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Abstract

A review of coherent and collective quantum optical effects like superradiance and coherent population trapping
in mesoscopic systems is presented. Various new physical realizations of these phenomena are discussed, with :
focus on their role for electronic transport and quantum dissipation in coupled nano-scale systems like quantum
dots. A number of theoretical tools such as Master equations, polaron transformations, correlation functions, or
level statistics are used to describe recent work on dissipative charge qubits (double quantum dots), the Dicke effect,
phonon cavities, single oscillators, dark states and adiabatic control in quantum transport, and large spin-boson
models. The review attempts to establish connections between concepts from Mesoscopics (quantum transport,
coherent scattering, quantum chaos), Quantum Optics (such as superradiance, dark states, boson cavities), an
(in its last part) Quantum Information Theory.
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1. Introduction

There is a growing interest in the transfer of concepts and methods between Quantum Optics and
Condensed-Matter Physics. For example, well-known methods from Laser Physics like the control of
quantum coherent superpositions or strong coupling of atoms to cavity photons have started to become
feasible in artificial condensed-matter structures. On the other hand, condensed matter concepts are
used, e.g., in order to realize quantum phase transitions with atoms in tunable optical lattices. The main
direction of this Review is the one from Quantum Optics towards Condensed-Matter Physics, and to be
more specific, towards mesoscopic systems such as artificial atoms (quantum dots). The primary subject
therefore are concepts, models, and methods which are originally mostly known in a quantum optical
context, and the overall aim is to show how these appear and can be understood and implemented in
Mesoscopics. Typical examples are the roles that (collective) spontaneous emission, coherent coupling
to single boson modes, quantum cavities, dark resonances, adiabatic steering etc. play for, e.g., electronic
transport in low-dimensional systems such as (superconducting or semiconducting) charge qubits.

As is the case for Quantum Optics, quantum coherence is a very important (but not the only) ingredient
of physical phenomena in mesoscopic systems. Beside coherence, collective effects due to interactions of
electrons among themselves or with other degrees of freedom (such as phonons or photons) give rise to &
plethora of intriguing many-body phenomena. At the same time, collective effects are also well-known in
Quantum Optics. The laser is a good example for the realization of the paradigm of stimulated emission
in a system with a large number of atoms, interacting through a radiation field. Another paradigm is
spontaneous emission. As one of the most basic concepts of quantum physics, it can be traced back
to such early works as that of Albert Einstein in 1917. The corresponding realization of spontaneous
emission in a many-atom system (which will play a key role in this Reviewugerradiancethis is
the collective spontaneous emission of an initially excited ensemb\etwb-level systems interacting
with a common photon field. As a function of time, this emission has the form of a very sudden peak
on a short time scale: 1/N, with an abnormally large emission rate maximwmV?2. This effect was
first proposed by Dicke in 1954, but it took nearly 20 years for the first experiments to confirm it in an
optically pumped hydrogen fluoride gas.

Outside Quantum Optics, Dicke superradiance has been known to appeadansed matter systems
for quite a while, with excitons and electron—hole plasmas in semiconductors being the primary examples.
In spite of the intriguing complexities involved, it is semiconductor quantum optics where physicists have
probably been most successful so far in providing the condensed matter counterparts of genuine quantum
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optical effects. This indeed has led to a number of beautiful experiments such as the observation of Dicke
superradiance from radiatively coupled exciton quantum wells.

On the other hand and quite surprisingly, the Dicke effect has been ‘re-discovered’ relatively recently
in the electronic transport propertiesf a mesoscopic system in a theoretical work by Shabazyan and
Raikh in 1994 on the tunneling of electrons through two coupled impurities. This has been followed by
a number of (still mostly theoretical) activities, where this effect is discussed in a new context and for
physical systems that are completely different from their original counter-parts in Optics. For some of
these (like quantum dots), the analogies with the original optical systems seem to be fairly obvious at first
sight, but in fact the mesoscopic ‘setup’ (coupling to electron reservoirs, non-equilibrium, etc.) brings in
important new aspects and raises new guestions.

The purpose ofthe present Reportis to give an overview over quantum optical concepts and models (such
as Dicke superradiance, adiabatic steering, single boson cavities) in Mesoscopics, with the main focus
on their role for coherence and correlations in electronic scattering, in mesoscopic transport, quantum
dissipation, and in such ‘genuine mesoscopic’ fields as level statistics and quantum chaos. Most of the
material covered here is theoretical, but there is an increasingly strong background of key experiments,
only some of which are described here. The current rapid experimental and theoretical progress is also
strongly driven by the desire to implement concepts from quantum information theory into real physical
systems. It can therefore be expected that this field will still grow very much in the near future, and a
Review, even if it is only on some special aspects of that field, might be helpful to those working or
planning to work in this area.

A good deal of the theoretical models to be discussed here is motivated by experiments in mesoscopic
systems, in particular on electronic transport in coupled, artificial two-level systems such as semicon-
ductor double quantum dots, or superconducting Cooper-pair boxes. Two examples in the semiconductor
case are the control of spontaneous phonon emission, and single-qubit rotations. For the sake of definite-
ness, double quantum dots will be the primary example for two-level systems throughout many parts of
this Review, but the reader should keep in mind that many of the theoretical models can be translated
(sometimes easily, sometimes probably not so easily) into other physical realizations.

Section 2 is devoted to electronic transport through double quantum dots and starts with a short survey
of experiments before moving on to a detailed theory part on models and methods, with more recent results
on electron shot noise and time-dependent effects. This is followed by a review of Dicke superradiance
in Section 3, with applications such as entanglement in quantum dot arrays, and a section on dissipation
effects in generic large-spin models that are of relevance to a large range of physical systems. Section 4
starts with a brief analysis of the Dicke spectral line-shape effect and its mathematical structure, which
turns out to be very fruitful for understanding its wider implications for correlation functions and scattering
matrices. This is discussed in detail for the original Shabazyan—Raikh and related models for tunneling
and impurity scattering and concluded by a discussion of the effect in the ac-magneto-conductivity of
quantum wires.

Section 5 presents electron transport through phonon cavities, and Section 6 introduces single-mode
quantum oscillator models, such as the Rabi—Hamiltonian, in the context of electronic transport. These
models have started to play a greatrole in the description of mechanical and vibrational degrees of freedom
in combination with transport in nanostructures, a topic that forms part of what can already safely been
called a new area of Mesoscopic Physics, i.e., nano-electromechanical systems.

Section 7 is devoted to the dark resonance effect and its spin-offs such as adiabatic transfer and rotations
of quantum states. Dark resonances occur as quantum coherent ‘trapped’ superpositions in three (or more
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state systems that are driven by (at le&st) time-dependent, monochromatic fields. Again, there are
numerous applications of this effect in Laser Spectroscopy and Quantum Optics, ranging from laser
cooling, population transfer up to loss-free pulse propagation. In mesoscopic condensed-matter systems,
experiments and theoretical schemes related to this effect have just started to appear which is why an
introduction into this area should be quite useful.

Finally, Section 8 covers the Dicke superradiance model in its purest and, perhaps, most interesting
one-boson mode version. It provides a discussion of an instability of the model, the precursors of which
are related to a cross-over in its level statistics and its quantum-chaotic behavior. Exact solutions of this
model have recently enlarged the class of systems for which entanglement close to a quantum phase
transition can be discussed rigorously, which are briefly reviewed and compared with entanglement in
the Dicke model.

2. Electronic transport and spontaneous emission in artificial atoms (two-level systems)

Electronic transport is one of the most versatile and sensitive tools to explore the intriguing quantum
properties of solid-state based systems. The quantum Hall §fleatith its fundamental conductance
unite?/ h, gave a striking proof that ‘dirty’ condensed matter systems indeed reveal beautiful ‘elementary’
physics, and in fact was one of the first highlights of the new physics that by now has established itself as
the arena of mesoscopic phenomena. In fact, electronic transport in the quantum regime can be considere
as one of the central subjects of modern Solid State Ph§id®9]. Phase coherence of quantum states
leads (or at least contributes) to effects such as, e.g., localifatiob?] of electron wave functions, the
guantization of the Hall resistance in two-dimensional electron dask3,14] the famous conductance
steps of quasi one-dimensional quantum wires or quantum point coftt&ets8] or Aharonov—Bohm
like interference oscillations of the conductance of metallic rings or cylind&is

The technological and experimental advance has opened the test-ground for a number of fundamental
physical concepts related to the motion of electrons in lower dimensions. This has to be combined
with a rising interest to observe, control and eventually utilize the two key principles underlying our
understanding of modern quantum devices: quantum superposition and quantum entanglement.

2.1. Physical systems and experiments

The most basic systems where quantum mechanical principles can be tested in electronic transport are
two-level systems. These can naturally be described by a pseudo/&aisirdigle qubit) that refers either
to the real electron spin or another degree of freedom that is described by a two-dimensional Hilbert space.
The most successful experimental realizations so far have probablgbpertonducting systerhased
on either the charge or flux degree of freedom (the Review Article by Mahklin @&@lprovides a good
introduction). In 1999, the experiments by Nakamura ef2dl] in superconducting Cooper-pair boxes
demonstrated controlled quantum mechanical oscillations for the first time in a condensed matter-based
two-level system, with more refined experiments following soon thereafter. These activities determine a
field which is still very much growing (and, needless to say, therefore cannot be treated in this Review
in full detail). One of these examples at the time of writing this Review are the experiments by the Yale
group on the coherent coupling of cavity photons to a Cooper-pair box, cf. Section 6.4.
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Furthermore, at least since the proposal by Loss and DiVincenzo in[29P8&here is a strong activity
(still mostly theoretically) to test the huge potential of éhectron spirfor solid-state realizations of qubits
and arrays of qubits. Fujisawa et 23] measured the spin-relaxation time in a single semiconductor
guantum dot in the Coulomb blockade regime, where using a voltage pulse of fixed duration, the first
excited and the ground state could be moved into and out of a transport window between left and right
chemical potential of the electron reservoirs. The resulting transient current revealed spin-flip relaxation
times longer than a fews for excited states whose spin differed from that of the ground state, whereas
without spin-flip the relaxation times were much shorter (3 ns).

Charge relaxation due to spontaneous phonon emission in quantum dots is therefore in general much
faster than spin-relaxation. In electron transport, spontaneous emission effects were first observed most
prominently in experiments with semiconductor double quantum dots. These are discussed in some detail
below, as the remainder of this section mainly deals with spontaneous emission effects in transport
through two-level systems. The operation of a single charge-based qubit as realized in semiconductor
double quantum dots was successfully demonstrated by Hayashi and co-workers in 2003, an experiment
which is discussed in Section 7.5.3.

2.1.1. Quantum dots

Quantum dots are semiconductor structures containing a small number of electrod9(D) within
a region of space with typical sizes in the sub-micrometer rf{2%e28] Many properties of such systems
can be investigated by transport, e.g. current-voltage measurements, if the dots are fabricated betweer
contacts acting as source and drain for electrons which can enter or leave the dot. In contrast to real atoms
quantum dots arepensystems with respect to the number of electidnghich can easily be tuned with
external parameters such as gate voltages or magnetic fields. For example, by changing the size and the
shape of the dot with external gate voltages, one can realize dots as artificial atoms, with the possibility to
‘scan through the periodic table’ by adding one electron after the other within one and the same system.
In fact, quantum effects such as discrete energy levels (atomic shell structure) and quantum chaos (as in
nuclei) are observable in a controlled manner in quantum [@3s Moreover, the experiments can be
conducted in a regime which usually is not accessible to experiments with real atoms. For example, a
singlet—triplet transition should occur in real helium atoms for magnetic fields such large as of the order
of 10°T, as the they occur only in the vicinity of white dwarfs and pul$a3. In artificial atoms, which
have a much larger size than real atoms, much smaller magnetic fields are sufficient to observe such
effects[30,31]

Transport experiments are very sensitive to energy scales down to a few micro electron volts. Tradi-
tionally, there are three effects which dominate transport through quantum dots: the tunnel effect, which
is a guantum mechanical phenomenon where electrons can penetrate an electrostatic potential-barrier
the charging effect which is due to the discreteness of the electron charge and known as Coulomb block-
ade effect, and size quantization due to the smallness of the dots, leading to discrete energies. Out of
these three, the Coulomb blockade effect with its charging enérgye?/2C for one additional elec-
tron is the most important and in fact sufficient to explain the simplest cases in the earlier experiments
on gquantum dots in terms of simple charging diagrams. There, the only ‘quantum’ feature of quan-
tum dots stems from the discreteness of the electron cleanrgigh the smallness of the dots providing
the correspondingly small capacitanc@gand therefore sizable charging enerdigs and the tunnel
effect merely providing the contact between the dot and the outside world (i.e. the contact leads). On
the theoretical side, this corresponds to a description of sequential tunneling in terms of simple rate
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equations, which was called ‘orthodox theory’ for single electron charging effect in general, a good stan-
dard reference for which is provided by the volume on ‘Single Charge Tunneling’ edited by Grabert and
Devoret[32].

As could be expected, a major thrust in quantum dot physics (starting in the 1990s) has been to
go beyond this simple picture and to take a closer look at the above-mentioned effects. As for charge
interaction and quantum size effects, this lead to detailed investigations of the internal structure of dots,
with electron—electron correlations and spin effects playing a major role. As for the tunnel effect, one can
broadly speak of two main streams where either the ‘external’ coupling of electrons between the dot and
the reservoirs, or the coupling of dots to other dots (coupled-dot systems) or to other external degrees
of freedom (photons, phonons) is dealt with on a more serious level. The former case with co-tunneling
and the Kondo effect as the main key-words is intrinsically ‘solid state’ physics, whereas the latter (in
particular when it comes to two or more level systems interacting with bosons) has a number of analogies
with Quantum Optics and is the main subject of this Review. One should bear in mind, however, that the
distinction into two streams is a drastic simplification of what in reality is a very complex field of current
research activities.

Recent review articles on quantum dots are the ones by Reimann and Majg8hen the electronic
structure of quantum dots, and the overview article on electronic structure and transport properties of
quantum dots by Tew84].

2.1.2. Double quantum dots

Coupling of two quantum dots leads to double quantum dots which in analogy with atomic and molec-
ular physics sometimes are called ‘artificial molecules’, although this terminology can be somewhat
misleading: in the strong Coulomb blockade limit, double quantum dots are better described as two-level
systems with controllable level-spacing and one additional transport electron, which rather suggests the
analogy with a simple model for atom in particular if it comes to interaction with external fields such
as photons or phonons. This view appears to be rather natural from a Quantum Optics point of view,
too (cf. the classic book ‘Optical Resonance and Two-Level Atoms’ by Allen and E[88]y, and it
furthermore fits with the terminology of quantum information technology, with the charge double dot (as
in the experiment by Hayashi and co-workers) being the elementary one-qubit, cf. Section 7.5.3.

On the other hand, the distinction between the two regimes of ionic-like bonding (weak tunneling
between the two dots) and covalent bonding (strong tunneling) is often used in the literature; this also
reflects the choice between two different starting points in the theoretical description, i.e., the basis of
localized states and the basis of delocalized (bonding and antibonding) states in the theory of the two-level
system, as is discussed in Section 2.

