the case�/� ≡
L0R0/LR?1 together with�0 ≡ R/R0?1 sets very drastic conditions for the possible ratiosL0/L and
R0/R, if one tried to simulateRe�(�) by a classical circuit in real experiments.

Checking the range of frequencies where the effect could be observed experimentally, one recognizes
from Figs. 27that � has to be varied such that 0.1����5 in order to scan the characteristic shape of
the Dicke peak. Impurity scattering times for AlGaAs/GaAs heterostructures are between 3.8× 10−12 s
and 3.8× 10−10 s for mobilities between 105.107 cm2/Vs, cf. [6]. A scattering time of 10−11 s requires
frequencies of� ≈ 100 GHz for�� ≈ 1, which is consistent with the requirement of� being much
smaller than the effective confinement frequency (�0 = 1500 Ghz for2�0 = 1 meV). An experimental
check of the Dicke effect in quantum wires under magnetic fields would therefore require microwave
absorption experiments, i.e. determination ofRe�(�) in relatively long wires. The above calculation
applies for the case where the two lowest subbands are occupied. TemperaturesT should be much lower
than the subband-distance energy2�B , because thermal excitation of carriers would smear the effect. For
2�B of the order of a few meV,T should be of the order of a few Kelvin or less. The Dicke peak appears
for magnetic fields such that�c/�0 becomes of the order and larger than unity. For convenience, we note
that the cyclotron energy in GaAs is2�c[meV] = 1.728B[T].

5. Phonon cavities and single electron tunneling

Optics deals with light, acoustics deals with sound. Optics has an underlying microscopic theory that is
linear both in its classical (electrodynamics) and quantum version (quantum electrodynamics), whereas
in acoustics the linearity is an approximation: sound is based on matter–matter interaction which is
non-linear.

Propagation of waves in media can be controlled by boundary conditions, material properties and
geometry. On the optics side, photonic crystals or photon cavities are examples where the solutions to
Maxwell’s equations are ‘designed’ in order to achieve a specific purpose (refractive properties, confine-
ment of single photons etc). In a similar way, vibrational properties of matter can be controlled (sound
insulation being an example for classical sound-waves). The theoretical framework is elasticity theory,
the simplest model being an isotropic material with a displacement fieldu(r ) obeying a ‘generalized
wave equation’

�2

�t2
u(r , t)= c2

t ∇2u(r , t)+ (c2
l − c2

t )∇(∇ · u(r , t)) , (5.1)

with the transversal (ct )and longitudinal (cl) sound velocities entering as parameters.
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Given the importance of electron–phonon interactions as a dissipation mechanism in single electron
tunneling, it is natural to ask how to control these interactions. In quantum optics, the controlled en-
hancement or reduction of spontaneous emissions ofphotonsfrom atoms defines the primary goal of
cavity quantum electrodynamics (cavity QED). As for phonons, one obvious approach towards control
of phonon-induced dephasing therefore is to build the electronic system into aphonon cavity.

Regarding the possible combinations of phonon cavities and electronic transport, one can broadly
distinguish between two classes of cavities: (1) ‘natural’ phonon cavities, where the modification of
the vibrational properties of the system comes ‘for free’ and goes hand in hand with the modification
(as compared to the bulk) of the electronic properties. Recent examples are carbon nanotubes[256],
or individual molecules[257–261]; (2) ‘artificial’ phonon cavities, which are the subject of the rest of
this section and where the electronic system (2DEG, single or double quantum dot) is embedded into
a nanostructure whose phononic properties are modified by additional fabrication steps such as under-
etching and material removal[262].

5.1. Lamb-wave cavity model

The simplest phonon cavity model is a homogeneous, two-dimensional thin plate (slab) of thickness
2b. Debald and co-workers[263] used this model and calculated the transport current through a double
quantum dot in various configurations, cf.Fig. 29 left, where it turned out that phonon cavity effects
strongly determined the electronic properties of the dots.

The phonons were described by a displacement fieldu(r ), cf. Eq. (5.1), which was determined by
the vibrational modes of the slab[264]. These modes (Lamb waves) were classified according to the
symmetry of their displacement fields with respect to the slab’s mid-plane. Dilatational modes yield
a symmetric elongation and compression, whereas flexural modes yield an anti-symmetric field and a
periodic bending of the slab, cf.Fig. 29, right. The third mode family consists of vertically polarized
shear waves but turned out to be less important because these waves do not couple to charges via the
deformation potential (see below).
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5.1.1. Phonon confinement and nano-mechanical ‘fingerprints’
Debald et al.[263] showed that the confinement due to the finite plate thickness leads to phonon

quantization into subbands. The corresponding phonon dispersion relation was determined from the
Rayleigh–Lamb equations,

tanqt,nb

tanql,nb
=−

[
4q2‖ql,nqt,n
(q2‖ − q2

t,n)
2

]±1

, �2
n,q‖ = c2

l (q
2‖ + q2

l,n)= c2
t (q

2‖ + q2
t,n) , (5.2)

where the exponents±1 correspond to dilatational and flexural modes, respectively. For each in-plane
componentq‖ of the wave vector one obtains infinitely many subbands (labeln) which correspond to a
discrete set of transversal wave vectors in the direction of the confinement. The two sound velocitiescl
andct in the elastic medium are associated with longitudinal and transversal wave propagation and give
rise to two sets of transversal wave vectors,ql,n andqt,n.

Examples of a cavity phonon dispersion relation and the corresponding phononic density of states�(�)
are shown inFig. 30for flexural modes.As a particularly striking feature,phononic van Hove singularities
appear at angular frequencies that correspond to a minimum in the dispersion relation�n,q‖ for finite q‖.
These zero phonon group velocities (with precedingnegativephonon group velocities for smallerq in the
corresponding subband) are due to the complicated non-linear structure of the Rayleigh–Lamb equations
for the planar cavity. They occur in an irregular sequence that can be considered as a characteristic
‘fingerprint’ of the mechanically confined nanostructure.
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5.1.2. Inelastic scattering rates in double quantum dots
Mechanical confinement effects in nano-structures modify the electron–phonon interaction in phonon

cavities. Since double quantum dots are sensitive detectors of quantum noise ([80], cf. Section 2.2.7), the
boson spectral densityJ (�), and viaIin =−e2	T 2

c J (�)/�
2 (cf. Eq. (2.61)) the inelastic current through

a double dot ‘detector’, is strongly modified due to phonon confinement.
In analogy to the bulk phonon case, one can define bosonic spectral density for a confined slab geometry

in the vertical and lateral configurations,

Jvertical(�)=
∑
q‖,n

|�flex
dp (q‖, n)|24 sin2

(
ql,nd

2

)

(� − �n,q‖) , (5.3)

Jlateral(�)=
∑
q‖,n

|�dil
dp(q‖, n)|2|eiq‖d − 1|2 cos2

(
ql,nd

2

)

(� − �n,q‖) , (5.4)

where again the vectord connects the two dots, and the electron density is assumed to be sharply peaked
near the dot centers which are located symmetrically within the slab. Here, the matrix elements for the
deformation potential (DP) interaction are given by

�dil/flex
dp (q‖, n)= B

dp
n (q‖)(q2

t,n − q2‖ )(q2
l,n + q2‖ )tscqt,nb, B

dp
n ≡ Fn(2�2/2�M�n,q‖A)

1/2 , (5.5)

where tscx=sinx or cosx for dilatational and flexural modes, respectively,� is the deformation potential,
�M the mass density,A the area of the slab, andFn the normalization constant for thenth eigenmode
[263]. Similar expressions can be derived for the piezo-electric potential[263]. Three observations can
be made with respect to the properties of the spectral densities, Eq. (5.3):

1. In the vertical geometry only flexural phonons, and in the lateral geometry only dilatational phonons
couple to the dots via the deformation potential.This is a consequence of the symmetry of the modes and
the corresponding electron–phonon interaction vertices. For the piezo-electric interaction, this sym-
metry is actually reversed, where vertical (lateral) dots only couple to dilatational (flexural) phonons
[263].

2. The deformation potential Eq. (5.5)vanishesfor q‖ = qt,n. For this value ofq‖, the divergence of the
displacement fieldu(r ) is zero, cf. Fig.29. From the Rayleigh–Lamb equations, Eq. (5.2), one obtains
the corresponding smallest energy in, e.g., the lateral configuration (dilatational phonons) as

2�0 = 	√
2

2ct
b

. (5.6)

3. The quantization intosubbandsand thevan-Hove singularitiesin the bare phonon density of states
�(�)=∑q‖,n
(� − �n,q‖), have to appear in the spectral densities Eq. (5.3) as well.

All these features are confirmed by numerical calculations. InFig. 31, the inelastic electron–phonon
scattering rates

�dp(�) ≡ 2	T 2
c

J (�)

�2 . (5.7)
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Fig. 31. Inelastic phonon emission rate�dp(�) of vertical (V) and lateral (L) double dots in a phonon cavity of width 2b due to
deformation potential. Phonon-subband quantization effects appear on an energy scale2�b = 2cl/b with the longitudinal speed
of soundcl ; �0 nominal scattering rate (see text). Coupling toflexural(top) anddilatationalmodes (bottom, dashed: bulk rate).
Inset: suppression of�dp(�) from slab phonons at� = �0 (arrow). From[263].

for the deformation potential coupling in the vertical (V) and lateral (L) configuration are shown in units
of a nominal scattering rate�0 ≡ T 2

c �2/2�c4
l b for b = 5d. The van-Hove singularities appear up as

singularities in the inelastic rate in both cases. The phonon-subband quantization appears as a staircase
for the flexural modes (V), and as cusps for the dilatational modes (L). In the latter case, the overall form
of the curve is (apart from the singularity) quite close to the bulk scattering rate. The most striking feature
there, however, is the suppression of the inelastic rate for small� and itscomplete vanishingat the energy
2�0, Eq. (5.6). Near�0, the remaining contribution of then= 0-subband mode is drastically suppressed
as compared with bulk phonons.
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5.1.3. Suppression of dephasing
In [263], it was argued that properties (1)–(3) discussed above are generic features due to the slab

geometry. In particular, a similar vanishing of the inelastic rate occurs for piezo-electric (PZ) coupling
to phonons, where the angular dependence is reversed as compared to the deformation potential case. As
a result, one can ‘switch off’ the coupling to dilatational phonons either for PZ scattering in the vertical
configuration, or for DP scattering in the lateral configuration at a certain energy2�0.The electron–phonon
scattering is then mediated by the remaining, other interaction mechanism that couples the electrons to the
flexural modes. Since the ratio�pz/�dp ∝ b2, for very thin plates (smallb) the DP interaction dominates
and the proper choice to ‘switch off’ the scattering would be the lateral configuration, with a small
contribution remaining if the material is piezo-electric, and vice versa.

If the level-splitting� of a dissipative two-level system was tuned to a dissipation-free point,�= 2�0,
this would in fact constitute a ‘dissipation-free manifold’ for one-qubit rotations, for example in the
parameter space(�, Tc) of two hybridized states with� = √�2 + 4T 2

c = 2�0, cf. Eq. (2.4) and the
discussion in Section 7.5.1.

The Golden-rule type calculation of the inelastic rates, Eq. (5.7), however, neglects 4th and higher
order terms in the coupling constant (virtual processes) that can lead to a small but finite phonon-induced
dephasing rate even at� = 2�0, not to speak of other dephasing mechanisms such as spontaneous
emission of photons (although negligible with respect to the phonon contribution in second order[266]),
or plasmons and electron–hole pair excitations in nearby leads.

Rather than the suppression, theenhancement(van-Hove singularities) of the electron–phonon coupling
in nano-cavities actually seems to be relevant to experiments with quantum dots in phonon-cavities as
discussed in Section 5.3.

5.2. Surface acoustic wave cavity model

Vorrath and co-workers[265] discussed another phonon cavity model based on ideas by Kouwenhoven
and van der Wiel[267], who suggested to place a double quantum dot between two arms of a surface
acoustic wave (SAW) inter-digitated transducer.

The model is defined for a surface of a semiconductor heterostructure with an infinite lattice of metallic
stripes (spacingl0, infinite length), with two coupled quantum dots located at a distancez0 beneath the
surface at the interface of the heterostructure, cf.Fig. 32, left. Surface acoustic waves propagate along
the surface of a medium while their typical penetration depth into the medium is of the order of one
wavelength. In piezo-electric materials like GaAs, their displacement field generates an electric potential
that dominates the interaction with electrons. As the piezo-electric potential of the wave has to meet
the electric boundary conditions at the interface between the medium and the air, the electron–phonon
interaction strongly depends on the electric properties of the surface. The (connected) metallic stripes
give rise to an additional boundary condition for the potential

�(x = nl0, y)= const., n ∈ Z , (5.8)

where the width of the stripes is neglected.
Surface waves propagate as plane waves with wave vectorq = (qx, qy) along the surface. Consid-

ering only standing waves inx-direction and traveling waves iny-direction, the displacement field is
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Fig. 32. Left: surface acoustic wave cavity model (top view) with quantum dots beneath the surface between metal stripes.
Crystal axes include an angle of 45 degrees with the stripes. Right: spectral phonon density for finite system-lengthL = Nl0,
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given by

wq(r , t)= Cei(qyy−�t)

(
a(q, z) cos(�) cos(qxx)
ia(q, z) sin(�) sin(qxx)

−b(q, z) sin(qxx)

)
, (5.9)

where the functionsa(q, z) andb(q, z) describe the decay of the SAW amplitude with depthz of the
medium and� is the angle between thex-axis and the wave vectorq. The corresponding piezo-electric
potential is

�q(r , t)=−C
e14

�0�
(cos2(�)− sin2(�))f (qz) sin(qxx)ei(qyy−�t) , (5.10)

with e14 the piezo-electric stress constant,�0 the dielectric constant, and� the relative permittivity of the
medium. The functionf (qz) describes the decay inz-direction and follows from the boundary condition
for the electric field on the surface. Assuming a non-conducting surface together with the boundary
condition Eq. (5.8), one obtains the restriction

qx =m
	

l0
, m ∈ N . (5.11)

Vorrath et al. derived the corresponding electron–phonon interaction potential as

Vep(r )=
∑
q

[−e�q(r , t = 0)](bqx,qy + b
†
qx,−qy

) , (5.12)

wherebqx,qy is the phonon annihilation operator for the mode(qx, qy),−e the electron charge, and�q the
piezo-electric potential, Eq. (5.10), where the normalization constantC in (5.9) is defined asC= 1

L

√
2/��v

(� is the density of the medium,� a material parameter andv the velocity of the SAW) and does not
depend on the wave vectorq but on the quantization areaL2.
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The boson spectral densityJ (�) corresponding to interaction with SAW modes in Eq. (5.12) was
calculated as[265]

JSAW(�)= 1

N�v

4

	22��v3

(
ee14

�0�

)2

�2
vf

2(�z0/v)

m<�/�v∑
m=1,3,...

[
2m2

(�v

�

)2 − 1

]2

, (5.13)

where a (finite) system-lengthL was given in units ofN spacings,L = Nl0, and the typical frequency
scale�v ≡ 	v/l0 was introduced.Fig. 32 right shows numerical examples ofJSAW(�), from which
the corresponding inelastic current through the double dots again is given byIin(�) = −e2	T 2

c J (�)/�
2,

Eq. (2.61), in lowest order of the tunnel couplingTc. For energies smaller than2�v the lowest standing
wave mode cannot be excited and consequently the inelastic current exhibits a gap in that energy region.
The excitation of higher modes manifests itself in steps in the inelastic current at�/�v = 1,3,5, . . . .
Furthermore, at�/�v =

√
2 the spectral density vanishes, because the SAW would be emitted along the

crystal axes without any piezo-electric interaction in that direction.
The scaling ofJSAW(�) with the inverse of the system lengthL is due to the fact that the energy2�q

of one phonon is distributed over the whole sample. By increasingL, the amplitude of the displacement,
the piezo-electric potential, and therewith the interaction strength is decreased and finally vanishes. For
traveling waves, this effect is canceled by an increasing number of modes within each interval of energy.
In the cavity model however, the standing wave modes are independent of the system-size and therefore
the boson spectral densityJSAW(�) is completely suppressed by the metallic stripes in the limitL → ∞.

5.3. Experiments on electron tunneling in suspended nano-structures

Weig and co-workers[268]performed transport experiments with single quantum dots embedded into a
phonon cavity that was produced as a freestanding, 130 nm thin GaAs/AlGaAs membrane. The technique
of embedding and controlling a two-dimensional electron gas into a suspended semiconductor structure
was pioneered by Blick and co-workers[262].

The phonon cavity,Fig. 33left, was produced by completely removing the layer beneath the membrane,
and the quantum dot was formed by two constrictions on the membrane. A negative gate voltageVg
applied to the nearby in-plane gate electrode created tunnel barriers for the dot and controlled the dot
electrochemical potential�(N + 1). Standard Coulomb diamond diagrams[32,34] as a function ofVg
andVsd, the source–drain voltage, were used to analyse the linear and non-linear transport through the
dots, cf.Fig. 33right. At a finite perpendicular magnetic fieldB = 500 mT and an electron temperature
Te = 100 mK, conventional Coulomb blockade (CB) was observed in the form of CB oscillation peaks
as a function ofVg in the conductanceG, and an electron number ofN ≈ 1400 was deduced.

A novel feature was found for zero magnetic field in the form of a complete suppression of the linear
conductance over several CB oscillation peaks, and the opening of an energy gap�0 between the CB
diamonds,Fig. 33, right (b), which resulted into a blockade of transport that could only be overcome by
either increasingVsd or the temperatureT, Fig. 33, right (c).

A simple model[268]was developed along the lines of single electron transport in molecular transistors,
where similar energy gaps in transport throughC60 molecules were observed by Park and co-workers
[257]. Fig. 33 left (b) compares the situation of conventional Coulomb blockade (i) with Coulomb
blockade in a suspended phonon cavity (ii), where electron tunneling excites a localized cavity phonon
with energy2�ph that goes along with a drop of the chemical potential�(N + 1) of the dot, leading to
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Fig. 33. Left: (a) suspended quantum dot cavity and Hall-bar formed in a 130 nm thin GaAs/AlGaAs membrane. (b) Level
diagrams for single electron tunneling: (i) In the orthodox model electrons sequentially tunnel through the dot, if the chemical
potential�(N + 1) is aligned between the reservoirs. (ii) Tunneling into the phonon cavity results in the excitation of a cavity
phonon with energy2�ph, leading to a level mismatchε0 and thus to ‘phonon blockade’. (iii) Single electron tunneling is
re-established by a higher lying electronic state�∗(N +1) which re-absorbs the phonon. Right: transport spectrum of suspended
single quantum dot and zero bias conductance: (a) Single electron resonances at electron temperature 100 mK and a perpendicular
magnetic field of 500 mT. (b) At zero magnetic field conductance is suppressed for bias voltages below 100�V due to phonon
excitation. (c) The conductance pattern at 350 mK shows that phonon blockade starts to be lifted because of thermal broadening
of the Fermi function supplying empty states in the reservoirs. From[268].

a blockade (‘phonon blockade’) of single electron tunneling. The energy gap�0 = 100�eV was found to
compare well with the phonon energy2�ph in the thin plate model of Section 5.1 corresponding to the
lowest van-Hove singularity, where electron–phonon coupling is expected to be strongly enhanced. In
an analogy to the Mössbauer effect for�-radiation emitting nuclei in solids, the ‘recoil’ of the tunneling
electron is taken up by the crystal as a whole, if the dot is produced in a usual, non-freestanding matrix,
with the resulting transport being elastic (case i). On the other hand, a freestanding phonon cavity picks
up the recoil energy of the tunneling electron, with the electron relaxing to a new ground state trapped
below the chemical potentials of the leads (case ii). To re-establish single electron tunneling (case iii),
the cavity phonon has to be re-absorbed such that (similar to Rabi oscillations in a two-level system) the
electron can tunnel out again via a higher lying electronic state with chemical potential�∗(N + 1).

Weig and co-workers presented additional data on the vanishing and re-appearance of the ‘phonon
blockade’ effect at different magnetic fields, cf. Fig.34, left, by tuning excited states with angular mo-
mentuml2, l=1,2, . . . in resonance and thereby lifting the ‘phonon blockade’, cf. (b) and (d). Furthermore,
Fig. 34 right, shows conductance traces for various bias voltages and zero magnetic fieldB = 0, (a), and
the linear conductance near two CB peaks at finiteB, (b) and (c). The energies of the excited states in
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Fig. 34. Left: transport spectrum for (a)B = 0 mT, (b) 170 mT, (c) 260 mT, and (d) 450 mT. The line plots give the zero bias
trace. At certain magnetic fields (b,d) excited quantum dot states with higher magnetic momentum are brought into resonance
with the cavity phonon re-enabling single electron tunneling. Otherwise (a,c) transport is suppressed due to phonon blockade
with an excitation barrier of around 100�eV. Right: (a) Line plot of conductance resonances� and� at B = 0 and different
source–drain bias voltages between 0 and−800�V. Blue lines follow the ground states, while red lines mark excited states. (b)
Zero bias conductance for resonance� plotted against gate voltageVg and magnetic fieldB. Finite conductance appears for 57,
170, and 400 mT. (c) Similar plot for resonance� (blue: 0.02, red: 2�S): Non-zero conductance is found for 230 and 510 mT.
From[268].

(a) matched the number of discrete magnetic fields in (b) and (c) which was a further indication for the
lifting of the ‘phonon blockade’ by excited states.

6. Single oscillators in quantum transport

Single bosonic modes play a key role in the modeling for the interaction of matter with photons or
phonons in confined geometries. A prime example with respect to matter–light interaction is cavity quan-
tum electrodynamics where the coupling between atoms and photons is used in order to, e.g., transfer
quantum coherence from light to matter (control of tunneling by electromagnetic fields[269]) and vice
versa[270,228,271]. The discussions in Sections 2 and 5 have made it clear thatphononsinteracting with
electrons in confined geometries can give rise to what might be called ‘semiconductor phonon cavity QED’
in analogy with semiconductor cavity quantum electrodynamics[272]. Furthermore, the newly emerg-
ing field of nano-mechanics shows that vibrational properties of mesoscopic systems give rise to new
and surprising electronic transport phenomena such as ‘shuttling’ in movable nano-structures[273–276],
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cf. Section 6.3. More or less closely related topics are single-phonon physics, the quantization of the ther-
mal conductance, displacement detection, and macroscopic superposition and tunneling of mechanical
states, which are topics covered in a recent Review article by Blencowe[277] on quantum electrome-
chanical systems.