Several groups have performed transport experiments with double quantum dots, with lateral structures
offering experimental advantages over vertical dots with respect to their tunability of parameters. A recent
overview of the Delft and NTT experiments is given by van der Wiel di33l], who review the stability
diagram, linear and non-linear transport, resonant tunneling, and the influence of magnetic fields and
microwave radiation on transport in lateral double quantum dots.

As for the earlier double quantum dot experiments, van der Vaart and co-w¢B&gnsivestigated
resonant tunneling in 1995 and found an asymmetry in the resonant line-shape that already hinted at
physics beyond the simple elastic tunneling model Fig. 1L Subsequently, Waugh and co-workers
measured the tunnel-coupling induced splitting of the conductance peaks for double and triple quantum
dots[38]. The Stuttgart group with Blick and co-workers explored the charging diagram for single-electron
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Fig. 1. Left: double quantum dot used in the first experiment by van der Vaart and cow{8&gien resonant tunneling.
Dimensions are 320320 nn? (leftdot) and 28« 280 nn? (right dot). Right: resonant tunnel current through the double quantum
dot [35] (dots) as a function of inter-dot biasat source—drain voltage 4Q¥. Lorentzian fit (line) and fitv cost?(2¢/kgT)

with 7 = 35mK (dashed). Frorf85].

tunneling through a double quantum §8®]. Blick et al. later verified the coherent tunnel coupl[Ag],
and Rabi-oscillations (with millimeter continuous wave radiafit]) in double dots.

2.1.3. Resonant tunneling and phonon emission in double quantum dots

Fujisawa and co-workefd3] performed a series of experiments on spontaneous emission of phonons
in a lateral double quantum dot (similar experiments were performed with vertically couplejd4pts
Their device was realized in a GaAs/AlGaAs semiconductor heterostructure within the two-dimensional
electron ga$42]. Focused ion-beams were used to form in-plane gates which defined a narrow channel
of tunable width. The channel itself was connected to source and drain electron reservoirs and on top
of it, three Schottky gates defined tunable tunnel barriers for electrons moving through the channel. The
application of negative voltages to the left, central, and right Schottky gate defined two quantum dots
(left L and rightR) which were coupled to each other, to the source, and to the drain. The tunneling
of electrons through the structure was sufficiently large in order to detect an electron current yet small
enough to provide a well-defined number of electrorslb and~ 25) on the left and the right dot,
respectively. The Coulomb charging energy4 meV and~ 1 meV) for placing an additional electron
onto the dots was the largest energy scale Fsge2

By simultaneously tuning the gate voltages of the left and the right gate while keeping the central gate
voltage constant, the double dot could switch between the three Kateg Ny, Ng) (‘empty state’),
and|L) = |Nr + 1, Ng) and|R) = |N, Ng + 1) with only one additional electroreither in the left
or in the right dot (see the following section, where the model is explained in detail). The experimental
sophistication relied on being able to maintain the state of the system within the Hilbert-space spanned
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Fig. 2. Left: schematic diagram of a ‘double gate single electron transistor’ by Fujisawa and Tj@2icfide 2DEG is located

100 nm below the surface of an GaAs/AlGaAs modulation-doped heterostructure with mokilit§&m? (vs)—1 and carrier
concentration 3« 101cm=2 at 1.6 K in the dark and ungated. Ga focused ion beam implanted in-plane gates and Schottky
gates define the dot system. A double dot is formed by applying negative gate voltages to the gates GL, GC, and GR. The
structure can also be used for single-dot experiments, where negative voltages are applied to GL and GC daR].Raht:

double quantum dots as used in the experiment by Fujisawa and co-wt8g(®p view). Transport of electrons is through

the narrow channel that connects source and drain. The gates themselves have widths of 40 nm. The two quantum dots contain
approximately 15 (Leftl) and 25 (RightR) electrons. The charging energies are 4 meMad 1 meV R), the energy spacing

for single particle states in both dots is approximately 0.5 mé\agd 0.25 meVR). From[43].

by these states, and to vary the energy differenees; — ¢ of the dots without changing the other
parameters such as the barrier transmission. The measured average spacing between single-particle stat
(~ 0.5 and~ 0.25meV) was a large energy scale compared to the scale on whiels varied. The
largest value of was determined by the source—drain voltage of 0.14 meV. The main outcomes of this
experiment were the following: at low temperatures down to 23 mK, the stationary tunnel dusieeat
function of ¢ showed a resonant peaksat O with a broad shoulder far> 0 with oscillations ins on
a scale of~ 20-30pn eV, seeFig. 3. As mentioned above, a similar asymmetry had in fact already been
observed in the first measurement of resonant tunneling through double quantum dots in 1995 by van der
Vaart and co-workerf35], cf. Fig. 1

For larger temperaturds the current measured by Fujisawa et al. increased stronger on the absorption
side¢ < 0 than on the emission side. The data for larfeould be reconstructed from the 23 mK data
by multiplication with the Einstein—Bose distributiari7’) and 1+ »n(T) for emission and absorption,
respectively. Furthermore, the functional form of the energy dependence of the current on the emission
side was betweeny/z and 1/¢2. For larger distance between the left and right barrier (600 nm on a surface
gate sample instead of 380 nm for a focused ion beam sample), the period of the oscillations on the
emission side appeared to become shorterFgpes.

From these experimental findings, Fujisawa et al. concluded thabtiming to a bosonic environment
was of key importance in their experiment. To identify the microscopic mechanism of the spontaneous
emission, they placed the double dot in different electromagnetic environments in order to test if a coupling
to photonswas responsible for these effects. Typical wavelengths in the regime of relevant energies
are in the cm range for both photons and 2DEG plasmons. Placing the sample in microwave cavities
of different sizes showed no effect on the spontaneous emission spectrum. Neither was there an effect
by measuring different types of devices with different dimensions, which should change the coupling
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Fig. 3. Left: current at temperatufe= 23 mK as a function of the energy differencia the experiment by Fujisawa et §.3].

The total measured current is decomposed into an elastic and an inelastic component . If the diffeetmeen left and right

dot energies; and E is larger than the source—drain-voltage, tunneling is no longer possible and the current drops to zero.
The red circle marks the region of spontaneous emission, characterized by the large ‘shoutdef foith an oscillation-like
structure on top of it. Right: current & = 23 mK as a function of the energy differencélhe curves in A have an offset and

are for different values of the couplirfiy between the dots and the rdtg for tunneling out into the drain region. The dotted
curves are the negative derivatives of the currents with respect to energynhance the structure on the emission side of the
current. B shows curves (i) and (ii) from A in a double—logarithmic plot, where the dashed lines are Lorentzian fifgl3from

to plasmons. Instead, it was the couplingatmustic phononoptical phonons have too large energies

in order to be relevant) which turned out to be the microscopic mechanism responsible for the emission
spectrum. In fact, phonon energies in the relevarggime correspond to wavelengths that roughly fit
with the typical dimensions (a few 100 nm) of the double dot device used in the experiments.

2.2. Transport theory for dissipative two-level systems

In the following, the dissipative double quantum dot as a model which is key to some of the following
sections is introduced. It describes electron transport through two-level systems (coupled quantum dots)
in the presence of a dissipative environment (phonons or other bosonic excitations).

2.2.1. Double dot model

The possibly simplest model defines a double quantum dot as a composite system of two individual dots
which for the sake of definiteness are called left and rightldab@R) here and in the following, and which
are connected through a static tunnel barrier. The effective ‘qubit’ Hilbert §g&¢e= spar(|L), |R)) of
this system is assumed to be spanned by two many-body gtate$N; +1, Ng) and|R)=|Ny, Ng+1)
with energies; andeg, corresponding to the lowest energy states for one additional electron in the left
and the right dotKig. 4). In contrast, the ‘empty’ ground stal® = |N,, Nz) has one electron less and
Ny, electrons in the left and/k electrons in the right dot. Although this state plays a role in transport
through the dot as discussed below, there are no superpositions bévaed the states i @ (charge
superselection rule). The left-right degree of freedorH (R defines a ‘pseudospin)2 [45] as described
by Pauli matrice$. =7, —ig ands, = p+p', which together with operators involving the empty staje
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Fig. 4. Left: current on the emission side- 0 in the experiment by Fujisawa et §.3]. The solid lines correspond to data for
different values off,. The dotted line represents data fronswaface gate samplehere the distance between left and right
barriers is larger (600 nm). Right: double dot model consisting of left and right dot, coupled by a tunnel matrix dlerhefit

and right electron reservoirs with chemical potengial(x:z) act as source and drain for electrons tunneling from left to right at
ratesl';, andI'g. The energies;, andeg have to be understood as chemical potentials for the addition of one additional electron
to the left and the right dots, respectively. The system is in the strong Coulomb blockade regime with only one additional electron
allowed to enter the double dot. Phonons couple to the electronic density in both dots.

form a closed operator algebra,
ni = i)(il, p=ILNRI, S =I[0(l, i=L,R. (2.1)

Inter-dot tunneling betweeh andR is described by a single, real parameter which by convention is
denoted ag, here and in the following. The Hamiltonian of the double dot then reads
Hdot = eLiL + erAR + Te(p+ P1) (2.2)

the eigenstates of which are readily obtained by diagonalizing thextivam matrix

HTLS =

— T
& . N ¢
é()—Z+TH=<2 8), E=g; — R, (2.3)

T —

where here and in the following the trivial constant telrmL + eg) is omitted. The eigenstatés) and
eigenvalues. of #1 g are

1

) = 2T + AF IR), Na=JAT2 + (4527, (2.4)
+
1

ai::té A, A=,/e2+4T2, (2.5)

1 This choice might be confusing to physicists working in superconductivity, but has been used in much of the literature on
double quantum dots which is why it is used here, too.
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corresponding to hybridized wave functions, i.e. bonding and anti-bonding superpositions of the two,
originally localized state$L) and|R). The corresponding eigenvalues = i%A of the double dot
represent two energy surfaces over fhec plane, with an avoided level crossing of splittinig For

¢ =0, one hag+) = (1/+/2)(£sign(T.)|L) + |R)) such that for the choicé&,. <0 the ground state

|—) = (1/v/2)(JL) + |R)) with energys_ = —% A is thesymmetricsuperposition of L) and|R).

Electron transport through the double dot is introduced by connecting the left (right) dot to an elec-
tron reservoir in thermal equilibrium at chemical potential («z) with positive source—drain volt-
ageVsp = u; — pg, inducing tunneling of electrons from the left to the right. One assumes that the
ground state energieg of |L) ande¢y of |R) are in the window between source and drain energy, i.e.
Uz > €L, €R > Ugp. Transport involves the stal@ and superpositions within the two-dimensional Hilbert
spaceH ® = spar(|L), |R)). This restriction is physically justified under the following conditions: first,
the source—drain voltagésp has to be much smaller than the Coulomb charging enérdg charge the
double dot with more than one additional electron. Second, many-body excited states Hiitsicen
be neglected.

The coupling to the electron reservoiresis described by the usual tunnel Hamiltoniafy,,

Hres= Y ik, Av=Y (Vielsi+Hce), §=I0)l. i=L.R, (2.6)
ki,i=L/R ki

where thevk" couple to a continuum of channedsn reservoiri. We note that the splitting of the whole
electron system into reservoir and dot regions bears some fundamental problems that are inherent in all
descriptions that use the tunnel Hamiltonian formaljd6+-48]

Including the ‘empty’ stat¢0) = |N., Ng), the completeness relation of the ‘open’ double dot is now
1=1#og+ Az + Aig. In the above description, spin polarization of the electrons has been assumed so that
only charge but no spin degrees of freedom are accounted for. In the original ‘charge qubit’ experiment
[43], a magnetic field between 1.6 and 2.4 T was applied perpendicular to the dots in order to maximize
the single-particle spacing and to spin polarize the electrons. The combination of both (real) spin and
pseudo-spin degrees of freedom was discussed recently by Bord44&]ah the context of aSU (4)

Fermi liquid state and the Kondo effect in double quantum dots.

Linear coupling between the double dot and bosonic modes (photons, phonons) is described by a

Hamiltonian

Hap= Y (abiir +aliig +10p + 1" P a—q +ag) . (2.7)
Q

where the coupling matrix elememé, ag, andyq and the frequency dispersionsg of the free boson
Hamiltonian

HB = Z wQaéaQ (2.8)
Q

have to be calculated from microscopic theories, cf. the following sections. The total Hamiltonian becomes

H = Hdot+ Adp+ H'v + B+ Hres (2.9)
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and generalizes the usual spin-boson model Hamiltomigg [50,51]
Hsg= £+Z g—Q(a_Q—i—aT) o, + T.ox + #B, gQEOCL — ok (2.10)
2 5 2 Q7| 7¢ Q™%

due to the additional coupling to the electron reservoirs (temns+ #eg and the additional terms
7q In # 4p Which are off-diagonal in the localized bagid.), |R)}. The usual spin-boson modet'sg
corresponds to setting the off-diagonal-terms in Eq. (2.7) to zgre; 0, whence

%’dpzz Z ocbﬁi(a_Q+ag), (2.12)
Q i=L,R

which is used as electron—boson coupling Hamiltonian in the following. As the ‘dipole tegrare
proportional to the overlap of the wave functions between the left and the right dot which itself determines
the value off, neglecting theq terms is argued to be justified for weak tunnel coupliag52,50,53]

On the other hand, for largdt these terms become more important, cf. Section 2.2.12.

2.2.2. Master equation

The easiest way to describe electron transport through quantum dots is to use rate equations with tunnel
rates calculated from the Hamiltonian Eg. (2.9). These equations have to be extended in order to account
for coherences between the dots, i.e. the off-diagonal operatansi 5T in Eq. (2.2). This is similar to
Quantum Optics where the optical Bloch equations for a two-level syi@6hgeneralize the ‘diagonal’
equations for the occupancies (Einstein equations). Gurvitz and HEig85], and Stoof and Nazarov
[56] have derived these equations for double quantum dots in the limit of infinite source—drain voltage
(u; — 00, up — —00), and for tunnel rates

ry=2ny  |ViPoe—ea,), i=L/R, (2.12)
ki

assumed to be independent of energy, where the Born—Markov approximation with respect to the electron
reservoir coupling becomes exact. This limit, which is adopted throughout this Review, is particularly
useful for the discussion of coherent effewithin the double dot system, as the role of the leads basically

is to supply and carry away electrons, whereas Kondo-type correlations between electrons in the leads
and in the dots are completely suppressed.

Due to the coupling to bosons (the tewfy, in Eq. (2.9)), an exact calculation of the reduced density
operatolp(¢) of the dot is usually not possible, but one can invoke various approximation schemes, the most
common of which are perturbation theory in the inter-dot couplingunitary polaron transformation),
and perturbation theory in the electron—boson coupling.

2.2.3. Method 1: polaron transformation
The polaron transformation is a well-known method to solve problems where bosonic degrees of
freedom couple to a single localized stfg&—60] One defines a unitary transformation for all operators
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O in the Hamiltonian Eq. (2.9),
— ~ .'Xl Oﬁi
O0=e50e5, S= Z Z n (—Qag — ;QaQ) , (2.13)

which removes the electron—boson term Eq. (2.11) and leads to the transformed total Ham#tonian

H=Ho+ AT+ Ay, Ho=zchL +ErAR + #B + Hres
i 2
|O‘Q|

®Q '

Hr=T.pX + p'X"), G=ea—) (2.14)
Q

The energy difference= ¢y — g (using the same symbol for notational simplicity) is now renormalized
withthe dot energies, andsz renormalized to smaller values. More important, however, is the appearance
of the factorsX and X T in the inter-dot coupling Hamiltoniaw 7,

ak — o
X = l_[ Dqg ( Q Q) , Do) = eX[Xza(JS —z%aq) , (2.15)
Q

®Q

where Dq(z) is the unitary displacement operator of a boson mQd&he operation oDq(z) on the
vacuum of a boson field mode with creation opera@rand ground statf)q creates aoherent state
1z)g = Dq(2)|0)q of that mod€g61].

The Master equation can now be derived in the polaron-transformed frame, resulting into an explicit
set of equations for the double dot expectation values,

0 .

o (L) = =ITel(p), - (PN} + LIl — (nr), — (nr)] (2.16)

0 .

= (nR) =1Te{{p), (p"),} = Tr(ng), (2.17)
t . ,

(p), :_/ dr’ge=1) [(%ﬂp)ﬂ —|—iTC(nL),/) Cit—t) —iTC(nR),/C*(t—t/)] , (2.18)
0

! i / r . .

(ph, = _/ d’etet=1) [(7R<p“‘>ﬂ — ITc(nL),/) C*(t —t')+iT.(ng),C(t — z/)} , (2.19)
0

where the central quantity containing the coupling to the bosons is the equilibrium correlation function

of the X operators, Eq. (2.15), for a boson density magrixin thermal equilibrium at inverse temper-

aturep,

e P

= 7 - (2.20)

Ct—1)=Tr(ppX, X)), pp
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The functionC(r) can be evaluated explicitly and is expressed in terms obtis®n spectral density
J (o),

cCi=e?D, o= /OO dow L(;) [(1 — coswt) coth (ﬁ—w> +1i sin wtj| (2.21)
0 0 2

J(@) =) lus — 1?60 — 0q) . (2.22)
Q

Details of the derivation of Egs. (2.16)—(2.19) are given in Appendix A. Several approximations have been
used: first, the initial thermal density matfit0) of the total system attime=0 in the polaron-transformed
frame factorizes to lowest (zeroth) order in bdthand v}, according to
e—BA e BAo
z 7
whereRy is the equilibrium density matrix of the electron reservoirs. Furthermore, for all imesa
decoupling approximation

2(t) ~ Ro® pp ® pyot(t) (2.24)

is used. The back-action on both electron reservoirs and the boson bath (which are assumed to stay in
thermal equilibrium) is therefore neglected throughout. One then can factorize terrm;LIik;aXf,),, R

(sz),,<X,X;)B in the equation of the coherencég),; these equations, however, are then no longer
exact. In the original spin-boson problei;( x = 0), this amounts to second order perturbation theory
in the inter-dot couplind? [50], which is known to be equivalent to the so-called non-interacting-blib-
approximation (NIBA)50,51]of the dissipative spin-boson problem, whereas here the factorization also
involves the additional terni'g /2(p),» which describes the broadening of the coherefjge due to
electrons tunneling into the right reservoir.

Finally, two additional terms in Eq. (2.18) and (2.19) describing the decay of an initial polarization
of the system have been neglected. These terms in fact can be calculated exactly but they vanish in the
stationary limit for long timeg — oo.

7(0) =

= Ro® p ® pgor (2.23)

2.2.4. Method 2: perturbation theory i#’,

An alternative way is a perturbation theory not in the inter-dot coudindput in the coupling#’4, to
the boson system. Assuming the boson system to be described by a thermal equilibrium, standard seconc
order perturbation theory and the Born—Markov approximation yield

d i .
E(lﬂt = ('8 - 7R - Vp) (p); +1Tcl{nR), — (nL) ]+ v (nL); —y—(nRr), , (2.25)

with the correspondingly complex conjugated equatior{ fdy,, and the equations fany /r), identical
to Egs. (2.17), (2.16). The rates andy,. are defined as

Y, = iZ/ dr (¢% + 4T2 cosAr) Re(K (1)} , (2.26)
44 Jo

T. [ . .
Vg = ?/o dr (¢(1—cosAr) —id sinAt) K(¢) , (2.27)
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y_ = f dr (e(1 —cosAt) —id sin At) K*(¢t) , (2.28)
and the bosonic system enters solely via the correlation function
OO . .
K0 = [ dos@Una(@)@” + A+ na@)e ™1 (2.29)
0

wheren g (w) = [ef® — 1]71 is the Bose distribution at temperaturg1The explicit evaluation of Egs.
(2.26)—(2.29) leads to inelastic rates

2
vy = 2n— J(A) coth(pa/2), 7. = 8T‘ T J(4) coth(p4/2) T 1 5@ (2.30)

which completely determine dephasing and relaxation in the system. Some care has to be taken when
evaluating the rates, Eq. (2.26), with the parametrized o) =2aw;gsws e~/ forthe boson spectral
density in Eq. (2.29), cf. Eq. (2.52) in Section 2.2.7. In this case, it turns out that the Born—Markov
approximation is in fact only meaningful and defineddorl. Fors < 1, this perturbation theory breaks

down. In addition, the rates Eq. (2.30) acquire an additional term linear in the tempeésgfurel/f in

the Ohmic case = 1, for which the rates explicitly regé2]

Yp = % (% + 2T2Ae= 4/ coth(%‘)) (2.31)
Rely. ) = 2a’;—T; (% _ %Ae“'/“"' coth (%‘) - %Ze—ﬂ/wc) (2.32)
Im{y, +7_} = 4aT, /Ooo do % (1 ¥ eﬂwz_ ) (2.33)
Im{y, —y_} = —4s 'ST;;”C [1—/0001—?%] . (2.34)

The last two integrals can be evaluated approximd@sy for small 4/w.. One finds that up to order
A/,

A
Im{y, —»_}=0 (—) ; (2.35)

c

Im{y,} =Im{y_} = 2uT, [In <ﬁ—A> Rey (IEA) —1In <A>i| + 0 (i> . (2.36)
2n 2n W W

Here,C = 0.577216 is the Euler number atitlx) is the logarithmic derivative of the Gamma function.
For the latter, one can u$@4] Re¥(iy) = Re¥(1+ iy) and the expansions

1 1
122 T 12008 T 252,

o0
—C+y2 Y ntn?+y) |yl < .
n=1

Iny +

+ ",y_>00,

Re¥(iy) = (2.37)



332 T. Brandes / Physics Reports 408 (2005) 315-474

The combination of the first (large argumegisand the second expansion (small argumghis useful
in numerical calculations.

2.2.5. Matrix formulation

It is convenient to introduce the vectoks= (n,, iig, p, ;3*), I'=Tye (e, ..., e are unit vectors)
and a time-dependent matrix memory keriein order to formally write the equations of motion (EOM)
for the dot ag65]

t
(A1) = (A(0)) +/O de’{M @, t)(A{)) +T} , (2.38)

where(...) = Trqot. .. p(¢) andp(z) is the reduced density operator of the double dot. This formulation is
a particularly useful starting point for, e.g., the calculation of shot noise or out-of-equilibrium situations
like driven double dots, where the biasr the tunnel coupling, are a function of timéand consequently,
the memory kernell is no longer time-translation invariaf@6], cf. Sections 2.3 and 2.4.

For constant and 7, Eq. (2.38) is easily solved by introducing the Laplace transformafian =
Jo° dre™# f(1). Inz-space, one hgé (2)) =[z — zM (2)] 1 ((A(0)) +I'/z) which serves as a starting point
for the analysis of stationary (1 coefficient in Laurent series far— 0) and non-stationary quantities.
The memory kernel has a block structure

~ . —Aé ’f A Iy I'p
ZM(Z)_[DZ Zz]’ G= ( 0 FR) , (2.39)
where7 = —iT.(1 — a,). The blocksD, and %, are determined by the equation of motion for the
coherencesp) = (p')* and contain the complete information on inelastic relaxation and dephasing of
the system.

For weak boson coupling, the above perturbation theory (PER, Method 2) in the correct basis of the
hybridized states of the double dot yields

I'r 0

R R . . . ie—y, — —
DPER=TC+(’+ ’—), sPER_ o2 . (2.40)
T+ T 0 —ig—yp, — =&
P2
On the other hand, for strong electron—boson coupling, the unitary transformation method (strong boson
coupling, POL, Method 1) with its integral equations Eqg. (2.18), (2.19), yields matrizesgace of the
form

C*,(2)
_1 -
HPOL _ it G2 sPOL_ (2 —=1/Ci(2) = T'r/2 0
2 ¢ R ’ z 0 z—=1/Ci(z) —Tr/2)’
1 _ C*S(Z) &
C*(z)
(2.41)
where

Ci(z) = / Oodte_”ei”C(t), C¥(z) = f - dre e ¥ CH (1) . (2.42)
0 0
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In contrastto the PER solution, whe¥&(t)=M =z M (z) is time-independens/POL () is time-dependent
andzM (z) depends oz in the POL approach.

2.2.6. Stationary current

In the Master equation approach, the expectation value of the electron current through the double dot
is obtained in a fairly straightforward manner. One has to consider the average charge flowing through
one of the three intersections, i.e., left lead/left dot, left dot/right dot, and right dot/right lead. This gives
rise to the three corresponding electron currépts), I (¢), and the inter-dot currery g (r). From the
equations of motion, Eq. (2.16), one recognizes that the temporal change of the occupangigds
due to the sum of an ‘inter-dot’ current 7. and a ‘lead-tunneling’ part. Specifically, the current from
left to right through the left (right) tunnel barrier[i§6]

Ip(t) =—el'L(no); = —elL[1— (np); — (ngr);]l, Ir(t) =—el'gr(ng); . (2.43)
and the inter-dot current is

. 0 0
ILr(1) = —ieT A(p), — (p),} = —e o (ng) +1r(t) =e o (np), +1I.(t) . (2.44)

In the stationary case for times— oo, all the three currents are the samgg = Ig = I, = I and can
be readily obtained from the/1 coefficient in the Laurent expansion of the Laplace transfogty) of
(ng), aroundz = 0,

(1), = —e lim Trl18+() (2.45)
=0 [z4+TRr+8-@z+TL)+ zZ+Tr+T1)g+(2)
g1-1(x) = +iT.(e1 — &)z — 2,17 D eqpz (2.46)

The explicit evaluation of the two-by-two blocs, and5,, cf. Eq. (2.39), (2.40), (2.41), leads to

Te(yp+TR/2+2) — ey

PER
ghER() = 27, (2.47)
* ‘ (7, +TR/2+2)% + &2
@
g7 () = 12 [ ; +(C . (2.48)

In the expression for the current, Eq. (2.45), the two ‘propagagarsire summed up to infinite order
in the inter-dot coupling,. For vanishing boson coupling, one has= g_, and the stationary current
reduces to the Stoof—Nazarov expresghf,

\SN TCZFR
(HN o =—e— . (2.49)
I'%/A+e+T2Q2+TR/IL)
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The general expression for the stationary current through double dots if4BDieads?

2REC;) + I'g|C.|?

I —eT? 2.50

oo =ele i 27 + 2178, (2.50)
c_g cr . .

B, =Re{(1+TIkC,/2) 14 1L . C.=1lim C(z=¢+19) . (2.51)
FR Iy FR 6—0

2.2.7. Boson spectral densify(w)

The boson spectral densify(w) = Z |acQ — ocR|25(co wQ), EQ. (2.22), is the key quantity entering
into the theoretical description of d|SS|pat|on Wlthln the framework of the spin-boson model, Eqg. (2.10).
J (») determines the inelastic ratgsandy,., Eq. (2.26) in the PER approach, and the boson correlation
functionC(¢) via Eq. (2.21) in the POL approach.

Models forJ (w) can be broadly divided into (A) phenomenological parametrizations, and (B) micro-
scopic models for specific forms of the electron—-boson interaction (e.g., coupling to bulk phonons or
surface acoustic piezo-electric waves).

(A) ‘Spin-Boson model parametrizatiof81] in the exponentially damped power-law form

J(w) = 2aw1hswfe o/ (2.52)

where 0<s <1 corresponds to the sub-Ohmies 1 to the Ohmic, and > 1 to the super-Ohmic case. The
parameter,. is a high-frequency cut-off, andph is a reference frequency introduced in order to make
the coupling parameterdimensionless. The advantage of the generic form Eg. (2.52) is the vast amount
of results in the quantum dissipation literature referring to it. Furthermore, this parametrization allows
for an exact analytical expression of the boson correlation funclioh= expg—Q(#)], Eq. (2.21), for
arbitrary temperatures = 1/p. Weiss[51] gives the explicit form ofQ (z) for complex timeg,

s—1
Q(z) =20l (s — 1)( e ) {(1 -1+ ia)cz)l_s) + Z(ﬁwc)l_SC (s -1,1+ ﬂi} )

1—s 1 . Z 1 . Z
R G ) R (e R ) || R

where((z, ¢) is Riemann’s generalized Zeta-function an@) Euler's Gamma-function.

(B) Microscopic models naturally are more restricted towards specific situations but can yield interest-
ing insights into the dissipation mechanisms in the respective systems. Coupling of bulk acoustic phonons
to the electron charge density in double quantum dots was assunjél,invith the matrix elements
oc6 =/ d3xe'QXp,~ (x) expressed in terms of the local electron densiij€s), i = L, R in the left and
right dot. Assuming the electron density in both (isolated) dots described by the same gygqfie
around the dot centers, one finds that the two coupling constants just differ by a phase factor,

o =g, d=xg—xp . (2.54)

2This is the correct expression consistent with the definition Eq. (2.12) for the tunnelliatgs whereas the original
version[45] contained additional factors of 2 ing /1 .
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With Q = (q, ¢;) and the vectod in thex-y plane of lateral dots, one has

J(@) =Y 3% haor(@. g2)11 — €% %5(0 — wq) - (2.55)
Q

The interference teril — €992 is due to the lateral ‘double-slit’ structure of the double dot geometry
interacting with three-dimensional acoustic waves; whether or not this interference is washeg(ayt in
depends on the electron density profile and the details of the electron—phonon interaction. Analytical
limits for J(w) can be obtained in the limit of infinitely sharp density profiles,£:(q, ¢;) = 1: using

matrix elements for piezoelectric and deformation potential phonons, one of@@jns

Jpiezo(®) = 2upiezaw f (dw) s Jaef(w) = 20<gefw3f (dw) , fx)= (1 — Slnx) , (2.56)
c Wph c X

P 20 def B 1 2

2n2tic3py, ‘Upz)h T w23 2pycth

n

(2.57)

2O‘piezo =

For the piezoelectric interaction, the contributions from longitudinal and transversal phonons with dis-
persionwg = ¢|Q| and speed of sound= ¢, ¢;, respectively, were added here. Bruus, Flensberg and
Smith[68] used a simplified angular average= (¢h14)>(12/35 + ¢;16/¢;35) in quantum wires with

the piezoelectric coupling denotedds 4. Furthermorep,, denotes the mass density of the crystal with
volumeV, andZ is the deformation potential. The contribution from bulk deformation potential phonons
turns out to be small as compared with piezoelectric phonons whgig2> 0.05.