The following two subsections present models in which one of the fundamental models in Quantum
Optics is adapted to electronic transport. It is probably fair to say that the Rabi Hamiltonian[278],

HRabi= �

2
�z + g�x(a

† + a)+ �a†a , (6.1)

is the simplest and at the same time the best studied model for the interaction of matter with light[36],
where ‘matter’ is represented by the most elementary quantum object, i.e., a (pseudo) spin1

2. Section 6.1
deals with a single boson model in one of the ‘classic’ areas of mesoscopic physics, i.e., the transmission
coefficient for the motion of (quasi) one-dimensional, non-interacting electrons in a scattering potential.
Section 6.2 then presents the opposite extreme of electron transport in the strong Coulomb blockade
regime, where the limit of one single boson mode in the open Spin-Boson model, similar to the double
quantum dots from Section 2, is discussed. Section 6.3 gives a very brief introduction into non-linear
boson coupling and electron shuttling, and Section 6.4 shortly discussed recent experimental results on
a realization of Eq. (6.1) with Cooper pair boxes.

6.1. Transmission coefficient of a dynamical impurity, Fano resonances

An exactly solvable mesoscopic scattering model for the transmission of electrons through a barrier in
presence of coupling to a boson (photon or phonon) mode was discussed by Brandes and Robinson in
[279]. The model describes asingleelectron of massm in one dimension that interacts with a delta-barrier,
the coupling strength of which is itself a dynamical quantity,

H = p2

2m
+ 
(x){g0 + g1[a† + a]} + �a†a . (6.2)

Here,a† creates a boson of frequency� andg1[a† + a] is a dynamical contribution added to the static
coupling constantg0. The constant zero point energy is omitted since it merely shifts the energy scale
by �/2. The lattice version of this model was originally introduced by Gelfand et al.[280] in 1989 in
the study of tunneling in presence of Einstein phonons of frequency�. Their model had the form of a
one-dimensional tight binding Hamiltonian,

HGSR
ij =−tij + 
ij [V0i + V1
i0(a + a†)] , (6.3)

and they used a continued-fraction expansion which lead to singularities (cusps and infinite slopes)
in the transmission coefficient as a function of energy, similar to the results in the continuous model
discussed below. Lopez-Castillo et al.[281] compared these results shortly afterwards with those from a
corresponding time-dependent classical Hamiltonian,

H LTJ
ij =−tij + 
ij [V0i + V1
i0 sin�t] , (6.4)
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and found very similar features. The time-dependent, classical version of the continuous model Hamil-
tonian, Eq. (6.2), reads

Hcl(t)= p2

2m
+ 
(x){g0 + 2g1 cos(�t)} (6.5)

and is obtained as the interaction picture Hamiltonian of Eq. (6.2) with respect toHB = �a†a, after
replacing the boson operators bya† = a = 1.

In its time-dependent version, Eq. (6.5) was used as a model for scattering in quasi-one-dimensional
quantum wires by Bagwell[282], who found Fano-type resonances in the transmission coefficient as
a function of the energy of an incident electron. It soon turned out that the scattering properties of
this Hamiltonian are quite intriguing as they very much depend on the relative sign and strength of the
two coupling parametersg0 andg1. Bagwell and Lake[283] furthermore studied the interplay between
evanescent modes and quasi-bound states in quasi one-dimensional scattering.Very recently, Martinez and
Reichl[284], and Kim et al. investigated the behavior of the transmission amplitude of a one-dimensional
time-dependent impurity potential in the complex energy plane[285].

One should mention that in contrast to the classical, time-dependent Eq. (6.5), one immediate pitfall
of the quantum model Eq. (6.2) is the fact that its many-electron, second quantized counterpart is non-
trivial: even without electron–electron interactions, the coupling of the Fermi sea to a common boson
mode induces effective interactions among the electrons, and one has to deal with a non-trivial correlation
problem.

6.1.1. Transmission coefficient
In the comparison between the peculiarities of the quantum version Eq. (6.2) with those of the classical

modelHcl(t), Eq. (6.5), it turns out that beside transmission zeroes, there are points of perfect transparency
in the Fano resonance that only appear in the ‘quantum’ modelH but not inHcl. In order to calculate the
transmission coefficient, the total wave function|�〉 of the coupled electron–boson system is expanded
in the oscillator basis{|n〉} as

〈x|�〉 =
∞∑
n=0

�n(x)|n〉 , (6.6)

with wave function coefficients�n(x)depending on the positionxof the electron. One solves the stationary
Schrödinger equation at total energyE>0, implying a scattering condition for the electron part of the
wave function in demanding that there is no electron incident from the right. Forx  = 0, the�n(x) are
superpositions of plane waves ifE is above the threshold for thenth boson energy,

�n(x <0)= aneiknx + bne−iknx, �n(x >0)= tneiknx, kn ≡ √
E − n�, E >n� , (6.7)

whereas normalizable evanescent modes occur ifE is below the threshold,

�n(x <0)= bne�nx, �n(x >0)= tne−�nx, �n ≡ √
n� − E, E <n� , (6.8)

where one sets2 = 2m = 1. Imposing the condition that the boson is in its ground state for an electron
incoming from the left,an = 
n,0, and setting the corresponding amplitudeA=A0 to unity, one obtains
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an + bn = tn for all n from the continuity of�n(x) at x = 0, whereas the jump in derivative of�n(x)

across the delta barrier leads to a recursion relation for the transmission amplitudestn,

g1
√
ntn−1 + (g0 − 2i�n)tn + g1

√
n+ 1tn+1 =−2i�n
n,0 , (6.9)

where the�n are real (imaginary) above (below) the boson energyn�,

�n = kn�(E − n�)+ i�n�(n� − E) . (6.10)

The total transmission coefficientT (E) is then obtained from the sum over allpropagatingmodes,

T (E)=
[E/�]∑
n=0

kn(E)

k0(E)
|tn(E)|2 , (6.11)

where the sum runs up to the largestn such thatkn remains real. Although Eq. (6.11) is a finite sum,
its evaluation requires the solution of theinfinite recursion relation Eq. (6.9) due to the fact that the
propagating modes are coupled to all evanescent modes. The transmission amplitudes can be determined
from the linear matrix equation

Mt = a, t = (t0, t1, t2, . . .), a= (−2i�0,0,0, . . .)

M =



g0 − 2i�0

√
1g1 0√

1g1 g0 − 2i�1

√
2g1 0

0
√

2g1 g0 − 2i�2
. . .

0
. . .

. . .


 . (6.12)

Numerically, this is easily solved by truncation of the matrixM. Alternatively, one can solve Eq. (6.12)
recursively which actually is numerically more efficient. In particular, the result for the zero-channel
transmission amplitudet0(E) can be written in a very intuitive form: defining the ‘Greens function’
G0(E) by

G0(E) ≡ [−2i�0(E)+ g0]−1 , (6.13)

one writest0(E) with the help of a recursively defined ‘self-energy’�(N)(E),

t0(E)= −2i�0(E)

G−1
0 (E)− �(1)(E)

, �(N)(E)= Ng2
1

G−1
0 (E −N�)− �(N+1)(E)

, (6.14)

and by using�n(E)= �0(E − n�) the self-energy�(1)(E) can be represented as a continued fraction

�(1)(E)= g2
1

G−1
0 (E − �)− 2g2

1

G−1
0 (E − 2�)− 3g2

1

G−1
0 (E − 3�)− 4g2

1
. . .

, (6.15)

which also demonstrates thatt0(E) depends ong1 only through the squareg2
1.
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Truncating the matrixM to aN×N matrix corresponds to the approximation that sets�(N)(E) ≡ 0 and
recursively solves Eq. (6.14) for�(N−1)(E) down to�(1)(E). In the simplest approximation, truncating
atN = 2 one obtains

t0,N=2(E)= −2i�0(E)

G−1
0 (E)− �(1)

N=2(E)
= −2i�0(E)

−2i�0(E)+ g0 − g2
1

−2i�1(E)+ g0

, (6.16)

from which an interesting observation can be made with respect to the stability of the recursion for large
coupling constantsg1: the truncation atN + 1 is only consistent if the truncated self-energy�(N)(E)

is a small correction to the inverse ‘free propagator’,Ng2
1/|G−1

0 (E − N�)|< |G−1
0 (E − (N − 1)�)|,

which by use of Eq. (6.13) at largeN impliesNg2
1<4N� or g1<2

√
�. In [279], it was argued that

the tridiagonal form of the matrix, Eq. (6.12), implies that the recursion method is perturbative in the
couplingg1, and it was conjectured that forg1 above the critical value, the perturbation based on the
oscillator basis{|n〉} should break down, similar to other numerical approaches that start from a weak
coupling regime in single boson Hamiltonians, such as the standard Rabi Hamiltonian[286], Eq. (6.1).

6.1.2. Comparison to the classical case
A recursion relation corresponding to Eq. (6.9) for the classical time-dependent Hamiltonian, Eq. (6.5),

was derived (and discussed) by Bagwell and Lake[283] as

g1tn−1 + (g0 − 2i�n)tn + g1tn+1 =−2i�n
n,0, n= 0,±1,±2, . . . , (6.17)

wheretn is the coefficient of the time-dependent electron wave function in photon side-bandn, andn runs
through positiveand negativeintegersn. In further contrast to the recursion relation Eq. (6.9), the factors√
n and

√
n+ 1 multiplying the coupling constantg1 do not appear in the classical case. This latter fact

is an important difference to the quantum case where these terms lead to the factorsN that multiplyg2
1 in

the self-energies�(N)(E), Eq. (6.14), and eventually to the breakdown of the perturbative approach for
largeg1 in the quantum case.

A continued fraction representation oft0(E) for the classical case was derived by Martinez and Reichl
[284], and the corresponding matrix defining the transmission amplitudestcl=(. . . , t−2, t−1, t0, t1, t2, . . .)

is the infinite tridiagonal matrixMcl with g0− i�n on the diagonal andg1 on the lower and upper diagonals,

Mcl =




. . .
. . . 0

. . . g0 − 2i�−1 g1 0
0 g1 g0 − 2i�0 g1 0

0 g1 g0 − 2i�1
. . .

0
. . .

. . .




. (6.18)

Following [279], Fig. 35presents a comparison between the transmission coefficientT (E), Eq. (6.11),
for the quantum and the classical barrier. In the repulsive case with 0<g1<g0, the dynamical part of the
barrier is only a weak perturbation to the unperturbed(g1= 0) case. Additional structures (cusps) appear
at the boson (photo side-band) energiesn� although the overallT (E)-curve resembles the(g1=0) case.

The more interesting case occurs for barriers with an attractive static part,g0<0 (Fig. 35, right).
A Fano type resonance appears below the first thresholdE = � where the transmission coefficient has
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Fig. 35. Transmission coefficient through a dynamical one-dimensional delta barrier with repulsive (g0>0, left) and attractive
(g0<0, right) static part, cf. Eq. (6.2) and (6.5).E is the energy of the incident particle. From[279].

a zero in both the classical and the quantum case. In the classical case, this is a well-known phenomenon
[283]: the transmission zero for weak coupling (smallg1) shows up when the Fano resonance condition

2�1(E)+ g0 = 0 (6.19)

is fulfilled. There, the energy of the electron in the first side channel (n = 1) coincides with the bound
state of the attractive delta barrier potential,E − � = −g2

0/4. In thequantum case, the self energy in
Eq. (6.14) diverges at the zeros ofT (E),

[�(1)(E)]−1 = 0 . (6.20)

Forg1 → 0,�(1)(E) → �(1)
N=2(E)= g2

1/(2�1(E)+ g0), cf. Eq. (6.16), and the two conditions Eq. (6.19)
and Eq. (6.20) coincide.

The most interesting feature in the scattering properties of the dynamical quantum barrier however
is the appearance of an energy close to the first channel(n = 1) threshold whereperfect transmission
T (E)= 1 occurs. This is clearly visible in the vanishing of the reflection coefficient,R(E) ≡ 1− T (E),
in the logarithmic plotFig. 36. For a repulsive static part,g0 = 0.3, this occurs at an energy below the
energy where the reflection coefficient comes close to unity, and above that energy if the static part is
attractive (g0 = −0.9). On the other hand, in the classical case the reflection coefficient never reaches
zero in neither the repulsive nor the attractive case. This contrast becomes even more obvious in the
two-dimensional plot where the zeros inRcorrespond to ‘ridges’ in theg0-E plane, cf.Fig. 37.

Perfect transparency (R = 1− T = 0) can be understood by considering the transmission amplitude
t0(E) which determines the total transmission below the first side-band threshold. Recalling thatt0(E)=
−2ik0/(−2ik0 + g0 − �(1)(E)), in the quantum case the transmission coefficient becomes unity when

g0 − �(1)(E)= 0 . (6.21)

The exact continued fraction expression for the self-energy, Eq. (6.15), then implies that for 0<E<�,
�(1)(E) is real becauseG−1

0 (E − n�)= 2
√
n� − E + g0 is real forn�1. The condition Eq. (6.21) then

means that the self-energy renormalizes the static partg0 of the scattering potential to exactly zero.
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This renormalization was analysed in[279] for smallg1 with the perturbative expression correspond-
ing to truncating the matrixM, Eq. (6.12), to a two-by-two matrix. The perfect transparency condition
Eq. (6.21) then becomes

g0 − g2
1

2�1(E)+ g0
= 0, 0<E<�, (N = 2 truncation.) , (6.22)

which determines the position of the perfect transmission energy. The solution of the quadratic Eq. (6.22)
defines two curves in theE-g0-plane with perfect transmission for 0<E<�,

g0 =−√
� − E ±

√
� − E + g2

1 , (6.23)

which can be clearly identified in the logarithmic density plots of the reflection coefficientR=1−T , cf.
Fig. 37. TheN = 2 approximation to the transmission amplitude, Eq. (6.16), thus turns out to reproduce
these features quite well even at moderate coupling constantsg1.
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The above results are consistent with general properties of resonance line shapes in quasi-one-
dimensional scattering as reviewed by Nöckel and Stone[287]. The boson mode in the Hamiltonian
H, Eq. (6.2), can be regarded as representing a simple harmonic oscillator confinement potentialVosc(y)

in transversal directiony of the quantum wire and thus giving rise to sub-band quantization of the trans-
mission. The above truncation atN = 2 corresponds to the two-channel approximation in the Feshbach
approach[287]. Furthermore, from this picture the difference between the transmissions in the quantum
and the classical (time-dependent) case, Eq. (6.2) and Eq. (6.5), becomes clear: in the quantum case,
one has inversion symmetry of the potentials
(x) andVosc(y) which was shown to imply that there are
energies for which the transmissionT goes to zeroandunity near the Fano resonance. In the classical
case, this inversion symmetry is broken and the zero reflection point,R = 0, T = 1, is lost.

6.2. Rabi Hamiltonian and beyond: transport through quantum dots coupled to single oscillator modes

One obtains a ‘transport version’ of the Rabi Hamiltonian, Eq. (6.1), when one allows the particle
(electron) number on the two-level atom to fluctuate. This situation usually cannot be achieved in atomic
physics unless one ionizes the atom. On the other hand, the restriction of fixed particle number can easily
be lifted, e.g., in the solid state by tunnel-coupling to particle reservoirs. The Cooper pair box or in fact
the double-dot model (which formed a central part in Section 2) is therefore a natural candidate for a
‘transport Rabi Hamiltonian’. Using the double-dot version, the Hamiltonian reads

H=Hdot +Hdp +HV +HB +Hres, Hdot = �Ln̂L + �Rn̂R + Tc(p̂ + p̂†) ,

Hdp = (�Ln̂L + �Rn̂R + �p̂ + �∗p̂†)(a + a†), HV =
∑

ki ,i=L/R

(V i
k c

†
ki
|0〉〈i| +H.c.) ,

Hres=
∑

ki ,i=L/R

εki c
†
ki
cki , HB = �a†a , (6.24)

which is the direct generalization of Eq. (2.9) to a single boson modea† and was studied by Brandes
and Lambert in[288]. In contrast to the multi-mode boson version in Section 2, in the one-mode version
Eq. (6.24) the boson degree of freedom is not regarded as a dissipative bath, but treated on equal footing
with the electronic degrees of freedom.

The transport Master equation for the reduced density operator�(t) of the systems (dot + boson) reads,

d

dt
�(t)= − i[Hdot +Hdp +HB, �(t)] − �L

2
(sLs

†
L�(t)− 2s†

L�(t)sL + �(t)sLs
†
L)

− �R

2
(s

†
RsR�(t)− 2sR�(t)s†

R + �(t)s†
RsR)−

�b
2
(2a�a† − a†a� − �a†a) ,

wheresL = |0〉〈L|, sR = |0〉〈R|, and again only the three states ‘empty’, ‘left’, and ‘right’ are involved in
the description of the double-dot, where tunneling to the right and from the left electron reservoir in the
infinite bias limit�L − �R → ∞ occurs at rates�L/R. A further damping term of the bosonic system at
rate�b in Eq. (6.25) describes photon or phonon cavity losses in Lindblad-form[289] and is crucial for
the numerical stability in the stationary limit.

In order to numerically solve the system of linear equations resulting from taking matrix elements of
Eq. (6.25) in the boson number state basis, the bosonic Hilbert space has to be truncated at a finite number
N of boson states which leaves the total number of equations at 5N2 + 10N + 5. The numerical solution
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Fig. 38. Left: stationary current in ‘transport Rabi Hamiltonian’ (double quantum dot coupled to single boson mode) with
�L = �R = 0.1, Tc = 0.01, �b = 0.05 and boson coupling varying 2g. N: number of boson states in truncated Hilbert space.
Right: approximate (POL) and numerical results. From[288].

becomes a standard inversion of a fully occupied matrix and is easily achieved forN up to 20 on a PC,
whereas for largerN more advanced methods like Arnoldi iteration in Krylov subspaces[142] are more
efficient.

6.2.1. Stationary current
The stationary current, cf. Eqs. (2.43) and (2.44), for various boson couplings�L =−�R = 2g, � = 0,

is shown inFig. 38, left. Resonances appear at multiples� ≡ �L − �R = n�>0 similar to photo-assisted
tunneling (cf. Section 2.4), but in contrast to those only for positive� because on the absorption side of
the profile (�<0) the damped boson(�b >0) relaxes to its ground state. Analytical expression for the
stationary current can be obtained when the polaron transformation method (POL) from Section 2.2.3
and the corresponding result for the current, Eq. (2.50), is used together with an expression for the boson
correlation functionC(t) in presence of damping. The latter can be calculated from a Master equation
for a damped boson mode�B(t),

d

dt
�B(t)=−i[�a†a, �B] −

�b
2
(2a�Ba

† − a†a�B − �Ba
†a) , (6.25)

and leads to

C(t)= exp{−|�|2(1− e−(�b/2+i�)t )}, � = 4g

�
. (6.26)

The analytical results compare quite well with the numerics for small coupling constantsg as shown in
Fig. 38, right.

6.2.2. Boson distribution, Wigner representation
The stationary state of the boson mode is obtained from the total density matrix by tracing out the

electronic degrees of freedom,�b ≡ lim t→∞ Trdot�(t). With an electron current flowing through the
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dot and interacting with the boson mode, this will not be a thermodynamic equilibrium state but a non-
equilibrium state that is controllable by the system parameters, such as� and the tunnel rates�L/R.

For �>0, an approximate solution for�b is obtained by noting that the electron is predominantly
localized in the left dot and one can approximate the operator�z = |L〉〈L| − |R〉〈R| by its expectation
value〈�z〉 = 1 whence the boson system is effectively described by

Heff = 2g(a + a†)+ �a†a , (6.27)

a shifted harmonic oscillator with ground state|GS〉=|−2g/�〉 (|z〉 denotes a coherent state,a|z〉=z|z〉),
which can easily be seen by introducing new operatorsb ≡ a + 2g/� whenceHeff = �b†b − 4g2/�
andb|GS〉 = 0. It follows that�b ≈ |z〉〈z|, z=−2g/� and that the occupation probabilitypn ≡ (�b)nn
is given by a Poisson distribution,pn = |〈n|GS〉|2|z|2ne−|z|2/n!, which is well confirmed by numerical
results[288].

In the general case of arbitrary�, one has to obtain�b numerically. A useful way to represent the boson
state is the Wigner representation, which is a representation in position (x) and momentum (p) space of
the harmonic oscillator, where

x = (a + a†)√
2

, p = i(−a + a†)√
2

(6.28)

and the Wigner function is defined as[290]

W(x, p) ≡ 1

	
Tr(�bD(2�)U0), � = x + ip√

2
, (6.29)

whereD(�) ≡ exp[�a† − �∗a] is a unitary displacement operator andU0 ≡ exp[i	a†a] is the parity
operator for the boson[291]. W(x, p) is known to be a symmetric Gaussian for a pure coherent boson
state, and a symmetric Gaussian multiplied with a polynomial for a pure number state[61]. Using the
number state basis{|n〉} and the matrix elements (m�n),

〈m|D(�)|n〉 = 〈m|D†(�)|n〉∗ = (−1)m−n〈m|D(�)|n〉∗ (6.30)

=
√

n!
m! �m−ne−

1
2 |�|2Lm−n

n (|�|2) , (6.31)

whereLm−n
n is a Laguerre polynomial and�=(x+ ip)/

√
2, one obtainsW(x, p) directly from the matrix

elements〈n|�b|m〉.As shown inFig. 39, W(x, p) closely resembles a Gaussian between two resonance
energies� = n�, whereas close to the resonance energies, the distribution spreads out in rings around
the origin, which is consistent with the increased Fock state occupation numbers. Additional calculations
[288] show that the position and momentum variances also increase at these energies. The resonances at
� = n�>0 correspond to the emission of bosons by the electron as it tunnels through the dot.

6.3. Non-linear couplings, nano-electromechanics, and shuttle effects

Single oscillators play a central role in the emerging field of nano-electromechanics, where vibrational
(mechanical) and electronic degrees of freedom are strongly coupled to each other, leading to novel trans-
port regimes. Single electron shuttling was introduced by Gorelik and co-workers[273] as a mechanism
to transfer charge by a cyclic loading and unloading of a metallic grain oscillating between two electrodes.
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Weiss and Zwerger[274] used a Master equation in order to combine the Coulomb blockade effect with
shuttling, a method used later by Erbe et al.[275] to compare with experimental data in a ‘quantum bell’.