Further microscopic models of the electron—phonon interaction in double-well potentials were done
by Fedichkin and Fedord®9] in their calculation of error rates in charge qubits. Furthermore, in a series
of paperd70-74]Khaetskii and co-workers performed microscopic calculationsim relaxation in
quantum dots due to the interaction with phonons.

The forms Eq. (2.56) for (w) represent examples sfructuredbosonic baths, where at least one
additional energy scale (in this cake/d, whered is the distance between two dots anthe speed of
sound) enters and leads to deviations from the exponentially damped power-law form Eq. (2.52). Note
that the microscopic forms Eq. (2.56) eventually also have a cuboffue to the finite extension of
the electron density in the dots. [B3] it was argued that the assumption of sharply localized positions
between which the additional electron tunnels should be justified by the strong intra-dot electron—electron
repulsion. For/d < w <., the generic power-laws Eq. (2.52) match the piezo-electric case with
(Ohmic) and the deformation potential case witi3 (super-Ohmic). In the low-frequency limit, however,
due tof(x) = (1/6)x? + O(x*) these exponents changeste- 3 and 5, respectively.

A further phenomenological example for a boson spectral density for a structured environment is the
Breit—-Wigner form for a damped oscillator mote

Q4
(w2 — 92)2 + 40212’

(2.58)

J(w) = aw

which was discussed recently by Thorwart e{25], and by Wilhelm et al[76], who gave a comparison
of the perturbative (Bloch—Redfield) and polaron (NIBA) method for the spin-boson model.



336 T. Brandes / Physics Reports 408 (2005) 315-474

2.2.8. P(E)-theory
The stationary current through double dots in POL, Eg. (2.50), can be expanded to lowest order in the
tunnel couplindl, and the ratég,

(I oo = 2neT§P(s), P() = Zi/ dteiStC(t) . (2.59)
T J—o00

The real quantity? (¢) =1/n ReC, is the probability density for inelastic tunneling from the left dot to the
right dot with energy transferand plays the central role in the so-calledE)-theory of single electron
tunneling in the presence of an electromagnetic environfi@a{79]

The functionP (¢) is normalized and obeys the detailed balance symmetry,

P(—¢) =exp(—e/kgT)P(e) , (2.60)

but has to be derived for any specific realization of the dissipative environment. In the case of no phonon
coupling, one has only elastic transitions aR®) = 6(¢). At zero temperaturep( — o0), a simple
perturbative expression f@t(e) for arbitrary J () can be found by expanding(z), Eq. (2.21), to second

order in the boson coupling; (1) =1 — [¢° J (0)/w?[1 — e7“'] + O(J?) whenceP (¢ > 0) = J (¢) /&°.

The resulting expression for the inelastic current,

Iin(e) = —e2nT2J (e) /&2 (2.61)

is valid ate > I'g and is consistent with an earlier result by Glazman and Matveev for inelastic tunneling
through amorphous thin films via pairs of impuritié].

Aguado and Kouwenhovef80] have suggested to use tunable double quantum dotietestors
of quantum noise&ia Eq. (2.59), where the functioR(e) in principle can be directly inferred from
measurement of the currelnds a function of = ¢; = ¢¢. Deblock and coworker®81] have used very
similar ideas to analyze their experiments on frequency dependent noise in a superconducting Josephsotr
junction and a Cooper pair box, cf. Section 2.3.2.

Again, since off-diagonal couplingsg, in the model, Eq. (2.11), have not been taken into account, the
information gained on the environment by this method might not be complete. On the other hand, the
P (¢)/spin-boson description takes into account arbitrary bosonic coupling strengths. Furthermore, the
underlying correlation functiod' (¢) can describe both equilibrium and non-equilibrium situations. An
example of the latter discussed[B0] is (shot) noise, i.e. fluctuations in the tunnel current through a
guantum point contact that is capacitively coupled to a double quantum dot.

For Ohmic dissipation = 1, at zero temperature absorption of energy from the environment is not
possible andP (¢) reads

20—1

—&/we
————F¢€ 0(e) , 2.62
2T (22) © ( )

P(e) =

which is a Gamma distribution with parameige 2«. Another analytical solution foP (¢) at finite
temperatures is obtainedat 1/2 [82], where the residue theorem yields

e—a/wc >

Py 0=
1/2(¢>0) we T(1+ 1/pwc)? nX=C:)

(1" 14 2
I F(n—l— +[5

We

) e b (2.63)
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which at low temperature$g 7 = 1/ <, can be approximated by a geometric series,

e—z:/a)C
P,— ~ , 2.64
2=1/2 (&) on T+ 1o’ 1 &) (2.64)
with P,—1/2(e) following from Eq. (2.60), and
I'ld+ 2/Bw,
Py=1/2(e=0) = ( /eoe) (2.65)

204 b0 (14 1/for)?

2.2.9. Boson shake-up and relation to X-ray singularity problem

Bascones et di83] pointed out that electron tunneling through dots leads to excitations of electron—hole
pairs in the adjacent electron reservoirs. These bosonic excitations possess an Ohmic spectral function
J (w) and for smalk therefore give the same exponent 1 as the piezoelectric spectral function, Eq.
(2.56). Note, however, that this is only true for the bulk case where the structure furictioh.

The appearance of a power-law singularity in the inelastic tunneling probab{ijyEq. (2.62), is well-
known from the so-called X-ray singularity problem. The latter belongs, together with the Kondo effectand
the non Fermi-liquid effects in one-dimensional interacting electron systems (Tomonaga—Luttinger liquid)
[57,84-87]to a class of problems in theoretical Solid State Physics that are essentially non-perturbative
[88]. Thatis, simple perturbation theory in interaction parameters leads to logarithmic singularities which
transform into power laws for Green’s functions or other correlation functions after higher order re-
summations, renormalization group methods, or approximation by exactly solvable models.

X-ray transitions in metals are due to excitations of electrons from the metal ion core levels (e.g.,
the p-shells of sodium, magnesium, potassium) to the conduction band (absorption of photons), or the
corresponding emission process with a transition of an electron from the conduction band to an empty ion
core level, i.e. a recombination with @ore hole Energy conservation in a simple one-electron picture
requires that for absorption there iglaesholdenergy (edgefiwr = Er + |E.| for such processes,
where Er is the Fermi energy anél. the core level energy, counted from the conduction band edge.
Following Mahan57], the core hole interacts with the conduction band electron gas, which is described
in an effective Wannier exciton picture by a Hamilton[afd]

— t T
H=E/Jd'd+ kz EKCyyCko Tt 7d I; ka/ck cwod'd . (2.66)

Here,d" denotes the creation operator of the core holecértde creation operator of a conduction band
electron with Bloch wave vectdrand spins, leading to aralgebraic singularityin the core hole spectral
function

—Q

Ap(w) = 2Re f dre (d(1)d Ty = 0(Q) — = (0 — &7) /& , (2.67)

r()ﬁ’

wherewr is the (renormalized) photo-emission threshold energy,éarid a cutoff of the order of the
Fermi energy. Here, the dimensionless paranggfera three dimensional situation and for an interaction
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potential withVy, = V(k — k') is defined a$57]
2

m V(g)?
8=57 > , (2.68)
gi<2kp 94

wherem is the conduction band electron mass. The core hole spectral funtii@s) is thus strongly
modified by the interaction with the electron gas: the sharp delta peak for the case of no interactions
becomes a power-law curve. The corresponding absorption step is obtained by integragan)db7],
it vanishes for non-zerg when approaching from abowe — 0T. This vanishing of the absorption
is calledorthogonality catastrophethe matrix elements for X-ray induced transitions in metals must
depend on the overlap of two wave functions, i.e.Kaparticle wave functiong) and| f) before and
after the appearance of the core hole, respectively. Heiethe number of electrons in the conduction
band. A partial wave scattering analysis then shows|thgafin the simplest case of s-wave scattering)
can be considered as a Slater determinant composed of sphericalkwawgsr + o) /kr. The overlap of
the twoN-particle wave functions turns out to bg|i) = N~Y2* 4 = 26%/7°. For largeN, this overlap
becomes very small though still finite for macroscopic numbersNike: 10?2 ando ~ 0.1 [57]. The
‘catastrophe’ of this effect consists in the fact that although all overlaps of initial andsfirgdé particle
scattering waves are finite, the resultimgny-bodywave function overlap becomes arbitrarily small for
largeN. The fully dynamical theory takes into account the dynamical process of the excitations in the
Fermion system that are induced by the sudden appearance of the core hole after absorption of an X-ray
photon. In fact, these excitations are particle—hole pairs in the conduction band which can be regarded as
bosons. For a spherically symmetric case, the X-ray problem can be solved exactly by a mapping to the
Tomonaga model of interacting bosons in one dimengs@rB9]

The analogy of inelastic tunneling through double quantum dots can be made by considering an
additional electron initially in the left statg.) of the isolated dot. The operatpff = |R)(L| acts as
a creation operator for an electron in the right dot or, alternatively and as there is only one additional
electron in the double dop can be regarded as a creation operator fuslain the left dot. The retarded
hole Green’s function

G (1) = —i0) (p()p") = —i0(t) (pp)e" (X, XT)o = —i0(E" C (1) | (2.69)

is calculated in absence of tunneling, with the electron in the left dot at A having excited its
phonon cloud that already time-evolves according to the correlation fun€iiorfor the phase factors

X stemming from the polaron transformation. The correlations in time can be translated into a frequency
spectrum via the hole spectral functif&Y],

w . .
Ap(w) ==23mG ,(w) = 2i3m / dre”e¥C(t) =2nP(c + w) , (2.70)
0

using the detailed balance relati6tir) = C*(—¢) and the definition of the inelastic tunneling probability,
Eg. (2.59). Comparison of Egs. (2.62), (2.70), and (2.67) shows that the spectral functions have identical
form if one identifies the cut-off§y = w. andwr with —¢, the only difference being the definition of the
dimensionless coupling constant

As pointed out by Mahafb7], the power law behavior of Eq. (2.70) and Eq. (2.62) is due to the
logarithmic singular behavior of the functio@(r) in C(¢) = exp(—Q(¢)), Eq. (2.21), which in turn
results from atinfrared divergencef the coupling functiory (w) /w? for smallw. This infrared divergence
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physically correspond to the generation of an infinite number of electron—hole pair excitations in the metal
electron gas by the interaction with the core hole in the X-ray problem. In semiconductors, the (bulk)
piezoelectric phonon coupling leads to the same kind of infrared divergence.

Again following Mahan90], an alternative physical picture for the inelastic tunneling is obtained by
considering the tunneling process from the point of view of the phonon and not from the electron (hole)
system[91]: a sudden tunnel event in which an electron tunnels from the left to the right dot appears as
an additional energy term for the phonons,

Oy =Y (ah — aB)(a_q +ab) (2.71)
Q

which is exactly the difference of the coupling energy before and after the tunnel event. This additional
potential is linear in the phonon displacementg +a:5 and ‘shakes up’the phonon systems in form of a
dynamical displacement as expressed by the temporal correlation fugatipa: (X, X ) of the unitary

displacement operators,

®Q

x=[]Dpq (“Q _ BQ) . Doz) = o (2.72)
Q

2.2.10. Interference oscillations in current

The functionf (x) in the spectral density (w), EQq. (2.56), describes the interference oscillations in
the electron—phonon matrix elements, cf. Eq. (2.54). These were directly conidafeth Eq. (2.61)
with the oscillations in the current profile on the emission side at low temperature in the experiment
by Fujisawa and co-workeig@3]. Using parameterg = 200 x 10~°m andc = 5000 nys, the energy
scalefiwy = #ic/d = 16.5ueV is in fact the scale on which the oscillationg[#48] were observed. The
corresponding stationary current was obtained from Eqg. (2.50) by numerical evaluatigriegf (2.42),
with C(r) split into a zero-temperature and a finite temperature contribution (Appendix Appendix B),
cf. Fig. 5 At low temperatures, the broad oscillatory shoulder on the emissiore sidereflects the
structure of the real part af,. At higher temperatures, on the absorption side the current increases to
larger values faster than on the emission side where the oscillations start to be smearec:cu@ &od
larger temperature, a new shoulder-like structure appears on the absorption side, a feature similar to the
one observed in the experimgdB]. The theoretical resu[@5] for the inelastic current was based on
the simple assumption of bulk piezo-acoustic phonons and was still at least a factor two smaller than the
experimental one. This might indicate that other phonon modes (such as surface acoustic phonons), or in
fact higher order tunneling processes to and from the leads (co-tunneling) are important.

Anotherinteresting observation was the scaling of the current a function of the ratio between temperature
and energygT/|¢|, re-confirming the equilibrium Bose—Einstein distribution for the phonon system. In
analogy to the Einstein relations for emission and absorption, one defines the spontaneous emission rate
A(e>0) =[I(e>0, Typ) — Iei(e > 0)] /e, Wherelg|(e) is the elastic part of the current, i.e. the current for
vanishing electron—phonon coupliag= 0. One introduces similar definitions for the relative emission
N and absorptiov +,

NEe>0,T)=[I(e, T) — Igi(e)]/A(e), Nt (<0, T)=[I(e,T)— I(e, Tol/A(le) ,  (2.73)
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Fig. 5. Stationary tunnel current through double quantum dot, Eq. (2.45), as a function of the energy diffdyetveeen

left and right dot ground state energies. Left: POL approach, Eq. (2.50), dimensionless electron—phonon coupling parameter
o=2g¢g =0.025. Insetp(w) = f(x)/x, x =w/wg With vz = ¢/d, Eq. (2.56). Fronj45]. Right: comparison between POL and

PER approach, frorfs3].

whereTy is the reference temperature. The numerical data for the stationary current scaled well to the
Bose distribution functiom(x) = 1/(e* — 1), i.e. N(¢, T) = n(|e|/ksT) for absorption: <0 and to

N*t(e, T) =1+ n(e/kgT) for emissions > 0 over an energy window 232@V > |¢| > 20peV with a

choice of7p = 10 mK. As in the experimerjé3], the analysis in terms of Einstein coefficients worked
remarkably wel[67].

A comparison between the perturbative (PER) and polaron transformation (POL) result for the sta-
tionary current, was performed [B3]. In both approaches, the currents Eq. (2.45) are infinite sums of
contributions from the two expressiogs (z), Eq. (2.47), which were explicitly calculated. As PER
works in the correct eigenstate base of the hybridized system (level spliltimhereas the energy scale
¢ in POL is that of the two isolated dots (tunnel couplifig= 0), one faces the general dilemma of
two-level-boson Hamiltonians: one either is in the correct base of the hybridized two-level system and
perturbative in the boson couplingd PER), or one starts from the ‘shifted oscillator’ polaron picture that
becomes correct only fdf, = 0 (POL). The polaron (NIBA) approach does not coincide with standard
damping theory92] because it does not incorporate the square-root hybridization fomrQfe2 + 47,2
which is non-perturbative iff.. However, it was argued ifp3] that for large|e| > T,., 4 — |¢| whence
POL and PER should coincide again and the polaron approach to work well even down to very low
temperatures and small coupling constantBortunately, in the spontaneous emission regime of large
positivee the agreement turned out to be very good indeed;igf.5.