One important and novel ingredient in quantum shuttles is a non-linear dependence of the matrix
element for electron tunneling on the oscillator coordinatex. Armour and MacKinnon[276] introduced
a three-dotmodel with a central dot oscillating between two other dots that are connected to external
electron reservoirs. A generic Hamiltonian for aone-dotnano-mechanical single electron transistor, used
by several groups, combines a single ‘resonator’ (oscillator) mode with the resonant level model (no
electron spin included),

H=Hdot +Hosc+HV +HB +Hres ,

Hdot ≡ (�0 − eEx)c†c, Hosc= p2

2m
+ m�2x2

2
, HV =

∑
ki ,i=L/R

(Vki (x)c
†
ki
c + H.c.) , (6.32)

whereHres=∑ki ,i=L/Rεki c
†
ki
cki describes leads on the left and right side,HB is a dissipative bath

coupled to the oscillator,E is the inner electric field, and thex-dependence of the left and right tunnel
matrix elementVki (x) is assumed to be exponential,

VkL(x)= VkLe−x/�, VkR(x)= VkRex/� . (6.33)

The analysis of the Hamiltonian, Eq. (6.32), is complicated by the fact that it contains a number of length
and energy scales:� is the electron tunneling length,x0 ≡ √

2/m� is the amplitude of oscillator zero-point
fluctuations, andd ≡ eE/m�2 is the ponderomotive shift of the oscillator by the fieldE. Furthermore,
Vsd ≡ �L− �R gives the source–drain bias between left and right reservoir,2� the oscillator energy, and
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Fig. 40. Wigner distributions in the phase-space analysis of the ‘quantum shuttle’ (single electron plus resonator) model Eq. (6.32)
by Novotný and co-workers[292], showing the transition from tunneling (strong damping�) to shuttling (small�). The latter
regime is indicated by the half-moon shapes of the charge-resolvedW00 (upper row describing an empty level when the oscillator
goes from right to left) andW11 (middle row, describing an electron shuttled from left to right), whereasWtot =W00 +W11
(lower row) corresponds to the total oscillator state. From[292].

�L,R are bare left and right tunnel rates derived fromHV . In addition, the bathHB introduces a damping
rate� and temperatureT (which in principle can differ from the temperature of the leads).

In transport regimes where single oscillator modes are of primary importance, methods from Quantum
Optics like phase space representations and Master equations are obviously relevant theoretical tools.
Novotný, Donarini, and Jauho[292] used the numerical solution of a Master equation corresponding to
Eq. (6.32) in a truncated oscillator basis and in the limitVsd → ∞, including oscillator damping in
Lindblad-form at rate�. They used a Wigner function representation (cf. Section 6.2.2) for the discharged
and charged oscillator states in order to clearly identify a tunneling-to-shuttling crossover that occurred
when tuning from strong to weak damping� in a ‘quantum regime’ defined by� ∼ x0, cf. Fig. 40. This
crossover was further analysed by a calculation of zero-frequency shot noise in a subsequent paper[293].

Fedorets et al.[294] studied the regime�?x0 in an analytical treatment of two coupled equations
of motion for the Wigner functionsW±(x, p) corresponding to the sum and difference of the ‘empty
dot’ and ‘occupied dot’ density matrix elements. Using polar coordinate in phase space,x =A sin� and
p = A cos�, they found a stationary solutionW+(A) for the oscillator state that reflected the instability
towards shuttling when the dissipation was weak enough, which was consistent with the numerical results
for Wtot in [292], cf. Fig. 40. In their analysis, they furthermore distinguished between a classical regime
for large fields,E?Eq , and a quantum regime for fieldsE>Eq below a certain fieldEq .

Armour et al.[295]on the other hand used a Master equation by essentially treating the bosonic mode as a
classical harmonic oscillator in the regime of large source–drain voltage,Vsd?kBT , 2�. Their description
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involved Poisson-brackets similar to the ‘mixed quantum classical ensembles’used by Kantorovich[296].
They found an effective temperature and intrinsic damping caused by the action of the tunneling electrons
on the resonator, similar to Mozyrsky and Martin[297] who derived an effective friction coefficient by
comparison with the Caldeira–Leggett model.

6.4. Superconducting cavity-QED experiments

The Yale group successfully demonstrated the coherent coupling between single photons and a super-
conducting Cooper-pair box in experiments by Wallraff et al.[298] and Schuster et al.[299]. They fabri-
cated the two-junction Cooper-pair box onto a silicon chip between the walls of a quasi-one-dimensional
‘on chip’ wave-guide resonator (transmission line cavity for the photons). Blais et al.[300] described the
Cooper-pair box in the two-level charge regime limit by the usual two-level Hamiltonian,

HCPB ≡ − �

2
�̄z − EJ cos(	�/�0)

2
�̄x, � ≡ 4EC(1− 2ng) , (6.34)

with Pauli matrices in the basis of the island-eigenstates withN andN + 1 Cooper-pairs,ng the dimen-
sionless, voltage-tunable polarization charge, andEJ cos(	�/�0) the flux(�)-tunable Josephson energy.
At the charge degeneracy point,ng = 1/2, they showed that their system (without dissipation) could be
described by the Rabi Hamiltonian, Eq. (6.1), which they approximated by the Jaynes–Cummings model
in the rotating wave approximation (RWA),

HJC ≡ 2�r

(
a†a + 1

2

)
+ 2�

2
�z + 2g(a†�− + a�+) , (6.35)

where�r is the resonator angular frequency,g the coupling constant that determines the Rabi frequency
�Rabi= g/	, and� = EJ cos(	�/�0) the energy spitting in the basis of the eigenstates ofHCPB.

In the experiments[298] at low temperaturesT <100 mK with photon occupationsn ≡ 〈a†a〉<0.06,
the frequency-dependent transmission spectrum of a probe beam through the coupled resonator clearly
showed two peaks split by the Rabi frequency�Rabi ≈ 11.6 MHz, as expected from Eq. (6.35) at resonance
� ≡ � − �r = 0 with �r = �r/2	 = 6.04 GHz. In this regime,g?�, � was strong enough to treat the
cavity and the qubit decay (at rates� and�, respectively) perturbatively, and weak enough�Rabi/�r>1 to
use the Jaynes–Cummings instead of the Rabi Hamiltonian.

Another interesting case was tested for the ‘dispersive regime’of large detuning� with g/�>1, where
the Hamiltonian Eq. (6.35) to second order ing can be approximated through a unitary transformation
U = exp[(g/�)(a�+ − a†�−)] as

HU = 2
[
�r + g2

�
�z

]
a†a + 2

2

[
� + g2

�

]
�z . (6.36)

The frequency shift±g2/� could be identified in the phase shifts of a transmitted microwave at a fixed
frequency by tuning the gate chargeng and the flux�. In a second experiment[299], Schuster et al.
verified the ac-Stark shift (term±ng2/� in Eq. (6.36)) by measuring the qubit level separation as a
function of the microwave power and thereby the photon numbern.

The coupling of a single harmonic oscillator and a superconducting qubit was furthermore achieved by
the Delft group in experiments by Chiorescu et al.[301], who integrated a flux qubit into a larger SQUID,
the latter providing the oscillator mode. Their system had an interaction term��z(a† + a), leading to
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Rabi-oscillations in the SQUID switching when microwave pulses were applied. Goorden, Thorwart and
Grifoni gave an analysis of the related driven two-level system with coupling to a detector and a dissipative
environment[302].

7. Dark states and adiabatic control in electron transport

One of the most remarkable features of quantum systems is the possibility to modify their physical
properties by creating quantum superpositions (linear combinations of states). The simplest and most
basic quantum system where that is possible is the two-level system, which is central to so many areas of
physics. It plays a major role in the modeling of light–matter interactions, as is for example reviewed in
the classical textbook by Allen and Eberly[36] on ‘Optical Resonance and Two-Level Atoms’. Shortly
after that book was published, the discovery of dark states inthree-level systemssparked an enormous
amount of activities, leading to the establishment of several new branches of Quantum Optics and Laser
Spectroscopy, such as laser cooling and adiabatic population transfer.

This section reviews recent theoretical activities on dark resonance effects and the associated adiabatic
transfer schemes in the solid state. After a short introduction to coherent population trapping, dark
resonances and their use for control of electron transport are discussed, before we come back to two-level
systems (qubits) in the context of dissipative adiabatic transfer.

7.1. Coherent population trapping (CPT)

The first observation of dark states by Alzetta et al.[303] in 1976 occurred in the form of a black line
across the fluorescence path of a multi-mode dye laser beam through a sodium vapor cell. The three-level
system there consisted of the two Zeeman-splitted 32S1/2 ground state hyper-fine levels, coupled by
simultaneous application of two near-resonant monochromatic radiation fields to an excited 32P1/2 state.
A magnetic fieldH with a spatial gradient then matched the ground-state level splitting
�(H) with a
frequency difference between two laser modes at the position of the black line. The theoretical treatment
in the same year by Arimondo and Orriols[304], and (independently) Whitley and Stroud[305], laid the
foundations for explaining the trapping of dissipative, driven three-level systems in a superposition of the
two splitted ground-states which is decoupled from the light and therefore ‘dark’.

7.1.1. Coherent population trapping model
Dark states, coherent population trapping, and related phenomena in Quantum Optics are reviewed by

Arimondo in [306]. The basic physical effect is quite simple and can be explained in a model of three
states|0〉, |1〉, |2〉 driven by two classical, monochromatic fields

Ej (t)= Ej cos(�j t + �j ), j = 1,2 , (7.1)

with angular frequencies�i and phases�i , cf. Fig. 41. In the�-configuration, by convention�1, �2< �0,
although other notations are used in the literature as well. The two fields couple to the two transi-
tions |0〉 ↔ |1〉 and |0〉 ↔ |2〉 and aredetunedoff the two excitation energies by2
1 ≡ �0 − �1 −
2�1 and 2
2 ≡ �0 − �2 − 2�2. The Hamiltonian in dipole approximation with coupling to dipole
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Fig. 41. Left: three-level system under irradiation. Dashed lines indicate decay due to spontaneous emission of photons. Right:
stationary occupation of the upper level|0〉. �1 and�2 denote the Rabi frequencies corresponding to both radiation fields,�0

is the decay rate of the upper level,�21= 2�p is the decay rate of level|2〉. From[307].

moment operatorsdi is

H(t)=H0 −
2∑

j=0

djEj (t), H0 ≡
2∑

j=0

�j |j〉〈j | , (7.2)

which is often replaced by adopting the rotating wave approximation (RWA) by neglecting counter-
rotating terms in Eq. (7.2),

HRWA(t)=H0 +HI(t), HI (t)=−
∑
j=1,2

2�j

2
e−i(�j t+�j )|0〉〈j | + h.c. , (7.3)

where theRabi frequencies

�j ≡ 1

2
〈0|Ejdj |j〉, (j = 1,2) (7.4)

define the coupling strength to the electric field.

7.1.2. Dark states
The dark state is obtained by a simple rotation of the basis triple{|0〉, |1〉, |2〉}within the span{(|1〉, |2〉}-

subspace into (2= 1)

|0〉, |NC〉(t) ≡ cos�|1〉 − ei�(t) sin�|2〉, |C〉(t) ≡ sin�|1〉 + ei�(t) cos�|2〉 , (7.5)

�(t) ≡ (�1 − �2)t + �2 − �1, cos� ≡ �2/

√
�2

1 + �2
2, sin� ≡ �1/

√
�2

1 + �2
2 . (7.6)
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In the interaction picture with respect toH0 (denoted bỹas usual), the time-dependence of̃|NC〉(t) is
governed byH̃I (t)=−1

2

∑
i�iei(
i t−�i )|0〉〈i| + h.c., and a simple calculation yields


R ≡ 
2 − 
1 = �1 + �1 − �2 − �2 = 0 → H̃I (t) ˜|NC〉(t)= 0 , (7.7)

which means that atRaman resonance
R = 0 thedark state(non-coupling state)|NC〉(t) completely
‘decouples from the light’, i.e. once the system is in the (time-dependent) superposition|NC〉(t), it
can no longer be excited into the state|0〉. In contrast, the coupled state|C〉(t), which is orthogonal
to |NC〉(t), can be excited and couples to the light. Note that for
R = 0, in the interaction picture
˜|NC〉(t) = e−i�1t [cos�|1〉 − ei(�2−�1) sin�|2〉] is in fact time-independent apart from the trivial phase

factor e−i�1t .

7.1.3. Dissipation, RWA, and dark resonances
The presence of a dissipative environment requires a description of CPT in terms of a density operator

rather than in terms of pure states. In fact, dissipation plays a central role in achieving a stable trapping
of the three-level system into the dark state: spontaneous decay from the upper level (|0〉 in the �
configuration) into the two lower levels|1〉 and |2〉 leads to a re-shuffling of the level occupancies.
The continuous pumping of electrons into|0〉 is only from the coupled state|C〉, whereas spontaneous
emission leads to transitions intoboththe coupled state|C〉 and the dark state|NC〉. The combination of
this one-sided pumping with the two-fold decay drives the system into the dark state as a stationary ‘dead-
end’. Dissipation in the form of spontaneous decay, in combination with the time-dependent pumping by
the two external fields, is the driving force for CPT to evolve but also leads to decoherence of the|NC〉
superposition within the|1〉-|2〉 subspace.A quantitative analysis starts from the stationary solution of the
Master equation for the matrix elements�ij (t) of the reduced density operator of the three-level system,

�̇00 =−�0�00 + i�1 cos(�1t)�01 + i�2 cos(�2t)�02 − i�1 cos(�1t)�10 − i�2 cos(�2t)�20 (7.8)
�̇11 = �1�

0�00 + 2�p�22 − i�1 cos(�1t)�01 + i�1 cos(�1t)�10 (7.9)

�̇22 = �2�
0�00 − 2�p�22 − i�2 cos(�2t)�02 + i�2 cos(�2t)�20 (7.10)

�̇01 =−(�0/2+ i�01)�01 + i�1 cos(�1t)(�00 − �11)− i�2 cos(�2t)�21 (7.11)
�̇02 =−(�0/2+ i�02)�02 + i�2 cos(�2t)(�00 − �22)− i�1 cos(�1t)�21 (7.12)
�̇21 =−(�p + i�21)�21 + i�1 cos(�1t)�20 − i�2 cos(�2t)�01 , (7.13)

with �∗ij = �ji and2�ij = Ei − Ej . The decay of the excited state�0 into |1〉 (|2〉) occurs at rates�1�0

(�2�0, �1 + �2 = 1), whereas|2〉 relaxes into|1〉 at twice the dephasing rate�p within the Born–Markov
approximation, cf. Eq. (2.30).

In the rotating wave approximation (RWA), the coupling to the external fields and the damping are
assumed to be small and the system is close to resonance,

�1,�2,�
0, �p, |�1 − �01|, |�2 − �02|>�1 ∼ �2 . (7.14)

Introducing the unitary operatorU(t) ≡ diag(1,e−i(�1−�2)t ,e−i�1t ) in the eigenstate basis {|1〉, |2〉, |0〉},
one obtains transformed quantities in a rotated frame as�U ≡ U†�U , HU(t)=−i2U+ �U

�t +U+H(t)U ,
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with (E1 = 0 for convenience)

HU(t)= 2




0 0
�1

2
(1+ e−i2�1t )

0 −
1 + 
2
�2

2
(1+ e−i2�2t )

�1

2
(1+ ei2�1t )

�2

2
(1+ ei2�2t ) −
1


 .

In the RWA, one neglects the oscillating part ofHU(t)which is replaced by an effectivetime-independent
Hamiltonian[308]

H̃RWA = 2




0 0
�1

2

0 −
1 + 
2
�2

2
�1

2

�2

2
−
1


 (7.15)

that governs the equations of motion of the density operator in the RWA. Alternatively, one can start
from the RWA Hamiltonian Eq. (7.3) and derive the corresponding equations of motions for the density
matrix by directly transforming away the fast dependencies in the time evolution, see[306] and below.
Corrections to coherent population trapping due to counter-rotating terms were investigated by Sanchez
and Brandes[308] in a systematic truncation scheme beyond the RWA.

The best insight into the phenomenon comes from plotting the stationary matrix elements of the density
matrix as a function of the ‘Raman’detuning
R, i.e. the difference of the relative detunings of the external
light frequencies from the two transition frequencies, cf.Fig. 41. This can be achieved, e.g., by fixing the
second frequency�2 exactly on resonance such that
2 = 0 and varying�1 =−
R. The population̂�00
of the upper level then shows a typical resonance shape, i.e. it increases coming from large|
R| towards
the center
R =0. Shortly before the resonance condition for the first light source, i.e.
R =0, is reached,
the population drastically decreases in the form of a very sharp anti-resonance, up to a vanishing�̂00 for

R=0. For
R=0, the population (i.e. all the electrons in the ensemble of three-level systems) is trapped
in the dark superposition|NC〉 that cannot be brought back to the excited state|0〉. The dephasing rate
�p and the two Rabi frequencies determine the small half-width
1/2 of the anti-resonance[306],


1/2 ≈ �p + |�R|2
2�0 , (7.16)

where�R ≡ (�2
1 + �2

2)
1/2.

7.2. Dark resonance current switch

A new transport mechanism based on the coherent population trapping effect in tunnel-coupled quantum
dots was suggested by Brandes and Renzoni in[309]. The original proposal with two coupled quantum
dots in the strong Coulomb blockade regime is actually very close to three-level systems in atoms, with
the additional possibility to test the effect (and its modifications) in electronic transport, cf.Fig. 42. The
dark state appears in the form of a sharp anti-resonance in thestationary currentthrough a double dot as a
function of the Raman detuning
R, i.e. the detuning difference of the two classical laser (or microwave)
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Fig. 42. Level scheme for CPT in two coupled quantum dots in Coulomb blockade regime. Two tunnel coupled ground-states
|G〉 and|G′〉 (small inset) form states|1〉 and|2〉 from which an electron is pumped to the excited state|0〉 by two light sources
of frequency�1 and�2. Relaxation by acoustic phonon emission is indicated by dashed arrows. From[309].

fields. The half-width of the anti-resonance can then be used to extract valuable information, such as
the relaxation and dephasing times of tunnel coupled dot-ground state superpositions, from transport
experiments.

7.2.1. Model
The model is defined by a double quantum dot in the strong Coulomb blockade regime with two

tunnel-coupled ground states|G〉 and|G′〉 (seeFig. 42, inset) which hybridize via tunnel couplingTc into
states|1〉 and|2〉 with energy difference� ≡ �2 − �1 = (�2 + 4T 2

c )
1/2. The excited state|0〉 is assumed

to have an unchanged number of electrons and is realized in the right dot. The energy of the first excited
level |0′〉 of the other (left) dot is assumed to be off resonance for transitions to and from the two ground
states, and the hybridization of|0′〉 with |0〉 can be neglected for|�0′ − �0|?Tc. The two ac-fields pump
electrons into the excited level|0〉 such that transport becomes possible if both dots are connected to
electron reservoirs. Again, the Coulomb charging energyU is assumed to be so large that states with
two additional electrons can be neglected (typical values are 1 meV�U� 4 meV in lateral double dots
[266]). Furthermore, the chemical potentials� and�′ are tuned to values slightly above�2; this excludes
the co-tunneling like re-entrant resonant tunneling process that can exist in three-level dots and has been
discussed by Kuznetsov and co-workers[310].

In the dipole and rotating wave approximation, the coupling to the time-dependent fields is described
by

VAL (t)=−2
2
[�Pe−i�P t |0〉〈1| + �Se−i�S t |0〉〈2|] +H.c. , (7.17)

where for later convenience we have already introduced the pump(P )-Stoke(S) notation for the two
(Rabi) frequencies�P and�S (�P and�S).
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The decay rate�0 is primarily due to acoustic phonon coupling. The branching ratios�1 = 1− �2 =
(� + �)2/[(� + �)2 + 4T 2

c ] can be calculated using the eigenstates Eq. (2.4). Furthermore,|2〉 decays
into |1〉 at the rate 2�p, where�p is the (dephasing) rate for the decay of the ‘coherence’ (density matrix
element�12) within the Born–Markov approximation, cf. Eq. (2.30).

If the chemical potentials� and�′ are as indicated in Fig.42, electron tunneling occurs byin-tunneling
that changes|E〉 into |G〉 at a rate�, and|E〉 into |G′〉 at the rate�′, whereasout-tunneling from|G〉 and
|G′〉 is Pauli blocked. The corresponding rates�1 and�2 for tunneling into the hybridized states|1〉 and
|2〉 are�1,2=[(�± �)2�+4T 2

c �′]/[(�± �)2+4T 2
c ]. On the other hand, electrons can leave the dots only

by tunnelingout ofthe state|0〉 (but not in) at the rate� into the right lead (negligible hybridization of|0〉
with |0′〉 was assumed). Setting� = �′ for simplicity in the following and denoting the ‘empty state’ by
e (the symbol 0 is used already for the excited three-level state), the resulting density–matrix equations
then are given by[156]

�̇1,1 = �1�
0�0,0 + ��e,e + 2�p�2,2 + Im[�P �̃1,0] , (7.18)

�̇2,2 = �2�
0�0,0 + ��e,e − 2�p�2,2 + Im[�S �̃2,0] , (7.19)

�̇0,0 =−(� + �0)�0,0 − Im[�P �̃1,0] − Im[�S �̃2,0] , (7.20)
�̇e,e =−2��e,e + ��0,0 , (7.21)

˙̃�1,0 =−
[

1

2
(� + �0)+ i
P

]
�̃1,0 +

i

2
�P (�0,0 − �1,1)−

i

2
�S �̃1,2 , (7.22)

˙̃�2,0 =−
[

1

2
(� + �0)+ i
S

]
�̃2,0 +

i

2
�S(�0,0 − �2,2)−

i

2
�P �̃∗1,2 , (7.23)

˙̃�1,2 =−(�p + i
R)�̃1,2 +
i

2
�P �̃0,2 −

i

2
�S �̃1,0 , (7.24)

where�̃0j = �̃∗j0 = �0jei�j t are the slowly varying off-diagonal matrix elements of the reduced density
operator of the double dot.

7.2.2. Stationary current
The solution for the density operator is used to obtain the electric current

I (t)=−e�[�0,0(t)− �e,e(t)] , (7.25)

as the net flow of electrons with charge−e <0 through the dot. For the stationary case,Fig. 43showsI
as a function of the Raman detuning
R for constant�1 =�2 at zero temperature[309]. Close to
R = 0,
the overall Lorentzian profile shows the typical CPT anti-resonance. The half-width
1/2 of the current
anti-resonance is given by (�R ≡ (�2

1 + �2
2)

1/2)


1/2 ≈ �p + |�R|2
2[�0 + �] , � = 0 , (7.26)

which shows that
1/2 increases with the dephasing rate�p. In Fig. 43, �p = 2	(T 2
c /�

2)Jpiezo(�) is
completely due to spontaneous emission of piezo-electric phonons for zero temperature (Eq. (2.30) with
� → ∞ and Eq. (2.56) with�piezo= 0.025). For fixed coupling strength to the time-dependent fields
and increasing tunnel couplingTc, �p increases whence the anti-resonance becomes broader and finally
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2Jpiezo(�) (in �eV/2) with �=(�2+4T 2
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1/2,

2c/d = 20�eV, and�piezo= 0.025, Eq. (2.56). Dashed line: crossover at�p = |�R |2/2[�0 + �], cf. Eq. (7.26). Right: current

for fixedTc = 1�eV, �R = 1.0�0, and different tunnel rates� = �′. From[309].

disappears for largeTc. The vanishing of the anti-resonance sets in for�p�|�R|2/2[�0+�], cf. the inset of
Fig. 43. On the other hand, withincreasingelastic tunneling� out of the dot, the current increases until an
overall maximal value is reached at� ≈ �0, cf. Fig. 43(right); I (
R) decreases again and becomes very
broad if the elastic tunneling becomes much faster than the inelastic relaxation�0, and with increasing
� the center anti-resonance then becomes sharper and sharper, its half-width
1/2 approaching the limit
�p, Eq. (7.26).

The three-level dark resonance therefore acts as an ‘optical switch’ based on an optical double-
resonance. The dark state thus created is protected deeply below the Fermi sea of the contact reservoirs
by the Pauli principle and the Coulomb blockade. In[309] it was furthermore pointed out that the CPT
transport mechanism differs physically from other transport effects in AC-driven systems (e.g., coherent
destruction of tunneling[311,145], tunneling through photo-sidebands[312], or coherent pumping of
electrons[164,313]) that depend on an additional time-dependent phase that electrons pick up while tun-
neling, with dissipation being a disturbance rather then necessary for those effects to occur. In contrast,
the CPT effect in dots requires incoherent relaxation (phonon emission) in order to trap the system in the
dark state.

7.3. Adiabatic transfer of quantum states

A remarkable feature of coherent population trapping is the possibility to control and indeed rotate
the dark state|NC〉 into arbitrary superpositions within the qubit span(|1〉, |2〉). This can be achieved by
slow, adiabatic variation of the two Rabi frequencies�1 and�2, where the adiabatic theorem guarantees
that a given state follows the slow variation of parameters in the Hamiltonian.
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7.3.1. Adiabatic transfer and STIRAP
Bergmann and co-workers[314] have developed this technique for three-level systems, where it is

called ‘stimulated Raman adiabatic passage’ (STIRAP) and has found widespread application in coherent
control and the adiabatic transfer of populations (in the ensemble sense) from one state into another.

To be specific, consider the two Rabi frequencies in Eq. (7.17) as time-dependent parameters in pump
(P) and Stoke (S) pulse form,

�P (t)= �0 sin�e−(t−�)2/T 2
, �S(t)= �0(e−t2/T 2 + cos�e−(t−�)2/T 2

) , (7.27)

where� andT are the pulse delay and pulse duration, respectively, and the Gaussian form in Eq. (7.27)
has been chosen for convenience. With this choice, the Stokes pulseS(fieldEj (t) in Eq. (7.1) with time-
dependent amplitude|E2(t)| ∝ �S(t)) first couples|2〉 to |0〉, before a second pulse (the pump pulse
P), partially overlapping withS, couples|1〉 to |0〉 [315,316,156]. For large timest�T , an initial state
|�in〉 = |1〉 is then adiabatically transformed into a superposition,

|�in〉 = |1〉 → |�f 〉 = cos�|1〉 − sin�|2〉 . (7.28)

The requirement for this to happen is that during the whole process the Raman resonance condition,

R ≡ �1 + �1 − �2 − �2 = 0, is preserved and therefore dark states are adiabatically transformed into
dark states. The pulse sequence Eq. (7.27) is called ‘counter-intuitive’: transferring population out of|1〉
is achieved by first ‘pumping’ the|2〉 − |0〉 transition and not the|1〉 − |0〉 transition.

7.3.2. STIRAP and transport in double quantum dots
A realization of STIRAP rotations with microwave pulses in double quantum dots was suggested

by Brandes et al. in[156], where in addition a scheme to determine the dephasing rate�p from time-
dependent transport measurements was developed. Two-source microwave techniques have in fact been
used to experimentally investigate ground and excited states in single quantum dots already[317].

The STIRAP-transport model adopted in[156] is an extension of the ‘current switch’ model[309]
of Section 7.2 to time-dependent pulses, Eq. (7.27). The time-dependent currentI (t), Eq. (7.25), is
calculated by numerical solution of Eq. (7.18)–(7.24), which together with the preparationfidelityF(t) ≡
〈�f |�(t)�f |〉 of the final state|�f 〉 = cos�|1〉 − sin�|2〉 and the pulse form Eq. (7.27) is shown inFig.
44, left, for different values of�p. For�p=0, one obtains fidelity one because the STIRAP pulses prepare
the double dot in the desired superposition|�f 〉. The current through the dot is zero for�p =0, when the
dark state is stable and no electrons can be excited to state|0〉. For finite�p >0, the dark state decoheres
and leads to a finite current pulseI (t)which increases with increasing�p. As this indicator current is very
weak, a more sensitive detection scheme was suggested[156] in the form of a double-pulse sequence,
where the two ‘preparation’ pulses Eq. (7.27) are applied simultaneously at a second, later time�t >0

�
probe
P (t)= �p sin�e−(t−�t)2/T 2

p , �
probe
S (t)= �p cos(� + �)e−(t−�t)2/T 2

p , (7.29)

with the ratios of their amplitudes chosen to correspond to|�f 〉 (�=0) or to its orthogonal state (�= 	).
For�p=0 and�=0, nothing happens as the dot stays in the state|�f 〉 and the subsequent application of
the probe pulses Eq. (7.29) does not produce any current through the dot. For� = 	, however, the probe
pulses are in anti-phase with the ground state superposition and a large current follows. For non-zero
�p  = 0, the superposition decays into a mixture on a time scale 1/�p, and the application of the probe
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pulses results in a current through the dot both for� = 0 and� = 	. The larger�p, the less sensitive is
the current to the relative phase� of the probe pulses which gives rise to the definition of thecontrast

C = Imax(� = 	)− Imax(� = 0)

Imax(� = 	)+ Imax(� = 0)
(7.30)

as a measure to extract�p from a transport experiment in coupled dots.

7.3.3. Quantum dot excitons
Hohenester and co-workers[318] proposed a STIRAP scheme in two coupled quantum dots with two

hole states (|L〉 and |R〉) in the valence band and one electron state|e〉 in the conduction band of a
p − i semiconductor double-quantum well structure. In their scheme, an external gate voltage and the
Coulomb blockade guaranteed population of the double dot with one additional hole only. An external
electric field leads to localization of the hole wave functions in the left (L) or the right (R) dot, whereas the
electron wave function spread across both dots due to the smaller electron mass. Coulomb interactions
between electrons and holes were taken into account by exact diagonalization in the Fock–Darwin single
particle basis[318,319], from which one could clearly identify a three-level system with the two low-
energy states|L〉 and|R〉 and the excited (correlated) charged-exciton state|X+〉. The STIRAP process
was then realized within the usual two-pulse (pump-Stoke) configuration, allowing adiabatic population
transfer between|L〉 and|R〉. Troiani et al. subsequently extended this scheme by taking into account the
spin-degree of freedom in order to realize an optical qubit gate[320], cf. 7.4.1.
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7.4. Higher-dimensional Hilbert spaces, geometrical phase

A generalization of adiabatic schemes based on STIRAP is obtained in Hilbert spaces of dimension
d�4. Unanyan et al.[321] used STIRAP in four-level systems and established a relation to non-Abelian
geometrical phase factors. Duan et al.[322] showed how the universal set of one- and two-qubit quantum
gates can be realized by adiabatic variation of three independent Rabi frequencies. Faoro et al.[323]
applied this scheme to a network of superconducting Josephson junctions, with three fluxes varied cycli-
cally, and gave explicit expressions for non-Abelian holonomies. Somewhat closer to the original STIRAP
scheme, Kis and Renzoni used four-level systems and a double-STIRAP process to directly construct the
operator for adiabatic rotations around a given axis of arbitrary one-qubits.

The underlying physics of these schemes is again quite simple and can best be formulated in a geometric
fashion. One extends the Hamiltonian in the dipole and rotating wave approximation, Eq. (7.3), fromd=3
(|0〉, |1〉, |2〉) to d =N + 1>3 levels (|0〉, |1〉, . . . , |N〉), with N classical monochromatic ac-fields with
Rabi frequencies�i and all frequencies�i = (E0−Ei) on resonance. In the interaction picture, one then
obtains atime-independent(for constant�i) interaction Hamiltonian,

HI =−2
2
(|0〉〈�| + |�〉〈0|), |�〉 ≡

N∑
i=1

�∗
i |i〉 , (7.31)

where the vector� ≡ (�1, . . . ,�N) contains the (complex) Rabi frequencies. The interaction Hamil-
tonian, Eq. (7.31), immediately gives rise to an(N − 1) dimensional subspace of dark states|D〉 with
HI |D〉 = 0, defined by the(N − 1) dimensional manifold of vectorsD that are orthogonal to� and
therefore have〈�|D〉=0. In this language, one clearly understands that there are no dark states forN =1
(two-level system), one dark state forN = 2 (three-level system), two linearly independent dark states in
N = 3 (four-level system) etc.

7.4.1. Double STIRAP and SU(2) qubit-rotations
The above-mentioned STIRAP schemes now start from making� time-dependent by allowing slow,

adiabatic variations such that|�̇|/|�|>|�|. In the first step of their four-level double-STIRAP scheme
(N = 3 in Eq. (7.31)), Kis and Renzoni[324] chose a parametrization� ≡ (�P cos
,�Pe−i sin
,�S)

with fixed
,  and (‘counter-intuitive’) Stoke (�S) and delayed pump (�P ) pulse, cf. Eq. (7.27) for�=	/2.
The dark subspace is spanned by the constant state|NC1〉 ≡ − sin
|1〉 + ei cos
|2〉 and the orthogonal
and slowly moving|NC2〉 ∝ �S |C1〉 − �P |3〉, where the bright state|C1〉 = cos
|1〉 + ei sin
|2〉. An
initial one-qubit state|�in〉 ∈ span(|1〉, |2〉) is now decomposed into its orthogonal components along
|NC1〉 and|C1〉, with only the latter component slowly dragged along with|NC2〉 (which for large times
becomes−|3〉),

|�in〉 → |�inter〉 = 〈NC1|�in〉|NC1〉 − 〈C1|�in〉|3〉 . (7.32)

ThesecondSTIRAP step now has� ≡ (�S cos
,�Se−i sin
,�Pe−i
) and a dark subspace spanned by
|NC1〉 and the slowly moving|NC′

2〉 ∝ �Pe−i
|C1〉−�S |3〉. The intermediate state|�inter〉, Eq. (7.32),
lies in the new dark subspace. With the roles of�S and�P now exchanged,|NC′

2〉 moves from−|3〉
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into e−i
|C1〉 whereas|NC1〉 remains constant, and therefore

|�inter〉 → 〈NC1|�in〉|NC1〉 + e−i
〈C1|�in〉|C1〉 = e−i
/2 exp

(
−i




2
n�̂

)
|�in〉 , (7.33)

which apart from the overall phase factor e−i
/2 is an SU(2) rotation of the initial qubit|�in〉 about the unit
vectorn = (sin 2
 cos , sin 2
 sin , cos 2
) through the angle
 (�̂ is the vector of the Pauli matrices),
as can be checked by direct calculation. Note that the STIRAP directions� are chosen such that the
constant dark state has〈NC1|�̂|NC1〉 ∝ n and thereby defines the rotation axis. The scheme is robust
against fluctuations of the pulse shapes and areas�P (t) and�S(t).

Troiani et al.[320] showed how the Kis–Renzoni scheme can be utilized to achieve not only one-qubit
rotations, but also conditional (two-qubit) gates in coupled quantum dots with both orbital and spin degree
of freedom. Their scheme allows to rotate a spin qubit into an orbital qubit, and in addition to perform a
controlled NOT by utilizing STIRAP and charge–charge interactions.

Kis and Paspalakis[325] suggested qubit rotations in three-level SQUIDs interacting with two non-
adiabatic microwave pulses. An initial state is again split into its components along the|NC〉, |C〉 basis
belonging to� = (�(t) cos�,�(t)ei sin�), leading to a two-level system defined in the subspace or-
thogonal to the dark state|NC〉, where switching on and off of�(t) leads to the desired rotation in the
form of a standard Rabi rotation. Paspalakis and co-workers furthermore suggested adiabatic passage
to achieve entanglement between two three-level SQUIDs, and various other applications of adiabatic
rotations in double dots and SQUIDS[326]. Along similar lines, Chen et al.[327] devised an adiabatic
qubit rotation for a single spin in a quantum dot.

Thanopulos et al.[328]used a generalized double STIRAP for adiabatic population transfer between an
initial and a finalwave packetcomposed ofn nearly degenerate states|k(′)〉. A Rabi frequency vector�0
links the excited (‘parking’) state|0〉with nnon-degenerate auxiliary states, which in turn are linked to the
|k〉 states byn linearly independent Rabi frequency vectors�k (k=1, . . . , n). A choice�0 ∝∑n

k=1ak�k

with appropriateak now allows to utilize the single dark state of the system to rotate between the wave
packets via|0〉.

7.4.2. Non-abelian holonomies
The Hamiltonian, Eq. (7.31), can alternatively be regarded as a part of some given HamiltonianH =

�0|0〉〈0| + HI (in the Schrödinger picture), where all the energies of levels|1〉, . . . |N〉 are the same
(and set to zero for simplicity). This second, more general interpretation actually gives rise to many
generalizations of adiabatic schemes beyond atomic physics.

Since the subspace spanned by theN − 1 dark states|D〉 of H is degenerate, cyclic adiabatic variation
of � gives rise to Wilczek-Zee non-Abelian holonomies[329], that generalize the Abelian Berry phase
to a matrix phasethat involves superpositions of the degenerate eigenstates. Within that subspace, the
usual dynamical time-evolution of states is then replaced by ‘geometric evolutions’ that can be used, e.g.
for quantum computation (holonomic quantum computation).

Duan et al.[322] constructed the gateU1 = ei�1|2〉〈2| with � = (0,� sin�/2ei�,−� cos�/2) in the
notation of Eq. (7.31), with a dark state|D〉=cos�/2|2〉+sin�/2ei�|3〉 and�,� cyclically varied (starting
and ending with�=0), giving the Berry phase�1=

∮
sin� d� d�= ∮ d�, which is the solid angle swept

by the vector into(�,�) direction. Similarly, they constructed the gateU2=ei�2�y , �y ≡ i(|2〉〈1|−|1〉〈2|),
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using� = �(sin� cos�, sin� sin�, cos�) with the two degenerate dark states,

|D1〉 = cos�(cos�|1〉 + sin�|2〉)− sin�|3〉, |D2〉 = cos�|2〉 − sin�|1〉 , (7.34)

with again�2 =
∮

d� the solid angle swept by(�,�).
Following the non-Abelian holonomy schemes by Unanyan et al.[321], and Duan et al.[322], an

application tonetworks of superconducting Josephson junctionswith variable SQUID loop Josephson
couplingsJi(�̄i), i=1,2,3, was suggested by Faoro, Siewert, and Fazio[323]. These authors considered
a Hamiltonian of the type Eq. (7.31),

H = 
EC |0〉 + 1

2

3∑
i=1

(Ji(�̄i)|0〉〈i| +H.c.) , (7.35)

where�̄i is the external magnetic flux through loopi in units of the flux quantumhc/2e, and
EC is the
energy difference between the three degenerate charge states|i〉 (corresponding to one excess Cooper
pair on islandi) and the state|0〉 with one excess Cooper pair on a forth superconducting island. They
considered the dark subspace spanned by|D1〉 = −J2|1〉 + J1|2〉 and |D2〉 = −J3(J

∗
1 |1〉 + J ∗

2 |2〉) +
(|J1|2 + |J2|2)|3〉, and unitary transformationsU� on a closed loop� in that subspace as

U� = P exp
∮

�

∑
j

Aj d�̄j , (Aj )�� = 〈D�| �

��̄j

|D�〉, � = 1,2 , (7.36)

with the path ordering symbol P. Choosing appropriate loops� in the parameter space of the three fluxes
�̄j then yields transformations corresponding to charge pumping, one-qubit gates, or two-qubit gates by
coupling two qubits via Josephson junctions.

7.4.3. Quantum adiabatic pumping through triple dots
Renzoni and Brandes suggestedquantum adiabatic followingas a mechanism forcharge pumpingin

strongly Coulomb-blocked systems[154], in a regime that is opposite to adiabatic quantum pumping in
non- or weakly interacting systems. In the latter case, which by itself is a relatively new area of mesoscopic
transport[150], parametric change of the scattering matrix leads to adiabatic pumping of charges through
mesoscopic scatterers which typically are in the metallic regime. Concepts from metallic systems, such
as mesoscopic fluctuations[330,331], symmetries[331], or resonances[332], are then generalized to the
time-dependent case. Experiments in large quantum dots[333] have demonstrated the feasibility of such
‘adiabatic quantum electron pumps’. In contrast, the triple dot system considered in[154] is closer to the
original idea of adiabatic following in atomic physics, and extends the concept of (classical) adiabatic
transfer in single electron devices[334,32](such as single electron turnstiles) to the (quantum) adiabatic
control of the wave function itself. The Hamiltonian

H(t)=
∑

�=L,C,R

[��|�〉〈�|] + 2T1(t)[|L〉〈C| + |C〉〈L|] + 2T2(t)[|C〉〈R| + |R〉〈C|] , (7.37)

describes the left, right, and central dot, cf.Fig. 45, in a four dimensional Hilbert space with basis
{|0〉, |L〉, |C〉, |R〉}, where again|0〉 denotes the ‘empty’ state and the time-dependence of the (real)
Ti, i = 1,2 is slow.



T. Brandes / Physics Reports 408 (2005) 315–474 429

0.00.0

-1.0

-2.0

3.0
2.0
1.0
0.0

-1.0
-2.0
-3.0

λ 1
,λ

2,
λ 3

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200

Π
j

t

T
1,

T
2

0.00.0

-1.0

-2.0

3.0
2.0
1.0
0.0

-1.0
-2.0
-3.0

λ 1
,λ

2,
λ 3

1.0

0.8

0.6

0.4

0.2

0.0

Π
j

T
1,

T
2

0 50 100 150 200
t

ΠL
ΠC
ΠR

ΠL
ΠC
ΠR

T1
T2

T1
T2

L C R

ΓL ΓR
T1 T2

Fig. 45. Left: triple dot for quantum adiabatic charge pumping with time-dependent tunnel couplingsT1, T2. Right: transfer
of an electron from the right dot to the left dot. Tunnel-coupling pulse sequence (top) and corresponding time evolution of the
adiabatic energy eigenvalues (center) and populations!� = c∗� c� (� = L,C,R, bottom), as determined by numerically solving
the Schrödinger equation, Eq. (7.39). In the left panel, only one of the tunnel barriers is open at a time. From[154].

For degenerate dot ground statesEC = ER = EL = 0, H(t) is of the form Eq. (7.31) withN = 2,
|�〉=−2T1(t)|L〉−2T2(t)|R〉, and the central dot state|C〉 corresponding to|0〉 in Eq. (7.31). Adiabatic
holonomies as the ones discussed above then correspond to rotations in the one-dimensional subspace
spanned by the single dark state ofH(t),

|D〉 = 1√
T 2

1 + T 2
2

(T2|L〉 − T1|R〉) , (7.38)

which shows that by adiabatic variation ofT1 andT2, the state of the triple dot can be rotated from, e.g.,
an electron in the right dot to an electron in the left dot, without intermittent occupation of the central dot
at any time.

For non-zeroground state energiesER = −EL >0 (andEC = 0), H(t) no longer has the form Eq.
(7.31) due to the free partH0 ≡∑�=L,C,R[��|�〉〈�|] that gives rise to a dynamical phase (or alternatively,
in the interaction picture with respect toH0, multiplication of theTi by fast oscillating phase factors
ei(EC−ER)t ,ei(EC−EL)t ). Still, adiabatic transfer withH(t) is possible for parametric time-dependence of
theTi(t). The system state follows the adiabatic evolution of its eigenvalues,Fig. 45, right. An electron
can be transferred adiabatically from the right to the left dot, using the double pulse sequence forT1 and
T2 as shown inFig. 45, right. A longT1 pulse, which alone would produce a pair of level crossings, is
followed by a shorterT2 pulse which changes the second level crossing into ananti-crossing, so that the
electron is adiabatically transferred to the center dot. For the transfer from the center dot to the left one
the role ofT1 andT2 are exchanged which results in the transfer of the additional electron to the left dot.
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In this picture, the above caseEC =ER=EL=0 with the three adiabatic eigenvalues 0 and±
√
T 2

1 + T 2
2

corresponds to following the adiabatic rotation of the dark state|D〉 along the (constant) zero eigenvalue.
This was used by Greentree et al.[335] in their triple dot system and their extension to multi-dot systems.

The coherent time evolution of the isolated triple-dot is governed by the Schrödinger equation

|�(t)〉 = cL(t)exp[−iELt/2]|L〉 + cC(t)exp[−iECt/2]|C〉 + cR(t)exp[−iERt/2]|R〉 , (7.39)
ċL(t)=−iT1(t)cC(t)exp[−i(EC − EL)t/2] ,
ċC(t)=−iT1(t)cL(t)exp[−i(EL − EC)t/2] − iT2(t)cR(t)exp[−i(ER − EC)t/2] ,
ċR(t)=−iT2(t)cC(t)exp[−i(EC − ER)t/2] ,

but the coupling to left and right leads can be easily incorporated within a Master equation description
[154]. Transport from, e.g., the left to the right lead is then followed by a charge leakage to the right
lead at the tunnel rate�R. At the same time, charge tunnels at rate�L from the left lead into the left dot
whence there is a net charge transport through the triple dot which after the tunnel-couplings sequence
(including a ‘leakage time’ of the order of 1/min(�L,�R)) is returned to the initial state with (almost)
the whole charge in the left dot.