2.2.11. Other transport theories for coupled quantum dots, co-tunneling and Kondo regime

The amount of theoretical literature on transport through coupled quantum dots is huge and would
provide material for a detailed Review Article of its own, this being yet another indication of the great
interest researchers have taken in this topic. In the following, we therefore give only a relatively compact
overview over parts of this field, which is still very much growing.

Inelastic tunneling through coupled impurities in disordered conductors was treated by Glazman and
Matveev[52] in a seminal work in 1988, which closely followed after the work of Glazman and Shekhter
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[58] on resonant tunneling through an impurity level with arbitrary strong electron—phonon (polaron)
coupling. Raikh and Asend®3] later combined Hubbard and Coulomb correlations in their treatment of
the Coulomb blockade for transport through coupled impurity levels and found step-like structures in the
current voltage characteristics. References to earlier combined treatments of both the Coulomb blockade
and the coherent coupling between coupled dots can be found in the 1994 paper by Klime{34ét al.

who presented a calculation of the linear conductance. Their prediction for a splitting of the conductance
peaks both due to Coulomb interactions and the tunnel coupling was confirmed by exact digitalizations
by Chen and coworkef®5], and by Niu, Liu, and Lin in a calculation with non-equilibrium Green’s
functions[96], a technique also used by Zang ef{@l] in their theory of non-equilibrium transport and
population inversion in double dots. In 1996, Pals and MacKir[@8halso used Green'’s functions and
calculated the current through coherently coupled two-dot systems, and Matved9@}gdve a theory

of the Coulomb blockade oscillations in double quantum dots.

The first systematic descriptions of transport through double quantum dots in terms of Master equa-
tions were given by Nazarov in 199B00], and by Gurvitz and Prag§b4] and by Stoof and Nazarov
[56] in 1996, the latter including a time-dependent, driving microwave field, cf. Section 2.4. These were
later generalized to multiple-dot systems by Gur{&3] and by Wegewijs and Nazar¢%01]. Further-
more, Sun and Milburifil02] applied the open system approach of Quantum Opti08] to current
noise in resonant tunneling junctions and double §itdg], and Aono and Kawamuid 05] studied the
stationary current and time-dependent current relaxation in double-dot systems, using Keldysh Green’s
functions.

Transport beyond the Master equation approach leads to co-tunneling (coherent transfer of two elec-
trons) and Kondo-physics, which again even only for double quantum dots has become such a large
field that it cannot be reviewed here in detail at all. Pohjola, Konig, Salomaa, Schmid, Schoeller, and
Schén mapped a double dot onto a single dot model with two levels and predicted a triple-peak structure
in the Kondo-regime of non-linear transp$t06], using a real-time renormalization group technique
(see below anfiL07]), whereas Ilvano{108] studied the Kondo effect in double quantum dots with the
equation of motion method. Furthermore, Stafford efld9] calculated co-tunneling corrections to the
persistent current through double dots embedded into an Aharonov—Bohm ring in an extension of the
Hubbard model used earlier by Kotlyar and Das Sajii8)].

The slave-boson mean field approximation was used by Georges anfllMEiand by Aono and Eto
[112] for the conductance, and for the non-linear transport through double quantum dots in the Kondo
regime by Aguado and Langrefthl 3] and later by Orella et al114] who discussed non-linear bistability
behavior. Motivated by experimental results by Jeong ¢14b], Sun and Gu$116] used a model with
Coulomb interaction between the two dots and found a splitting of the Kondo peaks in the conductance.

Hartmann and WilhelrfiL17] calculated the co-tunneling contribution for transport at finite bias voltage
V in double quantum dots, starting from the basis of hybridized states, Eqg. (2.4), and performing a
Schrieffer—Wolff transformation that took into account indirect transitions between final and initial dot
states including one intermediate stateFadj. 6. They then used the transformed Hamiltonian in order to
obtain the stationary current by means of the usual Bloch—Redfield (Master equation) method, by which
they identified three transport regimes: no transport for the tunnel coufiliag:;/2, transport through
both hybridized states far< 27, < +/V2 — ¢2, and transport through one of the hybridized states for
2T, > +/V2 — ¢2, cf. Fig. 6. Within the same formalism, they also analyzed dephasing and relaxation
of charge, with the double dot regarded as a spin-boson problem with two distinct baths (the electronic
reservoirs)118]J.
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Fig. 6. Left: stationary current in unitg = eI’ (I' = I'g = I';, = 1 GH2) as a function of the inter-dot-biag2 (in units of

the finite bias voltagd’ = p; — ug = 5.17pV) through double quantum dots in the co-tunneling regime after Hartmann and
Wilhelm [117]. Temperaturé g T = 140 mK;y denotes the tunnel coupliri} here. Right: co-tunneling processes contributing
to the stationary current at finite bias voltage~rom[117].

On the experimental side, co-tunneling and the Kondo regime in parallel transport through double
quantum dots were studied by Holleitner and co-workers rec§hitl§,120] whereas Rokhinson et al.

[121] used a Si double dot structure to analyze the effect of co-tunneling in the Coulomb blockade
oscillation peaks of the conductance.

Another interesting transport regime occurs in Aharonov—Bohm geometries, where electrons move
through twoparallel quantum dots which are, for example, situated on the two arms of a mesoscopic
ring ‘interferometer’. Marquardt and Brudgr22] usedP (E) theory (Section 2.2.8), in order to describe
dephasing in such ‘which-path’ interferometers, also cf. their paper and the Review by Hackenbroich
[123] for further references.

2.2.12. Real-time renormalization-group (RTRG) method

Keil and Schoellef124] calculated the stationary current through double quantum dots by using an
alternative method that went beyond perturbation theory (PER) and avoided the restrictions of the polaron
transformation method (POL). Their method allowed one to treat all three electron—phonon coupling
parametersof, o, andyq in Eg. (2.7)) on equal footing, and thereby to go beyond the spin-boson
model which hasg =0, Eg. (2.11). Furthermore, they avoided the somewhat unrealistic assumption of
infinite bias voltage in the Gurvitz Master equation approach andkepf; — uy at finite values. They
also explicitly took into account a finite widéhof the electron densities in the left and the right dots,

1\%? 2,2
pL/R(X)=(7w2> g~ XL/ (2.74)
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which (as mentioned above) leads to a natural high-energy citof 7ic/s, wherec is the speed
of sound.

The starting point of the RTRG meth¢#i25,124]was a set of two formally exact equations for the
time-dependent currerif ) () and the reduced density matfix) of the dot,

N t d . t
(I) (1) = Trgot [ / dr'xp(r — t/)f)(t/)} o p(t) +iLlop(r) = / de’s(c — Hp(t') (2.75)
0 0
with the operator for the current density between the left lead and the left dot,

I=ieY " (VE*10)(Llef, = VEIL) Oler,) (2.76)
kr

the free-time evolution Liouville super—opera‘ri)(ﬁ. = [#, -] for an effective dot Hamiltoniap¢o, and

the two self-energy operatoEs andX which described the coupling to the electron leads and the phonon
bath. Here, 7 g differs from the dot Hamiltonian# 4o, EQ. (2.2), by a renormalized tunnel coupling
TCerr =T, — awge P/2%4 grctanD /2wy and a renormalizatiorx o of the energies of the statés), |L),
and|R), where again is the dimensionless electron—phonon coupling,@ne: ¢/d with d the distance
between the two dots.

Keil and Schoeller then generated renormalization group (RG) equations in the time-domain by in-
troducing a short-time cut-off.. By integrating out short time-scales, they derived a coupled set of
differential equations for the Laplace transformg), ~;(z), I:o, and additional vertex operators which
were defined in the diagrammatic expansion for the time-evolution of the total density matrix in the inter-
action picture. The RG scheme was perturbative as it neglected multiple vertex operators, which however
was justified for small coupling parameters

A comparison between experimental dgtd] and the RTRG calculations for the stationary current is
shown inFig. 7 (left). With smaller cut-ofD (i.e. larger extensios of the electronic densities in the dots,

Eg. (2.74)), the off-diagonal electron—phonon interaction (matrix elemgiitsecomes more important
and the inelastic current is increased. Keil and Schoeller explained the deviations from the experimental
results by introducing an-dependence of, usinges as a fit-parameter for all (Fig. 7, right) in order
to match the experimental results. Larger energy separatisrthen imply electron densities with
sharper peaks.

2.3. Shot-noise and dissipation in the open spin-boson model

Shot noise (quantum noise) of electrons has been recognized as a powerful tool in the analysis of
electronic transport in mesoscopic systems for quite some time (cf. the chapter on noise in Imry’s book
[8] on Mesoscopic Physics). Noise and fluctuations are also key theoretical concepts in Quantum Optics.
Noise in mesoscopic conductors has been recently reviewed by Blanter and Bu2i&krand recent
developments are presented in a volume on ‘Quantum Noise in Mesoscopic Piy&igs’

A large theoretical activity on thdetection of entanglemeit electron noise, or more generally in
the full counting statistics of electrons, has revealed the usefulness of quantum noise for the purpose of
quantum information processing in solids. For example, Burkard gt28] theoretically demonstrated
the possibility to detect entanglement in the bunching of spin singlets and anti-bunching of spin triplets
in an electron current passing a beam spliteation of entanglemein solids has become a further
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Fig. 7. Left: stationary tunnel current through double quantum dots in comparison between expgtéhand RTRG method
[124] with T, = 0.375peV, I';, = I'g = 3.5ueV, and cut-offsD = 70(100) ueV, Dy = Dg = 1 meV. Right: fit ofe-dependent
electron density widtls (d: dot distance). FrorfiL24].

and widespread area of (so far) still mostly theoretical activities, ranging from the Loss—DiVincenzo
proposal for spin-based qubi&2], superconducting systeni0], semiconductor spintroni¢é29] up
to entanglement of electron—hole pdit80].

The spontaneous emission and, more generally, quantum dissipation effects discussed in the previous
section for stationary transport have of course also a large impact on quantum noise. Shimizu and Ueda
[131] investigated how dephasing and dissipation modifies quantum noise in mesoscopic conductors
and found a suppression of noise by dissipative energy relaxation processes. These authors furthermore
investigated the effect of a bosonic bath on noise in a mesoscopic sc§it&?¢rChoi et al.[133]
showed how to extract quantum coherence and the dephasingiifinem the frequency-dependent
noise spectrum in a Cooper pair box. Elattari and Guijligz] calculated shot noise in coherent double
quantum dots transport, and Mozyrsky and cowork&B%] derived an expression for the frequency-
dependent noise spectrum in a two-level quantum dot.

2.3.1. Current and charge noise in two-level systems
Current noise is defined by the power spectral density, a quantity sensitive to correlations between
carriers,

F (o) = 2/00 de€?° 7 (1) = foo de€® ({Al (1), AL (0)}) , (2.77)

whereAl (1) = I(r) — (I(r)) for the current operatat. The Fano factor

L _ 710
= 2q1

quantifies deviations from the Poissonian noigg(0) = 2¢ I of uncorrelated carriers with charge

(2.78)
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The noise spectruisr’; (w) for electron transport through dissipative two-level systems was calculated
by Aguado and Brandes if65], with examples for concrete realizations such as charge qubits in a
Cooper pair box20,136,133pr the double quantum dot system from the previous section. The theoretical
treatmentis basically identical in both cases: for the Josephson Quasiparticle Cycle of the superconducting
single electron transistor (SSET) with charging enefgy> E; (the Josephson coupling), only two
charge stateq?) (one excess Cooper pair in the SSET) d@d(no extra Cooper pair), are allowed.

The consecutive quasiparticle events then col@leand |0) with another staté¢l) through the cycle

|2) — |1) — |0) < |2). Tunneling betweeh andR in the double dot system is analogous to coherent
tunneling of a Cooper pair through one of the junctions, and tunneling to and from the double dot is
analogous to the two quasiparticle events through the probe junction in the[$S8T

In Quantum Optics, the quantum regression thedHd8] is a convenient tool to calculate temporal
correlation functions within the framework of the Master equation. Tunneling of particles to and from the
two-level system requires to relate the reduced dynamics of the qubit to particle reservoir operators like
the current operator. [65], this lead to an expression for the noise spectrum in terms of two contributions:
the internal charge noise as obtained from the quantum regression theorem, and the current fluctuations
in the patrticle reservoirs which were calculated by introducing an additional counting varitdsléhe
number of particles having tunneled through the system. InSagh) in Eqg. (2.77) had to be calculated
from the autocorrelations of thetal currentl, i.e. particle plus displacement currd@®6] under the
current conservation condition. Left and right currents contribute to the total curréntad ; + blg,
wherea andb are capacitance coefficient-{ » = 1) of the junctions (Ramo—Shockley theorem), leading
to an expression of/;(w) in terms of the spectra of particle currents and the charge noise spectrum

So(w),
Si(@) =aS;, (@) + bS 1, (0) — abaeSo(w) (2.79)

with Sp (w) defined as

So(@) = lim_ / Z ke ({Q (1), Ot + 1)) = 2R f(z =iw) + f(z =—iw)} , (2.80)
whereQ = i, + /ig and f(z) is the Laplace transform of

f@= Y (A +1)=(e1+e)[CL() + Cr()] (2.81)

C, (1) EJ(YZIL(ZR)A(I +1) . (2.82)

The equations of motions of the charge correlation functong) [137] (quantum regression theorem
[103)),

Ci(e) = Ci(0) + f A7/ (M(c — )Ci(?) + (i)}, T'=Trer, (2.83)
0

are solved in terms of the resolvgpt— zM(z)]‘l, cf. Eq. (2.39).

The qubit dynamics was related with reservoir operators by introducing a counting vamiable
(number of electrons that have tunneled through the right bg2&d34) and expectation values,
0™ = . o gTroan(n, il0p(®)In, i) with (0) = 3, 0™. This lead to a system of equations
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of motion,

g = —rin” + Tenly™ ., il = £ gng” £1T.(p™ — [p™1T) (2.84)

and similar equations fgp™ and[p™]", which together withP, (1) = né")(t) + n(L”) (1) + nf,?) (1) gave
the total probability of finding electrons in the collector by timie In particular,/z(t) =) _, nP,(1)
such thatS;, could be calculated from the Mac-Donald form{d38],

S1q(w) = 2we? foo dt sin(wr) ;[(nz(t)) — (t(I)?) = 2e1{1 + T'glAr(—iw) + Agiw)]}
0

21R(2) =Tg+@/{lz+ TR+ 8- @1z +TL) + (z+Tr+T'1)g+ ()}, (2.85)

where theg[_(z) are defined in Eq. (2.46). In tieero frequency limi — O, the result

S71(0) = 2el (1 + 2I'g (;:IZ[ZﬁR(Z)]Z:o> (2.86)

indicated the possibility to investigate the shot noise of open dissipative two-level systeanisifi@ary
environmentsln [65], it was pointed out that Eg. (2.86) cannot be written in the Khlus—Lesovik form
S;(0) = 2e2de/2m(E)[1 — t(E)] with an effective transmission coefficientE) as is the case for
non-interacting mesoscopic conductors, cf. 1]

Fora = 0, i.e. without coupling to the bosonic bath, Eq. (2.47) yields

2z + TR
g+(z) =T2 ,
(z+ FR/2)2 + &2

(2.87)

which reproduces earlier results by Elattari and Gurii4],

d_ . AT2rp 4®(Ig — I'p) +3LT% + TS + 8IRT?
—[zAig(2)];=0 = — L 5 LR R = (2.88)
dz I'r ([ 1% +4pe? +AT2(I'r + 2I'p)]

and similarly one recovers the results for shot noise in the Cooper pair box obtained by Chdizg]al.

In particular, forxr=0andI’ = I';y =I'g (left Fig. 8a, solid line), the smallest Fano factor has a minimum
ate=0where quantum coherence strongly suppresses noise with maximum suppres$ic) (eached

for I = 2./2T,. On the other hand, for large- 0 (¢ < 0) the charge becomes localized in the right (left)
level, andS; (0) is dominated by only one Poisson process, the noise of the right(left) barrier, and the Fano
factor tends to unityy — 1. Fora # 0, spontaneous emission (for 0) reduces the noise well below

the Poisson limit, with a maximal reduction when the elastic and inelastic rates coincid,g, +elp.

On the other hand, fdinite frequencies, y was found to have a peak around= 0 and a dip at the
frequencyw = 4, whered = /¢ + 4T 2 is the level splitting, which was shown to directly reflect the
resonance of the subtracted charge ndigéw) around4 (inset leftFig. 8 b), cf. Eq. (2.79). The dip
in the high frequency noise at= 4 is progressively destroyed (reduction of quantum coherence) as
increases due to localization of the charge, or as the dissipation increases.

It was therefore argugl®5] that S; (w) reveals the complete internal dissipative dynamics of the two-
level system, an argument that was supported by a calculation of the symmetrized pseudospin correlation
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Fig. 8. Left: (a) Fano factor vsfor different dissipative couplingsand parameterg. =3, '=0.15,w, =500,y =10,kg T =2

(in ueV) corresponding to typical experimental valj438] in double quantum dots. Lines: acoustic phonons, circles: generic
Ohmic environment,; =0. (b) Frequency dependent current noise 0, kg7 =0, I'=0.01). Inset: (top) contribution to noise
from particle currentsS;, (w)/2el. (Bottom) Charge noise contributicszSQ(w)/Bel. a =b=1/2. Right: effect of Ohmic
dissipation on current noise near resonance 10, " = 0.01, andx = 0.005, 0.01, 0.02). Inset: (Right) pseudospin correlation
function S; (). Arrows indicate the calculated relaxation rate+y,)/4 ~ 0.005 foro = 0.005. (Left) low frequencies region
near shot noise limib = 0. From[65].

function
S:(w) = 1/2/oo dwe " ({6, (7), 6.}) (2.89)

(right Fig. 8, right inset) which is often used to investigate the dynamics of the spin-boson pridgm
and which also shows the progressive damping of the coherent dynamics with increasing dissipation. A
further indication was the extraction of tdephasing ratérom the half-width ofS; (w) aroundw = 4,
and therelaxation ratearoundw = 0, indicated by the arrows and consistent with the relation between
relaxation and dephasing tim&, = 37>, in the underlying Markov approximation in the perturbative
approach (PER).

Results for the strong coupling (POL) regime were also discuss@@binwhere neat» = 0, POL
and PER yielded nearly identical results for the ndSséw) at very smallx, but with increasing: a
cross-over to Poissonian noise neat 0 was found and interpreted as localized polaron formation. The
delocalization—localization transitigh0,51] of the spin-boson model at= 1 therefore also shows up in
the shot noise near zero bias, where the funaflphas a change in its analyticity. A similar transition was
found by Cedraschi and Buttiker in the suppression of the persistent ciicfeintec Im C_; through a
strongly dissipative quantum ring containing a quantum dot with £j&39].

Whereas the validity of the quantum regression theorem is guaranteed in the Markovian case, its
application to the non-Markovian strong coupling regime was argued to be unrdligle Although
the original derivation by LaKl41] appears to be generally valid even in the non-Markovian case, counter-
examples appear to show the contrary, with additional terms appearing in the calculation of the noise
correlation functions. From this argument, the results in the POL regifg®&pippear to be less reliable.
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Novotny [140] furthermore calculated the Fano-factor of the ‘transport’ Spin-Boson model in the
Markovian regime, using a previously developed superoperator techdigie He found a breaking of
an exact junction-independencesyD) for any finite dissipation > 0, with unphysical results (negative
Fano factors) for the noise at the central tunnel junction of the double dot, whereas agreement with the
results from[65] was restored in the weak-coupling limit and the Master equation iftthéasis.

2.3.2. Shot noise experiments

Deblock et al[81] measured the current noise spectrum in the frequencies range 6—90 GHz by using
a superconductor—insulator—superconductor (SIS) tunnel junction, which converted a noise signal at
frequencyw into a DC, photo-assisted quasi-particle tunnel current. They tested their on-chip noise
analyzer for three situations: the first was a voltaye) (biased Josephson junction f@V ;| below
twice the superconducting gap, leading to an AC current and (trivially) two delta-function noise peaks at
frequencies» = £2¢V ;/#. This measurement served to extract a trans-impeddnog of the system
which was later used to analyze the data without additional fit parameters. The second case was a DC
current () biased Josephson junction in the quasi-particle tunneling reginje¥Wgr above twice the
superconducting gap . Using the saffigv), good agreement with the experimental data was obtained
with anon-symmetrizedoise spectruns(w) = el ;y, which is half the Poisson valu§(w) = 2el ;.

Finally and most important, they used a Cooper pair box to confirm the peak in the spectral noise
density as predicted by Choi et §1.33]. The resonance of(w) appeared around the level splitting

hwz\/4Ec(Q/e — 1)% 4+ E2, with E¢ the charging energ@ the charge in the box, arffl; the Josephson

coupling between the two statesfand N + 1 Cooper pairs in the box, thus again demonstrating the
coherent quantum mechanical coupling between the two states.

2.4. Time-dependent fields and dissipation in transport through coupled quantum dots

The interaction of two-level systems with light is one of the central paradigms of Quantum Optics; the
study of transport under irradiation with light therefore is a natural extension into the realm of quantum
optical effects in mesoscopic transport through two-level systems as treated in this section. In the simplest
of all cases, the light is not considered as a quantum object but as a simple monochromatic classical field
with sinusoidal time-dependence, and one has to deal with time-dependent Hamiltonians. These systems
are often called ‘ac-driven’ and have received a lot of attention in the past. In the context of electronic
transport and tunneling, this field has recently been reviewed by Platero and Agddfig-urthermore,

Grifoni and Hanggi reviewed driven quantum tunneling in dissipative two-level and related systé&is

An additional, time-dependent electric field in general is believed to give additional insight into the
gquantum dynamics of electrons, and in fact alarge number of interesting phenomena like photo-sidebands,
coherent suppression of tunneling, or zero-resistance states in the quantum Hall effect have been inves-
tigated. In this context, an essential point is the fact that the field is not from the beginning treated as a
perturbation (e.g., in linear response approximation), but is rather considered as inherent part of the sys-
tem itself. By this, one has to deal with conditions afan-equilibrium systemnder which the quantity
of interest, e.g. a tunnel current or the screening of a static potential, has to be determined.

For our purposes here, a simple distinction can be made between systems where the field is a simple,
monochromatic ac-field, or where it shows a more complicated time-dependence such as in the form of
pulses with certain shapes. The latter case plays a mayor role in a variety of adiabatic phenomena such
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Fig. 9. Left: stationary current through a microwave irradiated double quantum dot (zero transport voltage) for different microwave
frequencie$as a function of the energy differencé=AE here) in the experiment by Oosterkamp and co-worket3]. Positive

or negative peaks occur whenefématches the energy differendef, = +4 = ,/¢2 + 472, between bonding and anti-bonding

state in the double dot, cf. Eq. (2.4. Frd8Y]). Right: the relation:(= AE) = ,/(hf)? — 4T2 is tested for various inter-dot
coupling constant$,. (denoted ag in the picture). Inset shows the double dot sample. HbA8].

as charge pumpingg2,146—154]adiabatic control of state vectdis5,156] or operations relevant for
quantum information processing in a condensed-matter s¢&ing0,157-161hnd will be dealt with

in Section 7. On the other hand, a monochromatic time-variation is mostly discussed in the context of a
high frequency regime and photo-excitations.

Theoretical approaches to ac-driven quantum dots comprise a large number of works that cannot be
reviewed here, but cf144]. Earlier works include, among others, the papers by Bruder and Schoeller
[162], Hettler and Schoelld63], Stafford and WingreefiL64], and Brune and coworkef$65]. The
first systematic theory on transport throudgublequantum dots with ac-radiation in the strong Coulomb
blockade regime was given by Stoof and Nazd&®], which was later generalized to pumping of elec-
trons and pulsed modulations by Hazelzet ejl#l6]. On the experimental side for double quantum dots,
Oosterkamp and co-workef$43] used microwave excitations in order to probe the tunnel-coupling in-
duced splitting into bonding and antibonding stated;igf. 9and the Review by van der Wiel and cowork-
ers[37]. Blick and co-worker$41] demonstrated Rabi-oscillations in double dots with ac-radiation, and
later Holleitner and co-workerfd 67] studied photo-assisted tunneling in double dots with an on-chip
microwave source.

Qin et al.[168] furthermore reported the probing of bonding and anti-bonding states in double quantum
dots with photon-assisted tunneling. They also found a remarkable combination of phonon and photon-
assisted tunneling for microwave frequencies below 8 GHz. In their experiments, charging diagrams were
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measured as a function of the tunnel couplip@nd the inter-dot bias At higher microwave frequencies

f =15 and 20 GHz, the relation= \/m confirmed the coherent coupling of the two-level
systems, cf. alséig. 9. However, atf = 3 GHz a maodification of this square-root dependence was
observed, and Qin and co-workers suggested a sequential process with photon absorption and a coherer
coupling of the dot levels by a fundamenpilononfrequencyfpn, or alternatively a completely coherent
coupling of phonon and photon, giving rise to ‘square-root laws’ of the {d68]

sseq= | (2hf o)? — AT2 + 2hf,  tooh= \/ (2hf g+ 21f)% — 4T2 (2.90)

respectively, both of which were within the error bars of the experimental data. The phonon frequency
fph &~ 10 GHz was found to match well with the geometrical dimension of the double dot, which was
argued to act like a phonon cavity for piezo-acoustic phonons, also cf. Section 5.

2.4.1. Transport model for driven two-level system with dissipation

The combination of ac driving and transport in a dissipative two-level system (double quantum dot)
was modeled by Brandes et {#6] in a generalization of earlier work on closed, dissipative two-level
systems with ac driving by Grifoni and Hand@#5], and coherently ac-driven double dots by Stoof and
Nazarov{56]. The model considered [66],

H(t) = H'sB(t) + H'res+ Ay (2.91)

was identical with the double-dot transport model in Section 2.2.1, but with a time-dependent spin-
boson part#sg(z), cf. Eq. (2.10), of which only the inter-dot bia&) was considered as time-varying
according to

e(t) = ¢+ Asin(Qr) , (2.92)

whereQ is the angular frequency of an external electric field that leads to a symmetric modulation of
the bias with amplitudd. The question of whether or not the simple assumption Eq. (2.92) is sufficient

in order to describe the effect of an ac-field is a non-trivial issue. Stoof and Naj&Gpargued that

Eg. (2.92) describes the effect of a sinusoidal modulation of a gate voltage. Experimentally, however, the
coupling to ac-fields is complicated, and in principle one has to expect additional modulations of other
parameters such as the tunnel coupligor the tunnel rates;, . From the quantum optical point of

view, one would in fact start from the bonding-antibonding basis Eq. (2.4), and argue that the ‘light’
induced transitions between them. A more precise model would involve detailed microscopic calculations
of a) the electromagnetic field modes coupling into the system, e.q., its polarization, possible propagation
effects etc., and b) the dipole (or higher if required) matrix elements for electron—photon coupling in the
double-dot many-body system. Eventually, however, one would expect to recover models like Eq. (2.91),
possibly with some modifications and microscopic expressions for the parameters.

In [66], the evaluation of the photo-current through the dots under irradiation was performed within
the Master equation approach in a generalization of the polaron transformation formalism developed in
Section 2.2.3. Using the boson correlation function, Eq. (2.20), one then can define ‘polaron propagators’
that incorporate the finite lifetime of the electron—boson quasi-particle due to tunneling out of the double
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dot at ratel'g,

A C.(2) - C*.(2)

Di(z)= ———2—— E(g)= ——~" |
14 I'rCy(2)/2 1+ I'rCi(2)/2

A CA* . e é—g .

Proy=— @ = & (2.93)
14 I'rC#(2)/2 1+ IrrCx(z)/2

whereC,(z), etc. are defined in Eq. (2.42) and the hat denotes the Laplace transformation. The propagators
Eqg. (2.93), transformed back into the time-domain, appear in closed equations for the occupangies

o0 A A 1
zinp(z) — (np)o = —/0 dre ¥ [(np),K(z,t) — (ng),G(z, )] + ' [Z —np(z) — ﬁR(Z)]
ZiR(z) — (nR)g = /0 dre ¥ [(n1),K (z, 1) — (nR), G (z, )] — TriAR(2)

K(z, 1) = /OO dr'e " [T.(t + TX)D(t") + T)(t + ) T.(t) DX (1')]
0

o0
G(z, 1) z/ de'e ¥ [T.(t + T E(") + Tr @t +)T.()E ()], (2.94)
0
where the combination

24 [ ds4sin(@ 2 ' — 4 AN inor i—n)Q
T.(t —{—t’)Tc*(t/) _ Tc el[, sAsin(Qs) _ Tc Z iy (§> Iy (5 g Q' g in—n")Qt
nn
involves Bessel functions, as is typical for ac-tunneling problems. Decomposing into Fourier series, a
closed set of equations for asymptotic, stationary quantities

~dS Vm ~dS 1
A @)= o Ap (@)= i (2.95)
m m

is then obtained in the form of an infinite system of linear equations for the Fourier coeffigjeatsl
Fom s

—iMQvy == [vaKyn(—IiMQ) — 1, Gy (—IMQ) + I'L[5p1.0 — var — ttps]

n

[Ir —iIMQluy = Z[vnKM_n(—iMQ) — 1, Gy (—IMQ)] | (2.96)

n

which can be transformed into an infinite matrix equation that describes the contribution from all
photo-side bands at frequencigs with coefficients given by the Fourier components o€z, ¢)
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andG(z, 1),

. . A A\ - A A
Kn(im'® =172 3 [’" (5) S (5) Devtnt=me (a) S (5)
. . A A\ A A AN -
Gm(—lm/Q) =1 mTC2 Z [Jn (5) Jn—m (5) E£+(m/_”)g + J, (§> Jn+m (5) E:_(m/+n)9i| .
n

(2.97)

Wl

*
s—(m/+n)Qi| ’

The closed expression for the stationary curteaveraged over one periads 27/Q,
Ko(0) — Zn;éo [K—n(o)/rn + G—n(o)]ﬂn
I'r + Ko(0)/ro + Go(0)

then is the starting point for a numerical and analytical analysis of ac-driven dissipative transport through
two-level systems.