The whole adiabatic transfer scheme relies on the existence of pairs of level crossings and anti-crossings,
with a levelcrossingcorresponding toT1 orT2 becoming zero. If the tunnel rates are kept at non-zero values
Ti <0 all the time, the previous degeneracies at the level crossings are lifted and the crossings become anti-
crossings. In this case, the transfer mechanism across these points is Landau–Zener tunneling, whereas
outside the ‘nearly crossings’ the dynamics remains adiabatic. In the very extreme case of arbitrarilyslow
tuning of (never vanishing)Ti(t), the Landau–Zener tunneling becomes exponentially small and there is
no transfer of charge at all any longer.

Estimates for experimentally relevant parameters given in[154] assume the ground state energy dif-
ference2�0 between two adjacent dots to fulfill2�0>U,�, whereU is the Coulomb charging energy
and� the single particle level spacing within a single dot. For2�0 ∼ 0.1 meV, one has operation fre-
quencies as� ∼ 108 s−1, with the temperature smearing of the Fermi distribution being negligible if
kBT>2�0 ∼ 1K, thus defining an operation windowh�, kBT>2�0>U,�.

7.5. Quantum dissipation and adiabatic rotations

Dissipation clearly has a strong impact on the dynamics of quantum systems. This is very obvious
for the ‘usual’ dynamical time-evolution, for example in the damping of quantum mechanical coherent
oscillations of charge qubits as first observed by Nakamura et al.[21] in superconductors and by Hayashi
and co-workers in semiconducting quantum dots ([199], see below). Decoherence also occurs during
adiabatic rotations and can theoretically be dealt with in the usual quantum dissipative framework, i.e.,
using Master equations, spin-boson models, path integrals etc.

Loss and DiVincenzo[22] introduced quantum gates based on the electron spin in quantum dots.
Dephasing of spin degrees of freedom due to spin–orbit coupling or the coupling to nuclear spins is
expected to be much weaker than dephasing of charge superpositions, but spin and charge can be-
come coupled during switching operations whereby charge dephasing also influences spin-based qubits.
Adiabatic quantum computation with Cooper pairs, including adiabatic controlled-NOT gates, was pro-
posed by Averin[157,158]. For adiabatic one- or two-qubit operations, one has a close analogy with the
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0 (t), Eq.
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corresponding to the curve on the�− surface. Right: inversion〈�z〉 for zero dissipation in a two-level system, Eq. (7.40), with
time-dependent tunnel matrix elementTc(t) and energy splitting�(t), cf inset. Energies (times) are in units of the amplitudeTc
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dissipative Landau–Zener-problem (cf. the Review by Grifoni and Hänggi[145] for further references).
Dephasing in geometrical quantum operations was discussed by Nazir et al.[336].

7.5.1. Dissipative adiabatic rotations in quantum dots
Brandes and Vorrath[62] investigated the role of dissipation for one- and two-qubit adiabatic state

rotations in the double dot model from Section 2. Coherent adiabatic transfer without dissipation in the
charge qubit span({|L〉, |R〉} is described by the time-dependent Hamiltonian

H
(1)
0 (t)= �(t)

2
�z + Tc(t)�x, �(t)= �0 + �1 cos�t, Tc(t)=−Tc exp[−(t − t0)

2/�2] , (7.40)

corresponding to a change of the bias�(t) with a simultaneous switching of the tunnel couplingTc(t)
between the dots. If the rotation is slow,�, �−1, t−1

0 >�/2, an initial ground-state|L〉 of the system is
rotated into the instantaneous superposition|−〉, Eq. (2.4). The timet is a parameter in approximate
expectation values like

〈�z〉ad=−�(t)/�(t) (7.41)

(this is Crisp’s solution for the adiabatic following of an atom in a near resonance light pulse[337,36]),
where�(t) is the time-dependent adiabatic level splitting between|−〉 and |+〉, Eq. (2.4). The exact
numerical solution for〈�z〉(t) exhibits the expected quantum mechanical oscillations with frequency
�(t)/2 around the adiabatic value, which are strongest when the tunnel coupling is fully switched on, cf.
Fig. 46, right.

In [62], the influence of dissipation on this adiabatic rotation was described using the spin-boson Hamil-
tonian, Eq. (2.10). Generalizing the strong coupling (POL) approach, Section 2.2.3, to time-dependent�
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andTc, one obtains an integro-differential equation[145]

�

�t
〈�z〉t =−

∫ t

0
dt ′
∑
±

[1± 〈�z〉t ′ ](±)2Tc(t)Tc(t
′)Re{e±i

∫ t
t ′ ds�(s)C(t − t ′)} , (7.42)

which can be solved by standard numerical techniques and compared with the perturbative (PER) ap-
proach, Section 2.2.4. Due to Landau–Zener tunneling from the adiabatic ground state|−〉 to the excited
state|+〉, there is always a finite albeit small probabilityPL for the electron to remain in the left dot even in
absence of dissipation. Introducing the deviation
〈�z〉t ≡ 〈�z〉t +1 from the ideal, non-dissipative value
−1 of 〈�z〉 after the rotation, one can discuss the trade-off between too fast (Landau–Zener transitions
become stronger), and too slow swap operations where inelastic transitions to the excited level will have
sufficient time to destroy the coherent transfer.

Due to the time-dependence of� andTc, one has to go beyond the simple Bloch equation description
of decoherence[338] by introducing a unitary transformation of the original Hamiltonian (2.10) into the
|±〉 basis, again considering the timet as a slowly varying parameter[145,62]. The deviation
〈�z〉t of
the inversion due to the coupling to the bosons is then given by


〈�z〉t = 2
∫ ∞

0
d�J (�){nB(�)f (�, t)+ [1+ nB(�)]f (−�, t)}

f (�, t) ≡
∣∣∣∣
∫ t

0
dt ′Tc(t

′)
�(t ′)

e−i
∫ t ′

0 ds[�(s)−�]
∣∣∣∣
2

, (7.43)

wherenB(�) is the Bose equilibrium distribution at inverse temperature� andJ (�) the boson spectral
density, cf. Section 2.2.7. Analytical results are obtained for exact ‘Rabi rotations’,

Tc(t)=−�

2
sin�t, �(t)=−� cos�t , (7.44)

for which one has an exact solution in absence of dissipation, determined by an ellipse in the�, Tc plane
with constantexcitation energy� =

√
�2 + 4Tc(t)2 to the excited state. For a pulse of lengthtf = 	/�,

one obtainsf (�, tf ) → (c/�)
(� − �) with c = 	3J3/2(	)/4
√

2 in the adiabatic limit�/� → 0 and
thereby


〈�z〉f ≈ 1−
[(

�

�R

)2

+
(

�

�R

)2

cos
(	�R

�

)]
+ 4.94

J (�)/�

exp(��)− 1
, �>� , (7.45)

where�R ≡
√

�2 + �2. The inversion change
〈�z〉f as a function of the pulse frequency� is shown
in Fig. 47. The 1/� dependence of the dissipative contribution to
〈�z〉f is clearly visible at small
�, indicating that for too long pulse duration the electron swap remains incomplete due to incoherent
dissipation. On the other hand, if the pulse duration is too short (larger�), the oscillatory coherent
contribution from〈�z〉Rabi

f dominates.
The Rabi rotation, Eq. (7.44), keeps the energy difference to the excited state|+〉 constant throughout

the adiabatic rotation. If therefore� is chosen to coincide with a zero ofJ (�) (as occurs for phononic
cavities, cf. Section 5), the dissipative contribution to Eq. (7.45) vanishes and one obtains adecoherence-
free manifoldin the parameter space of the system.
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Another interesting case is the zero temperature limit of the weak coupling form Eq. (7.43), where
only the term withf (−�, tf ) remains due to the small, but finite probability for spontaneous emission
duringLandau–Zener transitions from|−〉 to |+〉 [145,62]. On the other hand, for strong electron–boson
coupling there is a cross-over in the temperature dependence of the POL result, Eq. (7.42), for〈�z〉f ,
cf. Fig. 47, right: for couplings��1 (Ohmic dissipations = 1, Eq. (2.52)), a temperature increase leads
to an increase of〈�z〉f , which is as in the weak coupling case. However, above��1, the temperature
dependence changes in that largerkBT lead to smaller values of〈�z〉f because the system tends to remain
localized in the left dot state|L〉 and no tunneling to the right state|R〉 occurs. In this regime, higher
temperatures destroy the localization and lead to smaller〈�z〉f , which is consistent with the transition
(� = 1) in the dissipative two-level dynamics[50] for static bias and tunnel coupling.

7.5.2. Adiabatic quantum pumping
A combination of adiabatic rotations and electron transport in the above scheme was used[62] to extract

the inversion
〈�z〉f , Eq. (7.45), from the average current〈I 〉 pumped through the system. The pumping
cycle separates the quantum mechanical time evolution of the two-level system from a merely ‘classical’
decharging and charging process. An additional electron in the left dot and an adiabatic rotation of the
parameters(�(t), Tc(t)) is performed in the ‘Safe Haven’ of the Coulomb- and the Pauli-blockade[309]
with the left and right energy levels of the two dots well below the chemical potentials�=�L=�R of the
leads. The cycle continues with closed tunnel barrierTc = 0 and increasing�R(t) such that the two dots
then are still in a superposition of the left and the right state. The subsequent lifting of the right level above
the chemical potential of the right leads constitutes a measurement of that superposition (collapse of the
wave-function): the electron is either in the right dot (with a high probability 1− 1

2
〈�z〉f ) and tunnels
out, or the electron is in the left dot (and nothing happens because the left level is still below� and the
system is Coulomb blocked). For tunnel rates�R,�L?t−1

cycle, the precise value of�R,�L and the precise
shape of the�(t)-pulse fortf < t < tcycle has no effect on the total charge transferred within one cycle.
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With the probability to transfer one electron from the left to the right in one cycle being 1− 1
2
〈�z〉f , on

the average an electron current

〈I 〉 = −e[1− 1
2
〈�z〉f ]t−1

cycle (7.46)

then flows from left to right. This scheme, with its pulse-like changes of the parameters�, Tc and the
leads acting only as classical measurement devices, has great similarities with the scheme used in the
Nakamura et al.[21] interference experiment in a superconducting Cooper pair box, and the pumping
sequence by Hayashi et al.[199] in their one-qubit interference experiment in double quantum dots, cf.
the next section.

7.5.3. Experiments in one-qubit double quantum dots
The NTT group with Hayashi et al.[199]successfully realized coherent time evolution of superposition

states in a single charge qubit based on semiconductor double quantum dots. Similar to the experiment
in superconducting charge qubits by Nakamura et al.[21] and to the pumping scheme of Section 7.5.2,
they used a pulse technique to switch the source–drain voltage from large biasVSD (electrons can tunnel
in) to zero bias (the double dot is isolated), cf.Fig. 48left. At the same time, the inter-dot bias� was also
switched, giving rise to a time-dependent Hamiltonian

H(t)= �(t)

2
�z + Tc�x (7.47)



T. Brandes / Physics Reports 408 (2005) 315–474 435

which described the isolated double quantum dot. Coulomb blockade prevented other electrons to enter
the system in the isolated phase (d),Fig. 48left, with the coherent time-evolution of the system for�= 0
only disturbed by inelastic processes such as phonon coupling, or co-tunneling processes. Restoring a
large biasVSD after the pulse timetp, Fig. 48(left e), provided a strong measurement and, since repeated
many times at frequencyfrep= 100 MHz, a read-out of the charge state of the system in the form of an
electric currentIp.

The measurements were carried out at two resonant tunneling peaks� and�, cf. Fig. 48(right a), each
corresponding to an effective two-level system as realized within the many-electron (NL ∼ NR ∼ 25)
double-dot (charging energyEc ∼ 1.3 meV) at electron temperaturesTe ∼ 100 mK and a magnetic field
0.5 T. The curves ofnp ≡ Ip/ef rep as a function of pulse lengthtp, Fig. 48 (right c), were extracted
from the tp-VR-diagram,Fig. 48 (right b), where the gate voltage effectively tuned the bias� during
the coherent time-evolution phase of the isolated double dot. From these, decoherence timesT2 where
extracted using a fitnp(tp) with an exponentially damped cosine function. Hayashi and co-workers then
discussed three possible dephasing mechanism: first, background charge fluctuations and gate voltage
noise was held responsible for random fluctuations of�, leading to strong dephasing for large�. Second,
co-tunneling rates where found to be comparable to the fittedT −1

2 rates for large tunnel couplings
� = �R ∼ �L ∼ 30�eV, but to have a minor effect at� ∼ 13�eV. Third, dephasing rates�p from
electron–phonon coupling were found to play a major role for lattice temperatures above 100 mK, where
the boson spectral density with Ohmic dissipation(s = 1) and a coupling parameterg = 2� = 0.03 was
used to calculate�p according to Eq. (2.30).

7.5.4. Dissipative quantum oscillations in double dots
The damped oscillations ofnp(tp), as observed in the experiment by Hayashi et al., also follow from

analytical calculations for the time evolution of the double dot system from the Master equation with
weak dissipation, cf. Section (2.2.4). For the isolated dot, one has to set�R = �L = 0 and the initial
condition〈nL〉0 = 1, 〈p〉0 = 0 in Eqs. (2.16), (2.17), and (2.25), which by Laplace transformation yield

n̂R(z)=
(z+ �p)(2T

2
c − 2TcI�+)− 2�TcR�+

z[z{(z+ �p)
2 + �2} − 2�TcR(�+ + �−)+ (z+ �p){4T 2

c − 2TcI(�+ + �−)}]
, (7.48)

with the rates�p and�± defined in Eq. (2.30). The zeroes of the denominator in Eq. (7.48) to first order
in the dimensionless coupling constant� are

z0 = 0, z1 =−�p, z± = −�p

2
− �1 ± iE (7.49)

�p ≡ 2	
T 2
c

�2 J (�) coth
��

2
, �1 ≡ 
s,1

2�	�2

��2 , E ≡
[
� − Tc

�
Im(�+ + �−)

]
(7.50)

with � = 1/(kBT ) and again� ≡ √�2 + 4T 2
c as the level splitting of the double dot. Note that there is a

temperature dependent renormalization (Lamb shift) of the level splitting from the term−(Tc/�)Im(�++
�−) in the energyEwhich determines the period of the oscillations. By simply Laplace back-transforming
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Eq. (7.48), an explicit solution to lowest order in� is obtained for〈nR〉t ≡ np(t)),

〈nR〉t ≈
2T 2

c

E2

{
� +

[
�

�1

�p

− �Re�+
Tc�p

]
(1− e−�pt ) (7.51)

− e−(
�p
2 +�1)t

[(
��p

2E
− �Re�+

ET c

)
sinEt + � cosEt

]}
, � ≡ 1− Im�+

Tc
. (7.52)

As shown inFig. 49, this perfectly agrees with the numerical solution of the Master equation which should
be called Bloch equation in this context as only two levels are involved, cf. Eqs. (2.16), (2.17), (2.25).

Non-Markovian corrections to this Born–Markov theory have been calculated recently by Loss and
DiVincenzo[339].

7.5.5. Charge shelving and adiabatic fast passage
Greentree et al.[340] suggested a pumping scheme with bias spectroscopy similar to the optical

Autler–Townes experiment. They considered a three-level Hamiltonian where the right state|R〉 of a
double well|L〉, |R〉 qubit is coupled to an additional probe-state,|p〉,

H(t)= �p(t)|p〉〈p| − Tc(|L〉〈R| + |L〉〈R|)− Tp(t)(|R〉〈p| + |p〉〈R|) , (7.53)

cf. Eq. (7.37) for the triple dot in Section 7.4.3. Similar to the time-dependent variation of�(t) andTc(t)
in the double dot system, Eq. (7.40), they demonstrated pumping in the form ofcharge shelvingby
linearly increasing�p(t) and simultaneously switching the tunnel couplingTp(t) on and off at fixedTc:
an initially anti-symmetric eigenstate�(t = 0)= (1/

√
2)(|L〉 − |R〉) of the|L〉, |R〉 qubit is driven into
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|p〉, the population of which can adiabatically approach unity on a short time scale of a fewT −1
c . On the

other hand, for the initially symmetric state�(t = 0)= (1/
√

2)(|L〉 + |R〉) with lower energy, the final
population of|p〉 is very small. Therefore, the third state|p〉 provides a read-out for the qubit which is
reversible in absence of dissipation such that an electron can be pumped back into the anti-symmetric
state and thereby reset the qubit.

7.5.6. Spin qubit swaps
The adiabatic swapping model in Section 7.5.1 can also be applied to study decoherence due to charge

dephasing in spin-based two-qubit systems, where spin and charge become coupled during switching
operations[22,341]. An example is the Loss–DiVincenzo proposal for quantum operations with spin
states of coupled single-electron quantum dots[22]. Thorwart and Hänggi[161] discussed dissipation
and decoherence in quantum XOR gates within a numerical scheme, predicting gate fidelities to be very
sensitive to the dissipative bath coupling constant, but only weakly on temperature. Recently, Requist,
Schliemann, Abanov, and Loss calculated corrections to adiabaticity due to double occupancy errors of
two quantum dot spin-qubits[342].

Schliemann et al.[159] suggested a swap operation where two electrons with spin are localized on two
coupled quantum dotsA andB, giving rise to a basis of six states, with four basis vectors with the two
electrons on different dots (spin singlet and triplets),

|S1〉 ≡ 2−1/2(c
†
A↑c

†
B↓ − c

†
A↓c

†
B↑)|0〉 ,

|T −1〉 ≡ c
†
A↓c

†
B↓|0〉, |T 1〉 ≡ c

†
A↑c

†
B↑|0〉, |T 0〉 ≡ 2−1/2(c

†
A↑c

†
B↓ + c

†
A↓c

†
B↑)|0〉 , (7.54)

and two states with two electrons on dotA (‘left’) or dot B (‘right’),

|L〉 ≡ c
†
A↑c

†
A↓|0〉 = 2−1/2[|S2〉 + |S3〉], |R〉 ≡ c

†
B↑c

†
B↓|0〉 = 2−1/2[|S2〉 − |S3〉] , (7.55)

which are superpositions of two spin singlets|S2,3〉 ≡ 2−1/2(c
†
A↑c

†
A↓ ± c

†
B↑c

†
B↓)|0〉 that differ in their

orbital wave function.
During a swap operation from an initial state|i〉 to a final state|f 〉,

|i〉 ≡ 1√
2
[|T 0〉 + |S1〉] → |f 〉 ≡ 1√

2
[|T 0〉 − |S1〉] , (7.56)

(which can be achieved[22,341]by an adiabatically opening and then closing of the tunnel barrier between
the two dots as a function of time),chargedecoherence occurs for intermediate, doubly occupied states
in span{|L〉, |R〉} (= span{|S2〉, |S3〉}) which leads out of the subspace span{|S1〉, |T 0〉}. Piezo-electric
phonons then couple to the electron charge and incoherently mix states in the singlet sector which leads to
a loss of fidelity of the swap operation. This process can be described in a four-dimensional Hilbert space
H(4), spanned by the three singlets|Sj 〉 and the triplet|T 0〉 ≡ |0〉, with a time-dependent Hamiltonian

H
(2)
0 (t)=

3∑
j=0

�j |j〉〈j | + T (t)[|1〉〈2| + |2〉〈1|] , (7.57)

where�j denotes the energies of the spin singlet states,�1 = �0, �2 = �0 + UH , �3 = �0 + UH − 2X
with the spin triplet energy�0, the on-site Coulomb repulsionUH >0, the exchange termX>0, and the
time-dependent tunnel coupling element between the dotsT (t). The total Hamiltonian in presence of
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bosons coupling to the charge degree of freedom,H(2)(t)=H
(2)
0 (t)+ 1

2�zÂ+HB , then has exactly the

same form as in the one-qubit case, but with the free HamiltonianH
(1)
0 (t) replaced byH(2)

0 (t), a new
coupling constant̄gQ [62], and�z ≡ |L〉〈L| − |R〉〈R| now referring to the two-particle states Eq. (7.55).
With the restriction|T (t)|>UH,2X, inelastic transitions are determined by the dynamics in the subspace
spanned by the states|2〉 and|3〉 and admixtures from|1〉 through the hybridization between|1〉 and|2〉
can be neglected.Within the Born–Markov approximation, the adiabatic rates then depend on the energy
difference� = 2X between|2〉 and|3〉 only. As� remains constant throughout the operation, this again
means that charge dissipation to second order can be switched off in phonon cavities when� is tuned to
a ‘gap’ energy2�0, cf. Section 5.

Results for the fidelity〈f |�(t)|f 〉 are shown inFig. 50, where a pulse[159]

T (t)= T0

1+ cosh(t/�)/ cosh(T /2�)
(7.58)

with T0=0.05,T =400,�=50 was chosen, together withX=0.5 and a temperature 1/�=0.1 (in units
of UH ). Even in absence of dissipation, the non-adiabaticity of the operation results in a finite value of
1− 〈f |�(t)|f 〉 after the swap[159]. The electron–phonon interaction, modeled with a spectral density
Jpiezo(�) as in Eq. (2.56) with different coupling parametersg ≡ 2�piezo, acts when charge between the
dots is moved during the opening of the tunneling barrier. Consequently, the two states|2〉 and|3〉 become
mixed incoherently, leading to a finite, irreversible occupation probability of the energetic lower state|3〉
even after the pulse operation. Spontaneous emission of phonons occurring during the slow swap leads
to a dephasing rate� ≈ 	gX/2. In this case, even relatively small values ofg can lead to a considerable
fidelity loss of the operation.
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8. Large spin-boson (single mode Dicke) models, chaos, and entanglement

Most of the material treated in this Review so far dealt with the appearance of quantum optical effects
in electronic transport properties of mesoscopic systems. A central topic was the interaction between
matter and light, and more specifically the interaction between bosonic (phonons, photons) and fermionic
degrees of freedom, where the latter sometimes corresponded to single electrons, or were represented
by ‘pseudo-spins’ such as in two-level systems and charge qubits. Many of the theoretical models that
were presented in the previous sections investigated these interactions within a wider context (e.g., with
coupling to other electron reservoirs in order to describe transport), which often required additional
approximations in order to make any progress, even in a completely numerical treatment.