I_:—eFR

: (2.98)

2.4.2. Stationary current

In absence of the time-dependent (driving) paki(in, i.e. for4 = 0, one recovers the previous results
for the stationary charge current, Eg. (2.50). In the time-dependent case, the analysis is complicated by
the fact that there are six energy scalgs,, ¢, I'. /g, andw,, the boson cut-off in the Ohmig = 1)
boson spectral density(w), EQ. (2.52).

An expansion in lowest order of the tunnel couplifigleads to the usudlien—Gordon resulf169]
for ac-driven tunneling, which in fact has often been used in the literature as the first starting point in the
analysis of driven tunnel systems. This result is valid for

T
T.. )2+ F—R<Q,FR,|5+nQ|, n=+012 ..., (2.99)
L

a condition that one obtains when considering the expansion of the current in the un-driven case, Eq.
(2.49) and which indicates that at the resonance peiais:Q such a perturbation theory must break
down, as is corroborated by numerical results. In this limit, one fi66k

—TG A\ = 4=
I EZJ,$<§>IO|§;§+HQ, (2.100)

n

where the current in the driven system is expressed by a sum over contributions of cligrentee
un-driven case but evaluated at the side-band energie®?, weighted with squares of Bessel functions.
A non-adiabatic limit is obtained for high frequencies,

Q>T., e, ', I'L , (2.101)
where Fourier components other than the cemtealO are neglected and
]_ ~ I‘fast = _eFRKO(O)
I'r +Go(0) + Ko(O)[1+T'g/TL]

which in actual fact within lowest order @f. coincides with the Tien—Gordon expression, Eq. (2.100).
Eq. (2.102) corresponds to a geometric series-like summation of an infinite number of¢gifshich
is due to the integral equation structure of the underlying Master equation.

(2.102)
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Fig. 10. Left: average current through double dot in Coulomb blockade regime with-biasin Qr. Coupling to left and right
leadsI';, = I'r = I'. Dotted lines indicate Tien—Gordon result, Eq. (2.100). Right: comparison between RWA and exact result
for first current side-peak. Frof66].

In order to systematically go beyond the Tien—Gordon approximation, Eq. (2.100), one has to perform
an expansion of the current in powers®f, which is cumbersome when done analytically but can be
easily achieved byruncatingthe infinite matrix equation, Eg. (2.96), and solving it numerically. A third,
analytical approximation discussed[®6] is based on results by Barata and Wreszii$kD,171]on
higher order corrections to dynamical localization inlasedand coherent driven two-level system. In
that case, a third order correction of the tunnel couplingppears,

3
5T = _2% 3 J2n1+1(4/2) J2n,+1(4/ ) I —2(n1+np+1) (4/2) ’ (2.103)
Q 2n1+1(2ny+ 1)
ni,np€”Z
which can be used in order to define a renormalized fundﬁéﬁ%(O),
3 4 31
K370 = Z [TCJH (5) + 0T )} 2ReD, 0 , (2.104)

n

and Gé3) (0) correspondingly that give rise to an expression for the tunnel current with the coupling
between the dots renormalized,

@ —eI'rKP (0)
e+ G20 + K& O+ I'g/IL]

Fig. 10 left, shows results for the exact average stationary current and the Tien—Gordon expression,
Eg. (2.100), in the coherent case= 0 (no dissipation). Symmetric photo-side peaks appedtndit.
The Tien—Gordon approximation overestimates the current close to these resonances, where terms of
higher order iff, become important due to the non-linearity i) of the exact bonding and antibonding
energiest,/¢2 + 4T2 of the isolated two-level system.

Fig. 10 right, compares the exact result with a rotating wave approximation (RWA) for the first side-
peak as obtained by Stoof and Nazaf8§], where in an interaction picture the fast-rotating terms with

(2.105)
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Fig. 11. (a) (b) Average current for AC driving amplitude= zoQ (zg first zero of Bessel functiotp) and various tunnel
couplingsT,. Coupling to left and right leads; = I'r = I'. (c) (d) Central peak of average current through AC driven double
guantum dot. Parametefs=0.1, 4 =zoQ (all rates in units of2); (c) coherent case=0 for differenttunnel rateE=1"; =g,

dots indicate third order results Eq. (2.105), squares indicate the Tien—Gordon result Eq. (2.100) for the-¢a865, (d)
disappearance of central peak with increasing dissipati&nom[66].

angular frequency:Q are transformed away, and terms with higher rotation frequencies (such®s

are neglected. For smaller driving amplitudethe agreement is very good but becomes worse with
increasingd when the position of the side-peak resonance point (which is independein tie RWA)
starts to shift towards slightly larger values of the hiaBor strong electric fields, the RWA in fact is
known to break dowiil72]. For example, the first corrections to the RWA in isolated two-level systems
lead to the well-known Bloch—Siegert shi#6] of the central resonance towards larger energies, which
is consistent with the exact resultking. 10

Figs. 11a, b, show the average current foe= 0 in the dynamical localization regime defined by
A = 702, wherezg = 2.4048. . . is the first zero of the Bessel functio. For this specific value of the
ac-driving4, to lowest order irf,. the average current is strongly suppressed:fgy2 as compared with
the un-driven casg = 0. For smallT,, this suppression is well-described by the Tien-Gordon expression
(not shown ): since at = zpQ2, then = 0 term in the sum Eq. (2.100) is absent, the current is dominated
by the shifted (un-driven) current contributions at biasnQ with |n| > 1, which however are very small
due to the resonance shape of the un-driven current.

Dynamical localization (also called coherent destruction of tunneling) occurs in quantum system driven
by a periodic electric field of a certain amplitufiet4,173] An analysis in terms of Floquet states and
energies shows that when two quasi-energies approach degeneracy, the time-scale for tunneling betweel
the states diverges. For an isolated two-level system, a monochromatic, sinusoid&)fietd-A sin(Qr),

Eg. (2.92), leads to an effective renormalization of the couglingf the two levels,

A

Te — Teeft = TeJo (E) . (2.106)

which shows that at the first zero of the Bessel functigthe effective tunnel splitting vanishes, leading
to a complete localization of the particle in the initial state.
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Fig. 12. Left: average current through double dotin Coulomb blockade regime witttbitsin Qs for various Ohmic dissipation
strengths: at zero temperature. Driving amplitude= Q for lines without symbolsd = 7o (zg first zero of Bessel functiori)
for lines with symbols. Tunnel coupling between dfits= 0.1Q, bath cutoffo, =5002, and lead tunnel ratdg, =I'p =0.01Q.
Right: average current through driven double dot for various ac driving amplittidesl fixed dissipatiom = 0.05, tunnel
coupling7, = 0.1Q. From[66].

The coherent suppression of the current is howéfted again very close te= 0, where a small and
sharp peak appears that becomes broader with increasing tunnel caliplimg with its height being
suppressed for increasing reservoir couplingf. Fig. 11b. Fig. 11shows details for the central current
peak around = 0 at dynamical localization for coherent£ 0, ¢) and incoherent(> 0, d) tunneling.
Again the Tien—Gordon description breaks down close=00 where higher order terms il become
important, in particular fot = 0 where the only relevant energy scale of the isolated two-level systems is
T, itself. In contrast, théhird order approximatiorEg. (2.105) reproduces very well the additional peak
ate =0, which indicates the importance of higher order terms in that regime=A% the charge between
the two dots is strongly de-localized in the un-driven case, and this tunneling-induced quantum coherence
persists into the strongly driven regime where its signature is a lifting of the dynamical localization close
toe=0.

Fig. 12shows the stationary current as a function of bits various Ohmic dissipation strengthsat
zero temperature and finite ac driving amplitude&or 4 = Q, apart from the central resonant tunneling
peak, side-bands at= nQ appear which reproduce the asymmetry of the central peak asocurty cf.

Fig. Eq. (2.45) in Section 2.2.10. For ac driving amplitugle= zoQ (zo the first zero of the Bessel
function Jp) the current suppression strongly depends on the static:lbsappression occurs far> 0

and, in generallarger values of the current far < 0 as compared to the case of smaller ac amplitudes
A. A small driving amplitude1<0.2 nearly does not change the current at all. However, the originally
strongly asymmetric current curve is flattened out whda tuned to larger values up to the dynamical
localization valued = zpQ2, where the ac field nearly completely destroys the strong asymmetry between
the spontaneous emissian{ 0) and the absorption side<£ 0) of the current. The central= 0 photo-

band is completely suppressed and the dominant contribution to the current stems from: thé
bands. FoEe < 0, the current for2 > |¢| is then due to photo-excitation of the electron into the first upper
photo-sidebands and subsequent spontaneous emission of bosons offenergy — |¢| to the bath.
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Onthe other hand, fae > ¢ > 0, photon emission blocks the current becaug§e-afd there is no absorption

of bosons from the bath. The remaining photon absorption channel then leads to boson emission at an
energyE> = Q + ¢. This energy is larger as compared to the case #00, £, > E1, and therefore has a
smaller probabilityP (E) o« E?~1le=E/®c cf. Eq. (2.62), leading to a smaller current.

3. Superradiance, large spin models, and transport

Whereas the previous section dealt with individual two-level systems and their interactions with boson
and electron reservoirs, this section introduces the concept of collective effects in spontaneous emission
(superradiance) and various realizations of superradiance in mesoscopic systems.

3.1. Dicke superradiance

Superradiance is the collective decay of an initially excited systei aoms due to spontaneous
emission of photons. For lardé the emission as a function of time is not of the usual exponential form,
but has the form of a very sudden peak (‘flash’) that occurs on a very short timessd#lg and has a
maximumoc N2. The phenomenon of superradiance was predicted by Dicke in a seminal paper in 1954
[174], shortly after his 1953 paper on spectral line-narroWih]. Both effects are related to each other
and referred to in the literature as ‘Dicke-effect’. In this section, we will discuss the Dicke superradiance
effect only, whereas the Dicke spectral line effect will be dealt with in Section 4.

The first observation of superradiance in an optically pumped hydrogen fluoride gas by Skribanovitz
et al.[176] was the starting point of considerable activities (both experimental and theoretical) since the
1970s on this collective, quantum optical effect, a good account of which is given in the text-books by
Benedict et al[177], Andreev et al[178], and the Review Article by Gross and Harodh&9]. The
wealth of physical concepts related to superradiance may in part have contributed to the quite recent
revival of the effect, in particular in Solid State Physics. For example, coherent effects in semiconductors
optics[180,181]have become accessible experimentally by ultrafast spectroscopy. Most prominently
in semiconductor optics, the superradiance effect has been found in radiatively coupled quantum-well
excitong[182—184]recently.

Conceptually, superradiance is the generalization of spontaneous emission from a single to a many-
body system, similar to the way that lasing is the extension of the concept of stimulated emission to a
large ensemble of atoms. It has to be emphasized though, that superradiance and lasing are two differen
concepts which should not be confused.

The clearest outline of the central idea behind superradiance is perhaps given in the introduction of
Dicke’s original paper. Let us take a similar route here and first consider an excited atom, as described in
the form of a two-level system (ground and excited state), which can decay due to spontaneous emission of
photons. The decay ratés determined by the interaction of the atom with the light and can be calculated
from the corresponding transition matrix elemeggs Considering nowwo (instead of one) atoms at
positionsr, andr 2, this interaction (in dipole approximation with dipole momedttsaindd, of the two
atoms) is proportional to the sums of terta® ("1 andd»€(Q"2), which interfere and thereby lead to
a splitting of the spontaneous decay into a fast, ‘superradiant’, decay channel, and a slow, ‘subradiant’
decay channel. This splitting is called ‘Dicke-effect’.
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Using Pauli matrices for two-level atoms, the Hamiltonian for two atoms interacting with the electro-
magnetic field readd 85]

1 .
H = Ho + Heph+ Hph, Ho= > wo(6;,1+6;,2), Hph= Z wQagsaQs , (3.1)
Qs
Heph=  gqs(a_qs + ab )€ 6,1+ €26, 5] | (3.2)
Qs

where the dipole operators ale= do, ;, ands,; andsy ; are the Pauli matrices in thex22 space of
the upper/lower level 1 );,| | ); of atomi,

. 0 1 . 0 —i . 1 0
O-X,i = < ) ’ ay,i = < . > ’ GZ,i = ( . ) N (33)
1.0/ i 0/ 0 -1/

Here, o is the transition frequency between the upper and lower level. Furthermgre; c|Q| with

the speed of light, andaé’s creates a photon with wave vectQrand polarizatiors, andgqs = 0gsd

is the coupling matrix element witho, = —i(2an/V)1/Zer and light polarization vectoeg ¢ in a
volumeV — oo. The form Eq. (3.1) of the Hamiltonian induces a preferential basis in the Hilbert space
H#Ho = C?® C? of the two two-level systems, i.e. pseudo-spin singlet and triplet states according to

IS0} = Z5 (1A = 141D
T) =111). 1Ty =D+, IT-)=11]). (3.4)

which are a special example p&= N /2 Dicke states (angular momentum stdtes) with j =1). Using
this basis, one can easily calculate the non-zero matrix elemertgpaf Simple perturbation theory
(Fermi’'s Golden Rule) then yields two transition rafes for spontaneous emission of photons into a
photon vacuum,

2
re@ =20 Y 5t exiQu - ri)liPoo0 — wg), @ = wofe (3.5)
Qs

with superradiant decay at ralte (Q) and subradiant decay at rdte (Q). This splitting into two decay
channelsisthe precursor of the more general caNeadiators (ions, atoms,...), where the phenomenonis
known asDicke superradianceAlready for N = 2, one can easily understand how the time-dependence
of the collectivedecay of radiators differs from the decay of single, independent radiators: The time
dependence of the occupation probabiliti&s{), To(z), T-1(r), andSp(z)) of the for states, Eq. (3.4),

are governed by a set of rate equations

Ti=—(T_+T)T1, So=TI_(T1— So) ,

To=T4+(T1—To), T-1=T_So+T4Tp. (3.6)
For simplicity, let us consider the case where the subradiant channel is completely supgressedl,
andI'y = 2I', wherer is the emission rate of one individual radiator. This situation corresponds to the

so-calledsmall-sample limitQ(r2 — r1)| <1 where the wave length of the emitted light is much larger
than the distance between the two radiators. The rate equations can be easilyIt8}ed

Ti(t)=e "™, Tott)=ryte’+ Tat)=1—-e '+ 1+T41), (3.7)
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where initial conditiong(0) =1, Tp(0) = So(0) = T_1(0) =0 were assumed. The to@herent emission
rate I>(¢) at timet is the sum of the emission rates framandTy (the lowest levell_; does not radiate),

I(t) = Eolye '+ (1+I'y1), TI'p=2I, (3.8)

whereEj is a constant with dimension energy. This has to be compared with¢bberent sun2/;(r)

of the emission rateg, () from two independent radiators, which would givB @) = 2EqI'e~!". Not

only does the superradiant decay have aratéwice as large as in the incoherent case; the overall time-
dependence is changed due to the term line&rkor N > 2 this change is even more drastic and leads

to the superradiance ‘flash’, see below. Note that energy conservation requires the total emitted energies
to be the same in both the coherent and the incoherent casj%?oiduz(t) = fooo dr211(t) = 2Ep.