Sometimes, a much ‘cleaner’ theoretical set-up can be achieved by going back to some of the original
quantum optical Hamiltonians, with the goal to look at them with a ‘mesoscopic eye’. This program has
been followed by a (seemingly growing) number of theorists, probably motivated by (at least partly)
some of the following reasons:—the realization that quantum optical concepts are useful in other areas of
physics as well,—the experimental success in Quantum Optics and related areas such as Bose–Einstein
condensation,—the possibility to study ‘fundamental’ problems (measurement process, entanglement,
quantum chaos) in conceptually very simple systems. Mainly driven by this last motivation, the final
section of this Review therefore presents an overview over newer results on one important class of
models from Quantum Optics, the single-mode Dicke superradiance model (and some of its allies), and
their relation to ideas from quantum information theory (entanglement), quantum chaos and Mesoscopics
(level statistics, scaling), as well as the old question of the quantum-classical crossover.

8.1. Single-mode superradiance model

The single-mode Dicke model describes the interaction ofN two-level systems with a bosonic mode
of angular frequency�,

HDicke = �0

2

N∑
i=1

�̂z,i + �√
N

N∑
i=1

�̂x,i(a
† + a)+ �a†a , (8.1)

where�0 is the transition angular frequency between the upper and lower level, cf. Eq. (3.1), and the
factor 1/

√
N is due to the dipole matrix element containing a factor 1/

√
V , whereV is the volume of

the boson cavity and one works at constant density� =N/V , absorbing the factor
√

� into the coupling
matrix element. Crucially, the coupling constant� to the bosonic mode does not depend on the atom
indexi. The interaction term in the one-mode Hamiltonian Eq. (8.1) in fact is a special case of the multi-
mode interaction, Eq. (3.9) for one single mode(Qs), where the dependence on the phase factors eiQr i is
neglected. One can then introduce collective atomic operators (angular momentum operators),

J� ≡ 1

2

N∑
i=1

�̂�,i , � = x, y, z; J± ≡ Jx ± iJy, [Jz, J±] = ±J±, [J+, J−] = 2Jz , (8.2)

cf. Eq. (3.10).
In cavity quantum electrodynamics, this model describes collective light–matter interactions in a photon

cavity. On the transport side, possible candidates for experimental systems would be arrays of excitonic
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quantum dots (the caseN = 2 would correspond to the system treated in Section 3.3.1), and electrons
in several quantum dots interacting with single phonon modes. An example of the latter is the ‘phonon
cavity quantum dynamics’ of nano-electromechanical systems, cf. Section 5.

8.1.1. Hamiltonians
For the rest of this section, we consider thej = N/2 subspace of the 2N dimensional total atomic

HilbertspaceHN = (C2)⊗N , which is spanned by Dicke states|jm〉 with maximum total angular mo-
mentumj = N/2, cf. the discussion in Section 3.1.1. In terms of the collective operators Eq. (8.2), the
single-mode Dicke Hamiltonian then reads

HDicke = �0Jz + �√
2j

(a† + a)(J+ + J−)+ �a†a , (8.3)

which is the generalization of the Rabi Hamiltonian

HRabi= �0

2
�̂z + �(a† + a)�̂x + �a†a (8.4)

to j = N/2>1/2. In Quantum Optics, the Dicke Hamiltonian is often considered within the rotating
wave approximation (RWA),

HRWA
Dicke = �0Jz + �√

2j
(a†J− + aJ+)+ �a†a , (8.5)

which in comparison with the full HamiltonianHDicke does not contain the ‘counter-rotating’ termsa†J+
andaJ−, and which is the generalization of the Jaynes–Cumming Hamiltonian

HJaynes.Cummings= �0

2
�̂z + �(a†�̂− + a�̂+)+ �a†a (8.6)

to j = N/2>1/2. The absence of counter-rotating terms makes the RWA-Hamiltonian integrable and
therefore has dramatic consequences when it comes to the discussion of quantum chaos. The RWA-form
HRWA

Dicke conserves theexcitation number operator̂Nex, whereas the full Dicke Hamiltonian only conserves
theparity operator!̂, both of which are defined[343] as

!̂ ≡ exp[i	N̂ex], N̂ex ≡ a†a + Jz + j . (8.7)

The meaning of these operators can be most easily understood in the analogy of the spin-boson Hamilto-
nian with a single particle on a two-dimensional lattice, cf.Fig. 51, where each point represents a basis
vector|n〉⊗ |jm〉 with |n〉 representing the number states,a†a|n〉= n|n〉, and|jm〉 the Dicke states. The
lattice is finite in ‘m’ direction, but infinite in the ‘n’ direction. For the full Dicke HamiltonianHDicke, the
interaction conserves the parity!̂, and states with an even total excitation numbern+m+j interact only
with other even states, whereas odd states interact only with odd states. This has the effect of dividing
the total lattice into a motion of the particle on one of the two inter-weaved sub-lattices, which corre-
sponds to the two different parity sectors. On the other hand, the RWA versionHRWA

Dicke induces an even
more drastic splitting of the total Hilbert space into an (infinite) number of finite-dimensional subspaces
that are characterized by the excitation numberN̂ . In the lattice picture, this corresponds to independent
clusters joined in the direction↘, cf. Fig. 51.



T. Brandes / Physics Reports 408 (2005) 315–474 441

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0  0.25  0.5  0.75  1
k B

T
/ω

0
λ/ω0

NORMAL

SUPERRADIANT

m=1

m=0

m=-1

m=1

m=0

m=-1

RWA-model

n = 0 1 2 3 4

Non-RWA model

Fig. 51. Left: lattice analogy for Dicke model in (non) rotating wave approximation, the case shown here is forj = 1. Right:
phase diagram for the Dicke HamiltonianHDicke, Eq. (8.1), in the thermodynamic limitj → ∞.

8.1.2. Phase transition
The phase transition for the RWA Dicke model, Eq. (8.5), was first rigorously derived in 1973 by

Hepp and Lieb[344] who used spectral properties of finite matrices derived from the model. At the same
time, Wang and Hioe gave[345] a more transparent (though less rigorous) proof using bosonic coherent
state. A simple generalisation for the non-RWA version, Eq. (8.1), was soon given by Hepp and Lieb
[346], and by Carmichael, Gardiner, and Walls[347] who started from the canonical partition function
Z(N, T ) ≡ Tr exp(−�HDicke), � = 1/kBT , and traced out the field as in[345],

Z(N, T )=
∫

d2�

	
e−�|�|2

[
Tr exp

{
−�

(
�0

2
�̂z + �√

N
(� + �∗)�̂x

)}]N

=
∫ ∞

0
drr
∫ 2	

0

d�

	
e−�r2


2 cosh


��0

2

(
1+ 16�2r2 cos2 �

�2
0N

)1/2




N

, (8.8)

where the boson frequency� has been set to unity. This integral is evaluated asymptotically using the
method of steepest descents, from which the phase diagram in the thermodynamic limitN → ∞ follows:
for �<

√
��0/2, the system is in the ‘normal’ phase with a free energyf (T ) per particle given by

−fn(T )= �−1 ln[2 cosh(1
2��0)] , (8.9)

which is just the free energy of a non-interacting two-level system. For�>
√

��0/2, however, there is a
critical temperatureTc given by��0/4�2= tanh(1

2�0/kBTc) below which the system in a ‘superradiant’
state with a free energy per particle given by

−fSR(T )= �−1 ln

[
2 cosh

(
4

�

�
�2x

)]
− 4

�2

�
x2 + ��2

0

16�2 , 2x = tanh(4��2x)>0 . (8.10)

The self-consistent equation forx in Eq. (8.10) indicates that this phase transition is of mean-field type.
At the phase boundary in the phase diagram,Fig. 51, the system changes discontinuously between the
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normal phase, where the boson occupation per particle is zero, and the superradiant phase that has a
macroscopic boson occupancy[345],

lim
N→∞

1

N
〈a†a〉n = 0, lim

N→∞
1

N
〈a†a〉RS= 4

�2

�2 x
2 − �2

0

16�2 , (8.11)

where againx is given by the positive solution of 2x = tanh(4��2x). At zero temperature(� → ∞), this
solution isx = 1

2, and one easily obtains quantities like the ground state energy

E0
n =−�0/2, E0

SR=−�2

�
− ��2

0

16�2 (8.12)

and other quantities atT = 0 from the finite-T results in the thermodynamic limitN → ∞.
As mentioned above, the original derivations of the thermodynamic properties for the infinite-N Dicke

model were first made for the RWA model. Hebb and Lieb[346], and Carmichael et al.[347] in fact showed
that in the limitN → ∞, the thermodynamic properties of the non-RWA modelHDicke are obtained by
simply using the expressions obtained from the RWA modelHRWA

Dicke and doubling the coupling constant,
� → 2�. Consequently, the phase transition inHRWA

Dicke occurs at a critical coupling�RWA
c =√

��0 that is
twice as large as�c =√

��0/2 in the non-RWA modelHDicke. A heuristic argument for the factor two is
the doubling of interacting vertices inHDicke as compared to the RWA model. A more recent comparison
between RWA and non-RWA, in particular with respect to the integrability of the Dicke model, is given
in [348].

8.1.3. Effective Hamiltonians and finite-N results
Emary and Brandes[343,348]studied the one-mode Dicke modelHDicke, Eq. (8.1), at arbitraryN=2j

but at zero temperatureT = 0 with the aim to relate quantum chaotic behavior as obtained from the
spectrum ofHDicke at finiteN to the transition forN → ∞. In the terminology of statistical mechanics,
the transition atT = 0 is only driven by quantum (and not thermal) fluctuations and thus is a quantum
phase transition, although one of a special kind: the absence of any intrinsic, physical length scale in the
model makes it exactly solvable. The phase transition in fact can be related to an instability forN → ∞ of
the quadratic form describing the interaction of two bosonic modes, one of which represents the original
photon modea† whereas the other represents the spinj. This is formalized by the Holstein–Primakoff
representation of the angular momentum operators in terms of a single bosonic modeb†,

J+ = b†
√

2j − b†b, J− =
√

2j − b†bb, Jz = b†b − j , (8.13)

which are inserted intoHDicke and then expanded for largej. Hillery and Mlodinow[349]used this method
in their analysis of the RWA form,HRWA

Dicke Eq. (8.5), in the normal phase. For a general survey on boson
realizations of Lie algebras, cf. the review by Klein and Marshalek[350].

A very suitable method for the case of the Dicke Hamiltonian is to introduce position and momentum
operators for the two bosonic modes[348],

x = 1√
2�

(a† + a), px = i

√
�

2
(a† − a), y = 1√

2�0
(b† + b), py = i

√
�0

2
(b† − b) ,

(8.14)
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which turns out to be particularly useful when discussing properties of the ground state wave function,
and which leads to a Hamiltonian describing thenormal phase forN → ∞,

H(1) = 1
2{�2x2 + p2

x + �2
0y

2 + p2
y + 4�

√
��0xy − �0 − �} − j�0 . (8.15)

This is easily diagonalized and leads to

H(1) = �(1)− c
†
1c1 + �(1)+ c

†
2c2 + 1

2(�
(1)
+ + �(1)− − � − �0)− j�0 ,

[�(1)± ]2 = 1
2{�2 + �2

0 ±
√
(�2

0 − �2)2 + 16�2��0} , (8.16)

with two excitation energies for the two new, collective bosonic modes 1 and 2. The excitation energy�−
is real only for���c ≡ √

��0/2 which indicates the transition:H(1) remains valid in the normal phase
but becomes invalid in the superradiant phase.

The ground-state wave function ofH(1), Eq. (8.15), is a simple product of two harmonic oscillator
wave functions which in thex–y representation reads

�(1)
G (x, y)=G−(x cos� − y sin�)G+(x sin� + y cos�)

� = 1

2
arctan

4�
√

��0

�2
0 − �2

, G±(q) ≡ (�(1)± /	)1/4e−�(1)± q2/2 . (8.17)

Close below the critical point�c, the excitation energy�− = �(1)− vanishes as

�− ∝ |� − �c|z� , (8.18)

with the dynamical exponentz=2 and the ‘localization length’exponent�=1/4 describing the divergence
of the characteristic length� ≡ �−1/z

− ∝ |� − �c|−� in the oscillator wave functionG−, and the same
exponents when approaching from above�c. At the critical point of the coupling constant� = �c, �
becomes infinite and the Gaussian wave function, Eq. (8.17), is infinitely stretched along thex = −y

line in thex–y plane. This is consistent with the results for the ground state wave function as obtained
from a numerical diagonalization for the finitej = N/2 Dicke HamiltonianHDicke, Eq. (8.1), as shown
in thex–y representation inFig. 52for j = 5: the wave function starts as a single lobe centered at the
origin for low coupling. As the coupling increases, the two modes start mixing, leading to a stretching
of the single-peaked wave function, which thensplits into two lobes as the coupling is increased above
approximately�c. The two lobes move away from each other in their respective quadrants of thex–y
plane when further increasing� above�c.

For large but finitej, the ground-state with�> �c is a coherent superposition of two wave function
lobes that are macroscopically separated in thex–y plane. Forj → ∞, i.e. in the thermodynamic limit,
the macroscopic separation becomes so large that this Schrödinger cat is ‘split into two halves’. It was
shown in[348] that this superradiant regime is described bytwoequivalent effective HamiltoniansH(2),
each describing the low-energy excitations in the frame of reference of one of the lobes. For any finite
j, the ground-state obeys the parity symmetry!̂, Eq. (8.7), meaning that the wave function is always
invariant under a rotation of	 in thex–y plane. Forj → ∞, the ground-state is two-fold degenerate, the
system chooses to sit in one of the lobes that is ‘super-selected’ whereby the parity symmetry ofHDicke
is spontaneously broken. Recently, Frasca[351] discussed the Schrödinger cat and theN → ∞ limit of
the Dicke model in the context of decoherence.
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The effective HamiltoniansH(2) for the superradiant phase are obtained by using the Holstein–Primakoff
transformation, Eq. (8.13), and a canonical transformation that displaces the two bosonic modes, thereby
taking into account the macroscopic displacement and occupation of the field (a†) and the field (b†) mode,

a† → c† ±√
�, b† → d† ∓√� . (8.19)

Here, the upper and lower signs refer to the two equivalent Hamiltonians that describe the system for
j → ∞, with � and� to be determined by expanding the canonically transformed Dicke Hamiltonian
for largej, retaining only up to quadratic terms in the new bosonic operatorsc(†) andd(†). Elimination
of linear terms in these operators then leads to two equations[348],

2�

√
�(2j − �)

2j
− �

√
� = 0,

[
4�2

�j
(j − �)− �0

]√
� = 0 , (8.20)

with trivial solutions� = � = 0 that recover the normal phase (the HamiltonianH(1)), and non-trivial
solutions determining the superradiantH(2), which after some further transformations is brought into
diagonal form,

H(2) = �(2)− e
†
1e1 + �(2)+ e

†
2e2 − j

{
2�2

�
+ �2

0�

8�2

}

+ 1

2

(
�(2)+ + �(2)− − �0

2�
(1+ �)− � − 2�2

�
(1− �)

)
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2[�(2)± ]2 = �2
0

�2 + �2 ±
√√√√[�2

0

�2 − �2

]2

+ 4�2�2
0, � ≡ ��0

4�2 = �2
c

�2 . (8.21)

The values of� and� as determined from Eq. (8.20) are the same for both signs in Eq. (8.19) and related
to the atomic inversion and the mean photon number

〈Jz〉/j = �/j − 1, 〈a†a〉/j = �/j , (8.22)

where the brackets refer to ground state expectation values. One thereby obtains two exactly equivalent
HamiltoniansH(2), which are valid for���c such that the excitation energy�(2)− remains real.

As the HamiltoniansH(1) andH(2) are in diagonal form, they present the exact analytical solution for
the Dicke one-mode model at arbitrary coupling strength in the limitj → ∞ and allow one to derive
exact results for the spectrum, expectation values, wave function properties, entanglement etc. that can be
compared to their respective finite-j counter-parts as obtained from numerical diagonalizations. Examples
of such a comparison are shown for the ground state energyEG and the excitation energies�±, Fig. 52,
and for the atomic inversion〈Jz〉 and the photon number〈a†a〉 in Fig. 53.

8.1.4. Level statistics
The nearest-neighbor level spacing distributionP(S) for level spacingsSn=En+1−En at finitej was

obtained in[348]by direct numerical diagonalization ofHDicke, Eq. (8.1). Signatures of theT =0 normal-
superradiant phase transition forj → ∞ can be related to a cross-over from the Poissonian distribution,
PP(S)=exp(−S) at�< �c, to the Wigner–Dyson distribution,PW(S)=	S/2 exp(−	S2/4), in the finite-j
level statistics, cf. Fig.54. At low j�3, however, it should be noted that theP(S) do not correspond to
any of the universal random matrix theory ensembles but are rather non-generic distributions, an example
being the ‘picket-fence’ character ofP(S) for the Rabi Hamiltonianj =1/2, Eq. (8.4). The cross-over as
a function of� becomes sharper for largerj, and one might regard any deviations from a sharp transition
as ‘finite-size’ effects, i.e., deviations from thej → ∞ limit. This interpretation, however, is somewhat



446 T. Brandes / Physics Reports 408 (2005) 315–474

0

1

2

0

0.5

0

0.5

0

0.5

0

0.5

λ = 0.2 λ = 0.5 λ = 0.8

j = 2

j = 5

j =10

j = 15

j = 20

0 200
n

0

0.1

0.2

S n

0 200 400
n

0 100 200 300 400

n

0

0.05

0.1

0.15

0.2

S n

λ=3λ=2

0 2 0 2 0 2 0

Fig. 54. Left: nearest-neighbor distributionsP(S) for the Dicke Hamiltonian, for different couplings� and pseudo-spinj, and
comparison with the universal Poissonian (dots) toWigner (dashes) distributions. Right: nearest-neighbor spacingSn=En+1−En

vs. eigenvalue numbern plot for j = 5 with � = 4. Horizontal crosses: results for the integrable� → ∞ Hamiltonian. Inset:
j = 5 results with� = 2 and� = 3. Results shown are for� = �0 = 1, �c = 0.5. From[343].

misleading because in this limit the system, although going through a phase transition at�= �c, remains
integrable.

The cross-over in the level statistics of the Dicke model is also consistent with the bifurcation of the
ground wave function into a macroscopic superposition, cf.Fig. 54, left.This can be regarded as a transition
from a localized, quasi-integrable regime for�< �c (corresponding to Poissonian level statistics), to a
delocalized, chaotic regime for�> �c (corresponding to Wigner–Dyson statistics).

Another peculiarity of the spectrum is the close co-existence of very regular and very irregular parts
at fixed, finite j and � as a function of the level indexn, cf. Fig. 54, right. The regular part of the
nearest-neighbor spacingsSn can be compared with the integrablestrong coupling limit� → ∞ of the
modelHDicke, in which the term�0Jz becomes a negligible perturbation and the system corresponds to a
shifted harmonic oscillator. For�?�c, the spectrum becomes very regular and close to the exact� → ∞
limit at low energies, whereas outside this region the spectrum is very irregular and described by the
Wigner–Dyson distribution.

8.1.5. Semi-classical model and chaos
Emary and Brandes[348] derived a classical Hamiltonian from the Dicke modelHDicke in bosonic

form, using the Holstein–Primakoff transformation, Eq. (8.13), and a subsequent replacement of position
and momentum operatorsx,y,px ,py , Eq. (8.14), by classical variables. The resulting classical model,

H cl
Dicke = 1

2(p
2
x + p2

y)+ U(x, y, py) ,

U(x, y, py) ≡ 1

2
(�2x2 + �2

0y
2 − � − �0)− j�0 + 2�

√
��0xy

√
1− �2

0y
2 + p2

y − �0

4j�0
,

(8.23)
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described the motion of a single particle in a two-dimensional,momentum-dependentpotentialU(x, y, py).
In the limit j → ∞, the square-root non-linearity in Eq. (8.23) vanishes, and by diagonalization one finds
the same symmetry-breaking phase transition as for the quantum modelHDicke. For finite j, a stability
analysis of Hamilton’s equations fromH cl

Dicke yields a fixed pointx=y=px =py =0 in phase space that
is stable in the ‘localized regime’�< �c/

√
1+ /4j , where again�c = √

��0/2 is the critical coupling
found in the quantum model. Two other fixed points withpx = py = 0 exist in the ‘delocalized regime’
in thex–y plane at points(±x0,∓y0) which are stable for�> �c/

√
1+ /4j and correspond to the two

lobes of the Schrödinger cat ground state superposition in the superradiant regime of the quantum model.
Poincaré sections forH cl

Dicke with px = 0 andpy >0 fixed by the total energyE are shown in
Fig. 55, left. At low �, the Poincaré sections consist of a series of regular, periodic orbits. Approach-
ing the critical coupling, the character of the periodic orbits changes and a number of chaotic trajectories
emerges. Increasing the coupling further results in the break up of the remaining periodic orbits and the
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Table 1
Special cases of the generic spin-boson Hamiltonian, Eq. (8.24). The three-dimensional unit vectors aree�, � = x, y, z

Model � �

Rabi (j = 1/2), Dicke (j �1/2) �0ez �ex
Jaynes–Cummings (j = 1/2), RWA–Dicke (j �1/2) �0ez �(ex − iey)
abelian (‘one mode dephasing’) �0e� �e�, � = x, y, z

one mode (large) spin-boson �ez + 2Tcex �ez

whole phase space becomes chaotic. This transition to chaos in the classical system mirrors very closely
the transition in the quantum system. Hou and Hu[352] recently confirmed these findings in a calculation
of Poincaré sections through they–py plane forH cl

Dicke with x = 0 fixed, cf. Fig.55.

8.2. Phase transitions in generalized Dicke models

A generalized form of the one-mode Dicke model was considered in a work[353] that shed further
light on the instability of large-spin boson Hamiltonians in the thermodynamic limitj → ∞. The generic
model

H = �a†a + (� + a†� + a�†)J , (8.24)

describes the simplest coupling between the Heisenberg–Weyl (harmonic oscillator) algebra (1, a, a†)
and the algebra of the angular momentum (spinj) operatorsJx = 1

2(J++J−), Jy = 1
2(J+−J−), Jz, with

J= (Jx, Jy, Jz) and the three-dimensional coupling constant vectors� and�, the latter being in general
complex. This generic form contains a number of special, well-known cases, cf.Table 1.

The class of models discussed in[353] was for real coupling vectors� = �† and�, simplifying the
most general case Eq. (8.24) which in general has three real, linearly independent three-dimensional
coupling constant vectors. In thex–z plane, the generalized one-mode Dicke models then are defined as

H� = �a†a + �(Jx cos� + Jz sin�)+ 2�√
2j

(a† + a)Jx , (8.25)

which for fixed frequencies�,�, and coupling constant� are characterized by the angle� that can be
restricted to 0���	. Again employing the Holstein–Primakoff representation of the angular momentum
operators, Eq. (8.13), shifting the oscillator modesa → a ±√

� andb → b ∓√
� (cf. Eq. (8.19) with

� and� of O(j)), and proceeding to the thermodynamic limitj → ∞ yields an effective Hamiltonian
with terms up to quadratic order in the bosonic operators. As before in the treatment ofHDicke, the linear
terms can be eliminated, which yields an equation for�,

4�2

�

j − �

j

√
� − � sin�

√
� + � cos�

j − �√
2j − �

= 0 , (8.26)

and
√

�=(2�/�)[(2j−�)�/2j ]1/2, leading to a Hamiltonian that can be diagonalized after a Bogoliubov
transformation of the bosonic operators.

Again, the parameters� and � are related to the atomic inversion and mean field occupation,
Eq. (8.22), although not all solutions of Eq. (8.26) are physically valid[353]. In particular, it turns
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out that a co-existence oftwo physically valid solutions, corresponding to both the upper and the lower
sign in the shifted bosonic operators, Eq. (8.19), appears only for the special case�=	/2, which is exactly
the original Dicke HamiltonianHDicke, Eq. (8.1). This is illustrated inFig. 56, where the bifurcation at
the critical point�c of the Dicke model at� = 	/2 separates the models�< 	/2 and> 	/2, which have
shifts corresponding to either the upper or the lower sign ina → a ± √

� andb → b ∓ √
� for all

coupling constants. This indicates that a phase transition in the spin-boson models, Eq. (8.25), occurs
only for ‘orthogonal’ couplings� = 	/2, which shows that the Dicke model is unique within the whole
class of HamiltoniansH�. These findings are corroborated by a calculation of the excitation energy pairs
�± corresponding to the two collective modes of the diagonalized Hamiltonians forj → ∞, cf. Fig. 56
left, where critical behavior (the vanishing of�−) only occurs at� = 	/2. Furthermore, non-analyticities
in the ground-state energy, atomic inversion and mean photon number of the ground-state at� = �c, cf.
Fig. 57are observed only at� = 	/2 in agreement with these results.

8.3. Quantum phase transitions and entanglement

Zero-temperature quantum phase transitions occur in models both from Quantum Optics and Con-
densed Matter Physics, and the relation between quantum entanglement and the singularities associated
with the transition have been addressed in quite a large number of works recently. As the question of
meaningful entanglement measures is non-trivial (in particular when it comes to, e.g., mixed states, in-
finite dimensional Hilbert spaces, or multi-partite systems), most of the research done so far deals with
the entanglement entropy for bi-partite systems, or the pairwise entanglement (concurrence) between
two spin 1/2s. One common feature of many of these works is the study of models that are exactly
solvable in some limit, for exampleXY models in one dimension and large-spin (boson) models, with
some of the key topics being the role that entanglement in quantum phase transitions plays with respect
to critical correlations[354,355], in renormalization group theory[356], in conformal field theory[357],
in finite-size scaling[354,358], or in quantum chaos[352,359–362].
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8.3.1. Atom-field entanglement in the Dicke model
Lambert et al.[359] used the one-mode Dicke modelHDicke, Eq. (8.1), for a study of quantum entan-

glement across a quantum phase transition, again combining analytical results forj → ∞with numerical
diagonalizations at finitej. Defining �̂ ≡ Trspins|G〉〈G| as the reduced density matrix of the field (a†)
mode for the initially pure ground-state|G〉 of the total system, a measure for the entanglement between
the atoms (i.e., the collection ofN identical two-level systems or spins, cf. Eq. (8.1)) and the field is given
by the von Neumann entropyS ≡ −Tr �̂ log2 �̂. A peculiarity occurs in the superradiant phase with its
two degenerate ground-states due to the broken parity symmetry!̂, leading toS = S(�̂±) + 1 with �̂±
the reduced density matrix of either of the two macroscopically separated solutions.

The calculation is most easily done in thex–y representation, where in the normal phase the reduced
density matrix is given by

�L(x, x
′)= cL

∫ ∞

−∞
dyf L(y)�

∗(x, y)�(x′, y) , (8.27)

wherecL is a normalization constant andfL(y) ≡ e−y2/L2
a cut-off functionfL(y) ≡ e−y2/L2

introduced
in order to discuss the effect of a partial trace over the atomic (y) modes. The density matrix Eq. (8.27) is
identical to the density matrix of a single harmonic oscillator with frequency�L in a canonical ensemble
at an effective temperatureT ≡ 1/� and can be obtained by simple Gaussian integration, yielding

cosh��L = 1+ 2
�−�+ + 4(�− cos�2 + �+ sin�2)/L2

(�− − �+)2 cos�2 sin�2
, (8.28)

where the angle� and the excitation energies were defined in Eqs. (8.17) and (8.16), respectively.
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Fig. 58. Left: entanglement of formationS∞ between atoms and field for bothN → ∞ and finiteN. Inset: Scaling of the value
of the entanglement maximum as a function of log2N . Right: scaled pairwise concurrenceCN = NC between two spins for
bothN → ∞ and finiteN. Inset: Scaling of the value (+) and position (×) of the concurrence maximum, and the position of
the entropy maximum (∗) as functions ofN. The Hamiltonian is on scaled resonance� = �0 = 1. From[359].

This leads to a simple expression for the entropy (depending on the cut-off length parameterL),

SL(�)= [� coth� − ln(2 sinh�)]/ ln 2, � ≡ ��L/2 . (8.29)

ForL = ∞, the entropy undergoes a divergence at the critical point for the approach to�c from either
side which is due to the vanishing of�− ∝ |�− �c|2�, Eq. (8.18), cf.Fig. 58. Together withS∞(�)= [1−
ln(2�)+ �2/6]/ ln 2+O(�4), this yields the logarithmic divergence ofS∞,

S∞ ∝ −� log2|� − �c| = log2 �, � = 1/4 , (8.30)

demonstrating that the entanglement between the atoms and field diverges with the same critical exponent
as the characteristic length. For� → �c, the parameter� = 2�∞/kBT of the fictitious thermal oscillator
approaches zero, indicating that aclassicallimit is being approached, that can be interpreted either as
the temperatureT going to infinity, or the frequency�∞ approaching zero. An alternative is to keep�
fixed and compensate by introducing a squeezing parameter� that tends to 0 at the critical point[363].
In terms of the original parameters of the system, however, the dependence of the entropy is through the
ratio of energies�−/�+ only. Although the entanglement is a genuine quantum property of the combined
atom-field system, this highlights that in the limit ofN → ∞ atoms, the exact mapping ofHDicke to two
coupled oscillators is strongly connected to the corresponding (cusp) singularity and the vanishing of one
of the eigenvalues of a quadratic form in the classical model.

As pointed out by Srednicky[364] in his discussion of entropy and area, the mapping onto a single
harmonic oscillator density matrix is in general no longer possible forN >2 coupled oscillator modes, but
the entropy of a sub-system of oscillators can still be expressed as a sum over single oscillator entropies
S∞, Eq. (8.29), with the arguments� determined by eigenvalues of matrices. The Dicke model forN → ∞
is in fact equivalent to a zero-dimensional field theory (there are only two degrees of freedom). However,
the atomic (y) mode has an ‘internal structure’ as it represents a collection of atoms (or pseudo spin 1/2s
). Similar to Srednicky’s tracing out of oscillator degrees of freedoms inside a finite volume, one can ask
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what happens if the trace over the (atomic)y-coordinate is performed over only a finite region of size
L for the atomic wave function. Scaling of the entanglementat the transition� = �c is then calculated
by keeping the parameterL in Eq. (8.29) finite. At the transition�− = 0, and the relevant dimensionless
energy scale is now�L ≡ 2/(L2�+c2) such that the entanglement entropy diverges as

SL ∝ −(1/2)log2(2�L)= log2L, L → ∞ . (8.31)

The logarithmic divergence at the transition resembles the entropy of a sub-region of lengthL, SL ≈
(c + c̄)/6 log2L + k in 1+ 1 conformal field theories with holomorphic and anti-holomorphic central
chargesc andc̄, as discussed by Vidal et al.[357] in an analysis of entanglement in spin-1

2 chains.

8.3.2. Pairwise entanglement and squeezing in the Dicke model
As shown by Wooters[365], the entanglement between any two spin-1

2s in a mixed state�12 can be
calculated from the concurrenceC which in the Dicke model, Eq. (8.1) should be scaled by a factorN in
order to compensate for the 1/

√
N in the coupling energy,

CN ≡ NC, C ≡ max{0, �1 − �2 − �3 − �4} , (8.32)

where the�i are the square roots of the eigenvalues (in descending order) of�12(�1y⊗�2y)�∗12(�1y⊗�2y).
Wang and MZlmer calculated the concurrence of pure Dicke states|j =N/2,m〉, Eq. (3.12),

C = 1

2N(N − 1)
{N2 − 4M2 −

√
(N2 − 4M2)[(N − 2)2 − 4M2]} , (8.33)

using theSN permutation symmetry of the Dicke HamiltonianHDicke. Similarly, the mixed state�12 as
obtained from the ground state ofHDicke has the form

�12 =



�+ 0 0 u

0 w w 0
0 w w 0
u 0 0 �−


 , (8.34)

where�±, u, andw can be expressed by the expectation values of the collective operators,〈Jz〉, 〈J 2
z 〉, and

〈J 2+〉. For small coupling�, perturbation theory yields anN-independent behavior ofCN ,

CN(� → 0) ∼ 2�2/(1+ �2), � ≡ �/(� + �0) . (8.35)

At finite N, Wang and Sanders[366] proved a quantitative relation betweenspin squeezingand pairwise
entanglement valid for symmetric multi-qubit states for Hamiltonians with spin permutation symmetry.
They considered a collective spin operatorS� ≡∑N

i=1�i�/2,�=(x, y, z)and calculated the spin squeezing
parameter� that was first introduced by Kitawaga and Ueda[367],

�2 ≡ 4

N
(�)S)n)2 = 1− 2(N − 1)

[
|〈�i+ ⊗ �j+〉| + |〈�iz ⊗ �jz〉|

4
− 1

4

]
, (8.36)

where the unit vector)n is perpendicular to the mean spin〈)S〉 and defines the direction of minimal variance
(�S)2, and the spin correlation functions can be evaluated for anyi  = j . Messikh, Ficek, and Wahiddin
[368] compared the Kitawaga–Ueda definition to another definition of spin squeezing by Wineland and
co-workers[369] for the two-atom Dicke model. They showed that the former is a better definition of
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entanglement. Wang and Sanders[370] discussed how both definitions coincide with bosonic squeezing
for N → ∞ and calculated the transfer of squeezing between the two modes in the RWA version of the
Dicke HamiltonianHRWA

Dicke, Eq. (8.5).
In the thermodynamic limitN → ∞, the scaled concurrence in the Dicke model is expressed as

C∞ = (1+ �)[〈(d†)2〉 − 〈d†d〉] + 1
2(1− �) , (8.37)

where�= 1 andd†= b† in the normal phase (�< �c), whereas�= (�c/�)
2 andd†= b†+√

N(1− �)/2
in the superradiant phase (�> �c). Recallingb† = √

�0/2(y − ipy/�0), one can transform Eq. (8.37)
to establish a relation between the scaled concurrence and themomentum squeezingthat occurs if the
variance(�py)2 ≡ 〈p2

y〉 − 〈py〉2 is less than 1/2. Expressed in terms of(�py)2, one obtains

C∞ = (1+ �)[1
2 − (�py)

2/�0] + 1
2(1− �) , (8.38)

where again, setting� = (�c/�)
2 gives the superradiant phase equivalent. The two quadrature variances

(�x)2, (�px)2, (�y)2, and(�py)2 were calculated by Emary and Brandes in[348]. For � → �c, the
position variances(�x)2 and(�y)2 diverge whereas the momentum variances(�px)

2, and(�py)2 show
squeezing.

Explicit analytical expressions for the concurrenceC∞, Eq. (8.38), were derived in[359] by using the
mapping to the density matrix of a thermal oscillator as

C∞ = 1− (��/�0) coth(��/2), cosh�� = 1+ 2�−�+/D ,

D ≡ [cs(�− − �+)]2, 2�/ sinh�� =D/(�−c2 + �+s2) . (8.39)

Due to symmetry, these are the same parameters as for the reduced field (x) density matrix�∞ with
s = sin� andc = cos� interchanged, and one obtains the simple resultC∞ = 1 − �(�−s2 + �+c2)/�0
which at resonance (� = �0) reads

Cx�1∞ = 1− 1
2[
√

1+ x +√
1− x], x ≡ �/�c (8.40)

Cx�1∞ = 1− 1√
2x2

[(sin2 �)

√
1+ x4 −

√
(1− x4)2 + 4

+ (cos2 �)

√
1+ x4 +

√
(1− x4)2 + 4], 2� = arctan[2/(x2 − 1)] . (8.41)

The explicit expressions Eq. (8.40) reveal the square-root non-analyticity of the scaled concurrence in
the Dicke model near the critical point�c. Note that the concurrence assumes its finite maximum,

C∞(�c)= 1−
√

2

2
(8.42)

at the critical point� = �c.

8.3.3. Entanglement in other spin models
Osterloh et al.[354] presented a detailedscaling analysisof the concurrenceC(i) between two sites

with distancei in a spin-12 ferromagnetic chain in a magnetic field (set to unity) with nearest-neighbor
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interactions (XYmodels),

H =−�(1+ �)
N∑
i=1

�xi �
x
i+1 − �(1− �)

N∑
i=1

�yi �
y
i+1 −

N∑
i=1

�zi , (8.43)

which for anisotropy parameters 0< ��1 belong to the Ising universality class with a quantum phase
transition at�c = 1 forN → ∞. They obtainedC(i) for the case�= 1 using correlation functions of the
Ising model. ForN → ∞, the maximum ofC(1) does not coincide with the expected non-analyticity of
C(1) at�= �c. The logarithmic divergence in the first derivative,dC(1)/d�= (8/3	2) ln |�− �c|+ const
for N → ∞, can be related with its precursors at� = �m for finite N (with �m − �c ∝ N−1.86) by
using a single-parameter scaling functionf (N1/�(� − �m)) in order to analyze the data at differentN.
This analysis confirms the critical exponent� = 1 known from the Ising model and demonstrates that
scaling, as well as universality (by repeating the analysis for�  = 1) works for the concurrence. Another
interesting feature of this model is the fact that although the correlation length diverges at the critical
point, all concurrencesC(i) with i >2 vanish.

In an earlier calculation, Schneider and Milburn[371]considered a driven, dissipative large pseudo-spin
model described by the equation of motion for the atomic density operator�(t),

��

�t
=−i

�0

2
[J+ + J−, �] + �A

2
(2J−�J+ − J+J−� − �J+J−) (8.44)

which is in an interaction picture within Markov and rotating wave approximation, where� is the Rabi
frequency and�A the Einstein A coefficient (damping rate) of each atom. The model exhibits a (non-
equilibrium) phase transition for�/j=�A and�, j → ∞. Schneider and Milburn calculated the unscaled
two-atom concurrence forj = N/2 = 1 and found entanglement in the steady state, as well as entan-
glement maxima on the weak coupling side of the transition that moved closer to the critical point with
increasingj.

Vidal et al.[372] considered the Hamiltonian that was first introduced by Lipkin et al.[373] in Nuclear
Physics,

H ≡ − �

N

∑
i<j

(�ix�
j
x + ��iy�

j
y)−

∑
i

�iz =−2�

N
(J 2

x + �J 2
y )− 2Jz + �

2
(1+ �) , (8.45)

which displays a second-order, mean-field type quantum phase transition at�c=1 from a non-degenerate
ground state to a doubly degenerate ground state for any anisotropy parameter�  = 1. They calculated the
re-scaled concurrenceCN−1, Eq. (8.32), for various 0���1.CN−1 develops a singularity at the critical
point and for finiteN and�  = 1 scales like

1− CN−1(�m) ∼ N−0.33±0.01, �m − �c ∼ N−0.66±0.01 , (8.46)

where�m is the value of� for which CN−1 is maximum. As a further interesting feature, they found
a vanishing of the concurrence for�  = 0 at a special value�0(�) that lead to a phase diagram in the
�-�-plane separating ground states withCN−1  = 0 but zero spin squeezing (�2 = 1, cf. Eq. (8.36)) for
�> �0 from ground states with spin squeezing,�2 = 1−CN−1<1 for �< �0. For�= 0, the ground state
is always spin squeezed which is surprising since the� = 0 model belongs to the same universality class
as the�  = 0 models.
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Dusuel and Vidal[374] used Wegner’s continuous unitary transformation method in order to obtain
finite-size scaling exponents, i.e., the 1/N corrections to theN=∞ results for the Lipkin–Meshkov–Glick
model. This allowed them to obtain analytical results for the exponents (1/3 and 2/3 in Eq. (8.46)).
Furthermore, Latorre et al.[375] studied the entanglement entropy in this model and found a surprising
similarity to the one-dimensionalXY-model.

Reslen et al.[358]used a second-order cumulant expansion to derive an effective temperature-dependent
Hamiltonian for the one-mode Dicke modelHDicke, Eq. (8.1),

Heff(�)= �0Jz −
[

2�√
N

]2 [
1+ 2

�(n(�)+ 1)

]
J 2
x , n(�)= (e� − 1)−1 , (8.47)

which they used to calculate thermodynamic equilibrium expectation values at temperature 1/� for the
atomicdegrees of freedom. For zero temperature, this corresponds to the an-isotropic Lipkin model, Eq.
(8.45), with�=0,�0=−2, and 4�2 → 2� (dropping the constant term). They found excellent agreement
between the results (N=15) for the ground-state energyEG and the inversion〈Jz〉 calculated withHDicke
and withHeff(� → ∞). Furthermore, they analyzed the dependence onNof the critical� andCN , �m−�c
andC∞(�c)−CN(�m), cf. Eq. (8.42), and confirmed their respective scaling with the same exponents as
for the Lipkin model, Eq. (8.46), cf. however the discussion in[374].

Levine and Muthukumar[376] calculated the entanglement entropy for the spin-1
2 boson Hamiltonian,

H = ��x + �√
2m�

(a + a†)�z + �a†a , (8.48)

which is canonically equivalent to the Rabi Hamiltonian, Eq. (8.4). They found a transition from zero to
finite entropy at� ≡ �2/m�2� = 1 in the limit�/� → ∞. The corresponding bifurcation in the ground
state was illustrated by Hines et al.[377], who analyzed a corresponding classical model (with a spinning
top replacing the spin) and also confirmed the existence of the pitchfork bifurcation for the Dicke model,
cf. Fig. 56.

Finally,Verstraete et al.[378] found the divergence of entanglementwithouta quantum phase transition
in gapped quantum spin systems. They studied spin-1 Hamiltonians with Haldane gap such as the exactly
solvable Affleck–Kennedy–Lieb–Tasaki model and calculated the so-called localizable entanglement.
Remarkably, they proved that the associated entanglement length�E can diverge, with the correlation
length�C remaining finite.

9. Conclusion

One of the motivations of this Review has been to establish connections between Quantum Optics and
Condensed-Matter Physics, primarily in the area of electronic properties of mesoscopic systems.Activities
at the interface between these fields, both theoretically and experimentally, have already started to grow
rapidly, also driven by the search for elementary, scalable physical systems in which quantum mechanical
operations (e.g., superposition and entanglement) can be controlled from the outside. As shown in the
examples of (single or multiple) artificial two-level systems, the coupling to additional bosonic modes,
to electronic reservoirs, or to dissipative environments very soon gives rise to an enormous complexity.

Many theoretical problems still remain open, and many new problems will appear in the future. The
description of the combined effects of many-body interactions, non-equilibrium physics, and quantum
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coherence is a great challenge for a microscopictransport theory. For example, with regard to transport
through single boson-mode models, a next step would be to fully understand the influence of non-linear
oscillator-couplings and Kondo-type correlations on transport, frequency-dependent quantum noise and
Full Counting Statistics.

A further example is the understanding ofentanglementin situations that go beyond the relatively
simple models presented in the last section of this Review. Very little (if at all) is known about its role
in many-body systems with quantum phase transitions such as, e.g., in disordered electronic systems.
Another question is whether the relation between quantum chaos, entanglement, and the classical limit
is in actual fact much deeper than it appears from the study of the single-mode Dicke or similar models.
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Appendix A. Polaron-transformed master equation

This appendix provides details of the derivation of the ‘POL’ Master equation Eqs. (2.16)–(2.19).

A.1. Interaction picture

The interaction picture for arbitrary operatorsO and theX operators, Eq. (2.15), is defined by

Õ(t) ≡ eiH0tOe−iH0t , Xt ≡ eiH0tXe−iH0t . (A.1)

In particular, one has̃nL(t)= nL, ñR(t)= nR, and

p̃(t)= p̂ei�tXt , p̃†(t)= p̂†e−i�tX
†
t , � ≡ �L − �R . (A.2)

Furthermore, for the total density matrix
(t)= e−iHt
t=0eiHt one defines


̃(t) ≡ eiH0t
(t)e−iH0t , 
(t) ≡ e−iHt
t=0eiHt . (A.3)

The expectation value of any operatorO is given by

〈O〉t ≡ Tr(
(t)O)= Tr(
̃(t)Õ(t)) , (A.4)
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for which equations of motions are derived from the equation of motion for
̃,

d

dt

̃(t)= − i[H̃T (t)+ H̃V (t), 
̃(t)] = −i[H̃T (t), 
̃(t)] − i[H̃V (t), 
0]

−
∫ t

0
dt ′[H̃V (t), [H̃T (t

′)+ H̃V (t
′), 
̃(t ′)]] . (A.5)

One defines the effective density operator of the system ‘dot+bosons’,

�̃(t) ≡ Trres
̃(t) (A.6)

as the trace over the electron reservoirs (res) and assumes the second order Born approximation with
respect toHV ,


̃(t) ≈ R0 ⊗ �̃(t), t >0 , (A.7)

whereR0 is the density matrix of the electron reservoirs. Then, terms linear inHV vanish and it remains

d

dt
�̃(t)=−i[H̃T (t), �̃(t)] − Trres

∫ t

0
dt ′[H̃V (t), [H̃V (t

′), R0 ⊗ �̃(t ′)]] . (A.8)

Performing the commutators and using the free time evolution of the electron reservoir operators,
one finds

d

dt
�̃(t)= − i[H̃T (t), �̃(t)]

−
∑
ki

∫ t

0
dt ′gki (t − t ′){s̃L(t)s̃†

L(t
′)�̃(t ′)− s̃L(t

′)†�̃(t ′)s̃L(t)}

−
∑
ki

∫ t

0
dt ′ḡki (t ′ − t){s̃†

L(t)s̃L(t
′)�̃(t ′)− s̃L(t

′)�̃(t ′)s̃†
L(t)}

−
∑
ki

∫ t

0
dt ′gki (t ′ − t){�̃(t ′)s̃L(t ′)s̃†

L(t)− s̃
†
L(t)�̃(t

′)s̃L(t ′)}

−
∑
ki

∫ t

0
dt ′ḡki (t − t ′){�̃(t ′)s̃†

L(t
′)s̃L(t)− s̃L(t)�̃(t

′)s̃†
L(t

′)}

gki (�) ≡ |V i
k |2f i(�ki )e

i�ki �, ḡki (�) ≡ |V i
k |2[1− f i(�ki )]ei�ki �, i = L/R , (A.9)

with the Fermi distributionsf i(�ki ) ≡ Trres(R0c
†
ki
cki ). The sums overki can be written as integrals,

introducing the tunneling density of states�i(�) in leadi,∑
ki

|V i
k |2f i(�ki )e

i�ki (t−t ′) =
∫ ∞

−∞
d��i(�)f

i(�)ei�(t−t ′), �i(�) ≡
∑
ki

|V i
k |2
(� − �ki ) . (A.10)

A.2. Markov approximation

In the infinite source–drain voltage limit�L → ∞ and�R → −∞ introduced by Gurvitz and Prager
[54,55], and Stoof and Nazarov[56], the left Fermi function is one and the right Fermi function is zero.An
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additional simplification is obtained by assumingconstant tunneling densities of states, �i(�)=�i=�i/2	,
with constant tunnel rates�i ≡ 2	

∑
ki
|V i

k |2
(�−�ki ), i=L/R, cf. Eq. (2.12). This leads to Delta functions
like ∑

kL

|V L
k |2f L(�kL)e

i�kL(t−t ′) = �L
(t − t ′) , (A.11)

and correspondingly for the other terms. In thisMarkov limit, the Master equation Eq. (A.9) becomes

�̃(t)= �̄0 − i
∫ t

0
dt ′[H̃T (t), �̃(t)]

− �L

2

∫ t

0
dt ′{s̃L(t ′)s̃†

L(t
′)�̃(t ′)− 2s̃L(t

′)†�̃(t ′)s̃L(t ′)}

− �L

2

∫ t

0
dt ′{�̃(t ′)s̃L(t ′)s̃†

L(t
′)} − �R

2

∫ t

0
dt ′{s̃†

R(t
′)s̃R(t ′)�̃(t ′)}

− �R

2

∫ t

0
dt ′{−2s̃R(t

′)�̃(t ′)s̃†
R(t

′)+ �̃(t ′)s̃†
R(t

′)s̃R(t ′)} , (A.12)

where one integration from 0 tot was performed and
∫ t

0 dt ′
(t − t ′)f (t ′)= 1
2f (t) was used.

A.3. Equations of motions

It is now convenient to derive the equations of motions for the expectation values of the dot variables
directly from the Master equation Eq. (A.12). One first calculates the commutators

[ñL(t), H̃T (t
′)] = −[ñR(t), H̃T (t

′)] = Tc(p̃(t
′)− p̃†(t ′))

[p̃(t), H̃T (t
′)] = Tce

i�(t−t ′){n̂LXtX
†
t ′ − n̂RX

†
t ′Xt }

[p̃†(t), H̃T (t
′)] = Tce

−i�(t−t ′){n̂RX†
t Xt ′ − n̂LXt ′X

†
t } (A.13)

and uses the completeness relation

1= |0〉〈0| + n̂R + n̂L (A.14)

in the three-dimensional Hilbert space of the double dot to expresss̃L(t
′)s̃†

L(t
′)= |0〉〈0| = 1− n̂R − n̂L.

Multiplying Eq. (A.12) with n̂L, n̂R, p̂, andp̂† and performing the trace with the three dot states, one
obtains

〈n̂L〉t − 〈n̂L〉0 =−iTc

∫ t

0
dt ′{〈p̂〉t ′ − 〈p̂†〉t ′ } + �L

∫ t

0
dt ′(1− 〈n̂L〉t ′ − 〈n̂R〉t ′)

〈n̂R〉t − 〈n̂R〉0 = iTc

∫ t

0
dt ′{〈p̂〉t ′ − 〈p̂†〉t ′ } − �R

∫ t

0
dt ′〈n̂R〉t ′

〈p̂〉t − 〈p̂〉0t = − �R

2

∫ t

0
dt ′ei�(t−t ′)〈XtX

†
t ′p̃(t

′)〉t ′

− iTc

∫ t

0
dt ′ei�(t−t ′){〈n̂LXtX

†
t ′ 〉t ′ − 〈n̂RX†

t ′Xt 〉t ′ } (A.15)
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〈p̂†〉t − 〈p̂†〉0t = − �R

2

∫ t

0
dt ′e−i�(t−t ′)〈p̃†(t ′)Xt ′X

†
t 〉t ′

+ iTc

∫ t

0
dt ′e−i�(t−t ′){〈n̂LXt ′X

†
t 〉t ′ − 〈n̂RX†

t Xt ′ 〉t ′ } .

Here, expectation values are defined as the trace over the dotandthe boson system, and

〈p̂(†)〉0t ≡ Tr(�̄0(pei�tXt )
(†)) . (A.16)

The time evolution of the expectation values〈p̂(†)〉0t describes the decay of an initial polarization of the
system and can be calculated exactly. This decay, however, plays no role for the stationary current, and
one can safely assume zero initial expectation values ofp̂(†) whence〈p̂(†)〉0t = 0 for all t >0.

As can be recognized from Eq. (A.15), the system of equations for the dot expectation values is not
closed since terms like〈n̂LXtX

†
t ′ 〉t ′ contain products of dot and boson (X) operators. At this point, one

invokes a physical argument to decouple the equations: if one is not interested in the backaction of
the electron onto the boson system, the latter can be assumed to be in thermal equilibrium all times,
in particular when dealing with a continuum of infinitely many bosonic modesQ. Onedecouplesthe
reduced density matrix̃�(t ′) according to

�̃(t ′) ≈ �B ⊗ �̃dot(t
′), �̃dot(t

′)= TrB �̃(t ′) , (A.17)

cf. the discussion after Eq. (2.24). This directly leads to Eq. (2.16).

Appendix B. Calculation of the boson correlation functionCε

Here, some explicit expressions for the Laplace transform of the bosonic correlation functionC(t),
Eq. (2.21),

Ĉ(z) ≡
∫ ∞

0
dte−ztC(t) (B.1)

C(t)= exp

{∫ ∞

0
d�

J (�)

�2

[
(1− cos�t) coth

(
��

2

)
+ i sin �t

]}
(B.2)

are derived.

B.1. Zero temperature Ohmic case

For Ohmic dissipation withs=1, Eq. (2.52), one has a boson spectral densityJ (�)=2�� exp(−�/�c).
At zero temperature (1/� = T = 0),C(t)= (1+ i�ct)

−2�, and one finds[66]

Ĉ(z) ≡
∫ ∞

0
dte−zt (1+ i�ct)

−2� = (i�c)
−2�z2�−1e−iz/�c�(1− 2�,−iz/�c) , (B.3)

where Gradstein–Ryshik 3.382.4 was used and�(·, ·)denotes the incomplete Gamma function. Measuring
� in units of the cut-off�c (setting�c = 1) simplifies the notation and one obtains

Ĉ(−i�)=−i(−�)2�−1e−��(1− 2�,−�) . (B.4)
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Note that� must have a small positive imaginary part Rez>0 in the definition of the Laplace transfor-
mation since the incomplete Gamma function�(1 − 2�, z) has a branch point atz = 0. However, one
can use the series expansion�(1 − 2�, x) = �(1 − 2�) −∑∞

n=0(−1)nx1−2�+n/[n!(1 − 2� + n)] for
1− 2�  = 0,−1,−2, . . . to obtain

Ĉ(−i�)=−i(−�)2�−1e−��(1− 2�)+ ie−�
∞∑
n=0

�n

n!(1− 2� + n)
, 2�  = 1,2,3, . . . .

The second term is an analytic function of�. Now one writes

−i(−�)2�−1 =
{−i|�|2�−1, �<0 ,

�2�−1e−	i(1/2+2�−1), �>0 .
(B.5)

Recalling the reflection formula for the Gamma function,�(1− z)= 	/�(z) sin	z, this yields

Ĉ(−i�)= 	

�(2�)
�2�−1e−� + i

[
	

�(2�)
�2�−1e−� cot 2	� + e−�

∞∑
n=0

�n

n!(1− 2� + n)

]
, �>0 ,

Ĉ(−i�)= ie−�

[
− 	

�(2�) sin 2	�
|�|2�−1 +

∞∑
n=0

�n

n!(1− 2� + n)

]
, �<0 . (B.6)

From this, one reads off the real and the imaginary part ofĈ(−i�),

ReĈ(−i�) ≡ 	P(�)= 	

�(2�)
�2�−1e−��(�) (B.7)

ImĈ(−i�) ≡ e−�

[ ∞∑
n=0

�n

n!(1− 2� + n)
+ 	|�|2�−1

�(2�) sin 2	�
·
{−1, �<0

cos 2	�, �>0

}]
. (B.8)

B.2. ‘Structured bath’ with oscillatoryJ (�)

In the case of more complicated spectral densities it is advantageous to splitJ (�) into an Ohmic and
a non-Ohmic part, e.g. for the piezo-acoustic case, Eq. (2.56),

J (�)= Johm(�)+ Josc(�), Johm(�) ≡ 2��e−�/�c , Josc(�) ≡ −2��d sin

(
�

�d

)
e−�/�c ,

(B.9)

where�c is the high-frequency cut-off and�d = c/d the additional frequency scale of the bosonic bath,
cf. Eq. (2.56). One writes

C(t)= e−Q(t), Q(t) ≡ QT=0
ohm(t)+QT=0

osc (t)+QT>0
ohm(t)+QT>0

osc (t) , (B.10)

QT=0
i (t) ≡

∫ ∞

0
d�

Ji(�)

�2 [1− cos�t + i sin �t] , (B.11)

QT>0
i (t) ≡

∫ ∞

0
d�

Ji(�)

�2 [(1− cos�t)(coth(��/2)− 1)], i = ohm,osc , (B.12)
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thus separating the zero temperature contribution from the finite temperature contribution. Eq. (B.10) is
convenient for a numerical evaluation of the Laplace transform, Eq. (B.1), where one writesz=−i�+ 

and uses e−z = e−
(cos�t + i sin �t) which is useful to take advantage of special routines for integrals
over the semi-infinite, positive real axis with weight functions sin() and cos().

The zero temperature parts in Eq. (B.10) are

QT=0
ohm(t)= 2� ln(1+ i�ct), QT=0

osc (t)=−2�
�d

�c

[
2f

(
�ct,

�c

�d

)
+ ig

(
�ct,

�c

�d

)]

f (x, y) ≡ 1

8

{
y ln

[
(1+ (x + y)2)(1+ (x − y)2)

(1+ y2)2

]
+ x ln

[
1+ (x + y)2

1+ (x − y)2

]

+2 arctan(x + y)+ 2 arctan(y − x)− 4 arctan(y)

}

g(x, y) ≡ 1

2

{
1

2
ln

[
1+ (x + y)2

1+ (x − y)2

]
+ (x + y)arctan(x + y)− (y − x)arctan(y − x)

}
. (B.13)

Furthermore, the Ohmic finite temperature contribution is expressed in terms of Gamma functions of
complex argument,

QT>0
ohm(t)=−4�

{
ln

∣∣∣∣�
(

1+ 1

��c

+ i
t

�

)∣∣∣∣− ln

∣∣∣∣�
(

1+ 1

��c

)∣∣∣∣
}

. (B.14)

Appendix C. Memory function formalism for quantum wire in magnetic field

The memory function formalism[237] starts from the observation that it is more advantageous to
perform an expansion of the inverse conductivity�−1 rather than of� itself. The reason is that� ∼ �,
the transport time which (to lowest order) in turn isinverselyproportional to the square of the scattering
potential matrix element. Therefore, one introduces a memory function which in the multichannel case
becomes a matrix,

M(z) ≡ z
(z)[
0 − 
(z)]−1 . (C.1)

Solving for the matrix


(z)= [z+M(z)]−1M
0 (C.2)

and inserting into Eq. (4.37), with Eq. (4.38) one obtains

�(z)= ie2
∑
nm

([z+M]−1
0)nm . (C.3)

Note thatM and
0 are matrices so that in the multichannel case a matrix inversion is required. The
calculation is started by expanding Eq. (C.2) in terms of the memory matrix,z
 = M
0 + · · · . By
calculatingM rather then
, a partial summation in the scattering potential (ladder diagrams) is already
performed.
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C.1. Conductivity in a multi-channel system

The equation of motion

z〈〈jn; jm〉〉z = Ls〈[jn, jm]〉 + 〈〈An; jm〉〉z, An ≡ [jn,H ] , (C.4)

together with[jn, jm] = 0 is used twice[237] to obtain an expression forM,

z(M
0)nm = �nm(z)− �nm(0), �nm(z) ≡ 〈〈An;Am〉〉z . (C.5)

The matrixM(z) has a spectral representation and can be decomposed into real and imaginary part,
M(�+ i0)=M ′(�)+ iM ′′(�) with real matricesM ′(�)=−M ′(�) andM ′′(�)=M ′′(−�). For� → 0,
the real partM ′(0)= 0. Consequently, in the dc-limitz= � + i0 → 0+ i0,

M(z)
0 = �(z)− �(0)

z
→ iIm

�

��
�(�)

∣∣∣∣
�=0

≡ iL . (C.6)

An expression for the ac conductivity can be obtained in the limit of frequenciesz so small that the
dependence ofM(z) onzcan be neglected. In the limit of2�>�, the energy dependence of the scattering
rates around the Fermi energy�F is assumed to be negligible. In terms of theL-matrix,�(z) can then be
written as

�(z)= ie2
∑
nm

(
0[z
0 + iL]−1
0)nm . (C.7)

The commutatorAn is easily obtained as

An = 1

L2
s

∑
k,q,n′

[Vnn′(k, q)vnkc+nkcn′k+q − Vn′n(k, q)vnk+qc
+
n′kcnk+q] . (C.8)

Calculation of the matrix elementsz(M(z)
0)nm, Eq. (C.5), requires the correlation function matrix
elements which we denote by

〈n, n′;m,m′〉 ≡ 〈〈c+nkcn′k+q; c+mk′cm′k′+q ′ 〉〉z , (C.9)

suppressing the indexesk, k′, q, q ′ which remain the same. This leads to

�nm(z)=
1

L4
s

∑
n′m′kk′qq ′

[Vnn′(k, q)Vmm′(k′q ′)vnkvmk′ 〈n, n′;m,m′〉

− Vnn′(k, q)Vm′m(k
′q ′)vnkvmk′+q ′ 〈n, n′;m′,m〉

− Vn′n(k, q)Vmm′(k′q ′)vnk+qvmk′ 〈n′, n;m,m′〉
+ Vn′n(k, q)Vm′m(k

′q ′)vnk+qvmk′+q ′ 〈n′, n;m′,m〉] . (C.10)

The above equations constitute the general framework for the calculation of the conductivity in a mul-
tichannel system. To second order in the potential scattering, they are still completely general. For non-
interacting electrons, one has

〈n, n′;m,m′〉 = 
q,−q ′
k′,k+q
nm′
n′mLs�nm(z), �nm(z) ≡
f (�nk)− f (�mk+q)

z+ �nk − �mk+q

, (C.11)
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where we again suppressed the indexesk andk + q. One obtains from Eqs. (C.11) and (C.10)

�nm(z)=
1

L3
s

∑
kq

|Vnm(q)|2[vnkvmk+q�nm(z)+ vnk+qvmk�mn(z)]

− 
nm
1

L3
s

∑
kqn′

|Vnn′(q)|2[vnkvmk�nn′(z)+ vnk+qvmk+q�n′n(z)] . (C.12)

In the limit of temperatureskBT , 2�>�F , one has

−Im �nm(�)=
	�

vnvm
[
(k − kn){
(q + kn − km)+ 
(q + kn + km)}

+ 
(k + kn){
(q − kn − km)+ 
(q − kn + km)}] . (C.13)

This leads to

−Im �nm(�)= s
4	�

(2	)2Ls

(|Vnm(kn − km)|2 − |Vnm(kn + km)|2)

− 
nm
∑
n′

s
4	�

(2	)2Ls

vn

vn′
(|Vnn′(kn − kn′)|2 + |Vnn′(kn + kn′)|2) , (C.14)

wheres = 1 or 2 is the spin degeneracy. Using Eqs. (4.38) and (C.6), the matrixL thus is

Lnm = s

	Ls

(|Vnm(kn + km)|2 − |Vnm(kn − km)|2), n  = m

Lnn = s

	Ls


∑
n′  =n

vn

vn′
(|Vnn′(kn − kn′)|2 + |Vnn′(kn + kn′)|2)+ 2|Vnn(2kn)|2


 . (C.15)

C.2. Potential scattering matrix elements

The momentum matrix element

〈nk|e−iqx|n′k′〉 = 
k,k′+qxM
qx
nn′(qy) (C.16)

reflects momentum conservation inx-direction. The matrix elementsM can be calculated exactly, their
explicit expressions forn= 0,1 are

|Mqx
00(qy)|2 = e−1/2(�2+ 2), |Mqx

10(qy)|2 = e−1/2(�2+ 2) 1
2[�2 +  2]

|Mqx
11(qy)|2 = e−1/2(�2+ 2)[1− 1

2(�
2 +  2)]2, � = lB�qx,  = lBqy , (C.17)

where we introduced the effective magnetic lengthlB , the cyclotron frequency�B , and the parameter�
according to

� ≡ �c

�B

, �c ≡ eB

m∗c
, �B ≡

√
�2

0 + �2
c, lB ≡

√
2

m∗�B

. (C.18)
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The matrix elements Eq. (4.41) can be evaluated explicitly for Delta-scatterers withu(q) independent of
q. In this case,

|u(q= (k − k′, qy))|2 ≡ V 2
0 , (C.19)

The remaining sum(1/Ls)
∑

qy
|Mqx

nn′(qy)|2 can be transformed into an integral and yields the result

|V00(q)|2 = niV
2
0 Ls√

2	l2B

e−1/2(lB�q)2, |V10(q)|2 = |V00(q)|2 1

2
[1+ (lB�q)2]

|V11(q)|2 = |V00(q)|2[3
4 − 1

2(lB�q)2 + 1
4(lB�q)4]. (C.20)

C.3. Explicit expression for�(z)

The energy band-structure of a quantum wire with parabolic confinement potential of strength2�0 in
a perpendicular magnetic fieldB is

�nk =
(
n+ 1

2

)
2�B + �B

22

2m∗ k
2, �B =

(
�0

�B

)2

= 1

1+ (�c/�0)
2 , (C.21)

i.e. a set of equidistant parabolas, labeled by the Landau band indexn. Fixing the Fermi energy between
the subbandsn= 1 andn= 2, i.e.�F = 22�B , the two subband Fermi wave vectors become

k0 =
√

2m∗

�B2
2 (�F − 1

2
2�B)=

√
3

2

(
�B

�0

)3/2

kF0 ,

k1 =
√

2m∗

�B2
2 (�F − 3

2
2�B)=

√
1

2

(
�B

�0

)3/2

kF0, kF0 ≡
√

2m∗�0

2
. (C.22)

Recognizing that(lB�)2(�B/�0)
3k2

F0 = 2(�c/�0)
2, the argumentslB�q in the matrix elements become

(lB�q)2 =




�[√3+ 1]2, q = k0 + k1
�[√3− 1]2, q = k0 − k1

�[2]2, q = 2k0
�[2√3]2, q = 2k1

, � ≡
(

�c

�0

)2

(C.23)

for the four cases of intra-band backscatteringq = 2k0,2k1, inter-band backward (q = k0 − k1) and
inter-band forward scattering (q = k0 + k1). The dependence on the magnetic field can be completely
absorbed into the parameter�.We express the scattering matrix elements by the scattering rate�−1 without
magnetic field,

�−1 ≡ n2D
i V 2

0√
2	l20vF02

2
= niV

2
0 m

∗
√

4	23
(C.24)
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with vF0 ≡ 2kF0/m
∗ andl0 =√

2/m∗�0. Then, one haslB = l0(1+ �)−1/4, and the conductivity can be
written as

�(z)= ie2 s

	
vF0�(1+ �)−1/4

z�(
√

3
2 +

√
1
2)+ i[√3L̃11 + 1√

3
L̃00 − 2L̃01]

[z� + i
√

2
3L̃00][z� + i

√
1
2L̃11] + 2√

3
L̃2

01

(C.25)

L̃00 ≡
√

1+ �

{√
3

2

∑
�=±1

{(1+ [1+ �
√

3]2�)e− 1
2�[1+�

√
3]2} + 2e−6�

}

L̃11 ≡
√

1+�

{
1

2
√

3

∑
�=±1

{(1+[1+�
√

3]2�)e− 1
2�[1+�

√
3]2}
}
+2
√

1+ �

(
3

4
− 2� + 4�2

)
e−2�

L̃01 ≡
√

1+ �
1

2

∑
�=±1

{�(1+ [1+ �
√

3]2�)e− 1
2�[1+�

√
3]2} , (C.26)

where we used Eq. (4.40),(C.23),

niV
2
0√

2	l2B

= vF0�
−1 l0

lB
= vF0�

−1(1+ �)1/4 , (C.27)

and dimensionless functions̃L00= 	L00/(svF0�
−1) etc. The Fermi velocitiesv0 andv1 can be expressed

by the Fermi velocityvF0 as

v0 = vF0

√
3
2(1+ �)−1/4, v1 = vF0

√
1
2(1+ �)−1/4 . (C.28)
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