3.1.1. N atoms and the Dicke effect
The generalization of the interaction Hamiltonian in dipole approximation, Eq. (3.Natoms at
positionsr; with dipole momentsl; = da, ; is given by the—dE interaction,

N
Heph= Z 8qs(a—qs + aé_s) Z 8x,ielQri . (3.9)
Qs i=1

In order to describe the full interaction of bound charges with the electromagnetic field, one has to add a
self-energy ternHsejs on top of Eg. (3.9), as was first shown by Power and Zienau and discussed in detail

in the book by Agarwal185]. Alternatively, one can describe the interaction in p#e gauge but then

has to include electrostatic dipole—dipole interaction ti#8]. Depending on various conditions, these
terms are important for a realistic descriptioN\bitom systems. They lead, together with Mparticle

Lamb shifts from the real parts in the Master equafibr9] derived from Eqg. (3.9), to a modification

of the ‘pure’ superradiance scenario as first discussed by Dicke. The ‘pure’ superradiance case, however,
is conceptually most transparent and relevant for a generalization of collective decay to other types of
interactions (e.g. with phonons). _

Assume a situation in whicll the phase factors®i in Eq. (3.9) are identical (say, unity for sim-
plicity), for example when the maximal distance between any two atoms is much less than a typical wave
length. Then, the couplin§fepnto the photon field does no longer depend on the individual coordinates
of the atoms but only on theollectivepseudo-spin coordinate. One has to addNygseudo-spins /P to
a single, large pseudo-spin which is described by angular momentum operators

N
Ju Ouis OX=X,Y,2, (3.10)
i=1

Je=Jpxidy, [ Jel=%Je, [Je J_1=2J, (3.11)

1l
NI

with angular momentumpeigenstates which in this context are called Dicke stgtes /) defined via
T2\ jm; 2y = j G+ Dljm; 2, Teljm; 2y =m|jm; 2) (3.12)

whereJ? = JZ 4 JZ + JZis the total angular momentum squared pisdsometimes called cooperation
number[174]. Here,/1 denotes additional quantum numbers apart ffandm which are necessary to
completely labehll the states of the’2 dimensional Hilbert space’y = (C2)®". ForN identical two-
level systems, the additional quantum numbers are provided by the permutatiorfgroagpwas shown
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by Arecchi et al[187]. The decomposition of the total Hilbert spazéy into irreducible representations
2/ for angular momenturwith dimension 2 +1, and permutations of dimension diff-*2 = (““2> -

A2

(%ﬂz), is reflected in the dimension form(&87]

> dim @/ dim 12 =2V (3.13)
2j=/1—72>0

More generally, a system &f atomn-level systems can be effectively described group-theoretically by
the standard Young tableaux which characterize the irreducible representations of thE\g&Sp (n),
a short summary of which is given in the paper by Keitel et al. on triggered superra{ll&age

In discussing superradiance, one usually considers a subspace of cpngtgtt is also invariant
under permutation operations, omitting the lalielad thereby dealing with a constant angular momentum
Hilbert spacg187]. The total Hamiltonian foN atoms interacting with the photon field then simply reads

Hpicke = 00J; + AJy + Hpn | (3.14)

where A is a photon operator anHpp the photon field Hamiltonian. Radiative transitions are due to
transitions between Dicke states with the selectionwule- m + 1, leavingj constant. Using

Jeljm)y=c, ljim+1), ¢, =i+ —mm=*l), (3.15)

jm

and considering the initial statlgj) with j = N/2, spontaneous emission leads to a decrease of
the quantum numben step by step, with the corresponding emission intenkifyfrom a state| jm)
given by

Iim =tool (j+m)(j —m+1), (3.16)

wherer is the spontaneous emission rate of simgleatom from its excited state. Although this simplified
argument only uses transition rates between pure states, it grasps the essential physics: in the course ©
the spontaneous decay starting from the initial state, the intefigjtyeaches a maximum proportional
to N2 at theDicke peakn = 0, which is abnormally large in comparison with the intenait§#iwg of the
radiation ofN independently decaying radiators.

The time dependence of the emission peak can be obtained from a simple quasi-classical argument
that regards the quantum numimeias a time-dependent, classical quantity. The energy of an ensemble
of identical atoms isHy = woJ;. Equating the average energy loss ratémom (t), with the radiated
intensity, Eq. (3.16), one obtains an equation of motionfar),

d
_E’”(” =TI[j+m@)(j—m@) +1]. (3.17)

The solution of this equation gives the hyperbolic secant solution to the superradiance problem, that is a
time-dependent intensity

N2
2COSH(NT[t —t41/2)

where the delay time; depends on the initial condition at time= 0. As was discussed by Gross and
Harochd179], the quasi-classical description of the decay process holds if the system is prepared initially

1) = Io (3.18)
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in a state| jmg) with a large number of photons already emitted. If one starts from the totally inverted
state|jj), the initial time evolution is dominated by strong quantum fluctuations (the phases of the single
atoms are completely uncorrelated) which are not described by Eg. (3.18).

The Dicke peak occurs on a short time scal&é/N and consists of photons with different wave vectors
Q. The mean numbeYq(¢) of photons as a function of time can be calculated exactly in the small-sample
limit of superradiance where the phase factd¥ién Eq. (3.9) are neglected. For example, for the case
of N = 2 atoms, one findgl85]

2|g0l?[(wo — |Qlc)? + 4012
[(wo — |Qlc)? + 16I'2][(wo — |Qlc)? + 41?2

wherer is the decay rate of one single atom. In reality, the small sample limit is never reached exactly,
and instead of the collective operatafs and J1, one introduce€-dependent operators. (Q) =

Z,N:l J+ exp i(Qr;). An initial excitation with radiation in the form of a plane wave with wave vector

Q then leads to a collective state J,(Q)”|j, —j) for somep. Subsequent spontaneous emission of
photons with wave vectdD then is collective, conservgand decreases — m — 1, while emission of
photons with wave vectd®’ # Q can changé

As atransient process, superradiance only occurs if the observation timeisshlerter than dephas-
ing time scale, of processes that destroy phase coherence, and longer than thevnica photons need
to escape from the optical active region where the effect o¢tB, such that recombination processes
are unimportant. It is clear from the discussion so far that Dicke superradiance is a dissipative process
and generalizes the Wigner—Weisskopf theory of spontaneous emission of a single atom to the many
atom case. In this approach, the photon system itself is in its vacuum state throughout the time evolution.
Any photon once emitted escapes from the system and thereby leaves no possibility of re-absorption of
photons.

In the Master equation description of superradiance as a dissipative process, the back-action of the
pseudospin onto the boson bath is usually disregarded. In a somewhat complementary approach, the
dynamics of the photon field is treated on equal footing with the spin dynamics, and one has to solve
the coupled Maxwell-Bloch equations, i.e. the Heisenberg equations of motion in some decoupling
approximation, of the total system (spin + photon field). This approach is more suitable for the description
of propagation effects for, e.g., an initial light pulse that excites the system, or re-absorption effects.

The condition

No(t — 00) = (3.19)

t<r<ty, I, (3.20)

determines the superradiant regime, together with the last inequality which involvethe time scale

for the decay of amdividualatom. For timesmuch larger than the dephasing timgthere is a transition

to the regime omplified spontaneous emissidi77]. In fact, the restriction Eq. (3.20) of thiene-scale

for the superradiant process can be seen in analogy to the restfietior L, defining thelength scale

L of amesoscopic systewhere physics occurs between a microscopic (e.g. atomic) lengthl soadea
dephasing lengtl., [8]. Within this analogy, a superradiant system can be called ‘mesoscopic in time’.

3.1.2. Sub- and superradiance fr= 2 trapped ions
De Voe and Brewef189] measured the spontaneous emission rate of two ions as a function of the
ion—ion distance in a trap of planar geometry which was strong enough to bring theEiafyé) to
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Fig. 13. Double ion trap experiment by DeVoe and Bre[&80]. The two-ion molecule is confined within a 8t radius planar

trap (left) and excited with a laser pulse (center). The time-to-digital converter (TDC) records the time of arrival of spontaneously
emitted photons. Right: comparison of theory, Eq. (3.21), and measured data for the identification of sub- and superradiance
(Dicke effect). A laser beam excites the system-a; the start of the exciting pulse and the arrival of the spontaneous photons

are recorded on a time to digital converter, which is fitted to an exponential decay. The dashed line indicates the life-time of a
single ion in the same trap. Full circles with error bars are data for laser polarization perpendicular to the axis connecting the two
ions, crosses are for parallel polarization. The points below the dashed line belong to the superradiant decay channel, whereas
the points above the dashed line indicate belong to the subradiant channe[188im

a distance of the order of Jum of each other. The idea of their experiment was to determing?),

Eq. (3.5), and to compare it to the spontaneous emission &) of asingleion within the same setup.

This was done in a transient technique by exciting the ion molecule by a short laser pulse and recording
the subsequent signal, i.e. the time of arrival of spontaneously emitted photons3)Fig.

It turned out that the best way to distinguish between the sub- and the superradiant decay channel was
to choose the initial states of the system as the two s&tésinglet) and7p (triplet), which yield the
subradiant and the superradiant emission rate, respectively. This was achieved by coherent excitation of
the two-ion molecule, exciting dipole moments in the two ions with a phase difference otf.(Dore
to level degeneracy of the relevarftf§ » to 62512 transition and due to loss of coherence because of
micro-motion Doppler shifts, the theoretical value for the faator the explicit form of the rates,

sin(Qd)]
(Qd)

turned out to be: = 0.33. Diffraction limited images of the molecule, viewed through a window with a
microscope, provide the information on the distance between th¢i80%

Measurements of the spontaneous ratat three different ion distances turned out to be in good
agreement with the (parameter free) theoretical predidti@], Eq. (3.21). The data (statistical and
systematic tests were performed) were averaged over a large number of runs.

[(Q)+ =To(Q) [u: " (3.21)

3.2. Dicke effect in quantum dot arrays

The prominent role that phonon emission plays in transport through double quantum dots has been
discussed in Section Zollectivephonon emission effects and their impact on quantum transport were
discussed for arrays of double quantum dots by Brandes, Inoue, and SF®@}uand most explicitly
for the case ofv = 2 double quantum dots interacting via a common phonon environment by Vorrath
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Fig. 14. Left: (A) N = 2 charge qubit register with two double quantum dots coupled to independent electron leads. (B) Energy
diagram of one individual double dot. Right: total current through two double quantum dots as a function oftheliasneters

areT, 1=T.2=3peV,I'y 1=Igr1=I1 2=Tg »=0.15peV, and for the spectral functier=0.005,7 =23 mK,w; =10ueV

andw, = 1 meV. From[191].

and Brande§l91]. In the latter caseshargewave function entanglement occurs in a preferred formation

of either a (pseudo) singlet or triplet configuration (depending on the internal level splittings of the dots
and the coupling to electron reservoirs), which is a realization of the Dicke effect in a stationary state of
guantum transport.

3.2.1. Model and Master equation for N double quantum dots
The model[191] describes a ‘register’ dfl double quantum dots, dfig. 14 coupled to independent
left and right electron reservoirs as well as a common phonon reservoir, with the crucial assumption of
the ‘small sample’ limit, i.e., identical electron—phonon matrix elemeétag in the generalization of
Eq. (2.11) toN double quantum dots,

N
%é\’p = Z Z (aéﬁL,i + ocSﬁRJ)(a_Q + ag) , (3.22)
i=1 Q

whereny, g ; refers to the number operator for the left/right level initiedouble dot. Correspondingly,

the other parts of the Hamiltoniangqot, EQ. (2.2), and#esand.#'y, EQq. (2.6), are generalized to

their respective sums over the register indexleally, a stacked layer of closely spaced double dots on

top of each other would be a realization of the small sample limit. Phonon mediated collective effects
between the members of the register should persist as long as a description in terms of a few many-body
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states relevant for transport is possible[181], the Coulomb correlations between the double dots were
neglected for simplicity.

The Master equation for the reduced density opeyatoof the register in Born—Markov approximation
was derived in analogy to Section 2,

N
piy=i Yy {[p(l), eLifiLi + erifiri + Ti(pi + Pl
i=1

I'Li (a4 R P PN
21 <2SL P SLi — SL,iSZ,,-P(t) - P(f)SL,iSZ,,')

- (25rap 3k — 3k Srap(®) - p(r)ﬁ,ﬁ,,@R,i)}

* T
= 3 [ =i Ajp0)] = [ = g p0A]]}
ij

. 2T ) . , .
Aj= TZJ (T;I'c,j(ir,j — g j) — e jej(p; + pj) +id;I's j(pj — p})) : (3.23)
1

whereT; is the tunnel coupling within double dit4; = (¢ + 47.%)%/2, and the inelastic rates are

A4; :
ﬁz ) » I'si=—l g J(4i) , (3.24)

Y
Ici= 5 J(A,-)coth(

with the spectral functiod (w) of the bosonic (phononic) environment, cf. Eq. (2.22). The mixed terms

i # jinEq. (3.23) lead to collective effects (sub- and superradiance) in the stationary current through the
system. The dimension of the density matrix scales®s/Bence analytical solutions are cumbersome

but were calculated foN = 2 by Vorrath et al[191] for limiting cases. In general, for lardé¢ even a
numerical solution of Master equations like Eq. (3.23) becomes non-trivial. Special numerical techniques
like Arnoldi iteration have been shown to be advantageous in this[t42¢

3.2.2. Cross coherence and current superradianceMet 2 double quantum dots
For N = 2, the currents through double dots 1 and 2 are expressed in terms of the matrix elements
pji,-/j/zz(j|®1(i|p|i')1 ® 1j, (i, j € {L, R, 0}) of the density operator and read

It =—2eT1IM{p;prr + PrRLR + PorLO}, T2=—2eT2IM{pr; 11 + prrRL + PROOL) -
(3.25)

The numerical solution of Eq. (3.23) yields the stationary current as a function of the limethe first

double dot while the bias in the second is kept constant, as showRim 14 The overall shape of the
current is very similar to the case of one individual double quantum dot (cf. Section 2), with its strong
elastic peak around, = 0 and a broad inelastic shoulder far> 0, but a new feature appears here in
form of an additional peak at resonange= ¢. This is due to the simultaneous coupling of both double
dots to the same phonon environment, which induces an effective interaction between the two double
quantum dots. The analysis of the effect starts from the observation that in spite of the large size of the
density matrix, this interaction is connected to six matrix elements (and their complex conjugates) only,
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i.e., PRLLL PLRLLs PRRLR+ PRRRL» @nd the two ‘cross coherence’ matrix elements

PRLRL = (PIPZ), PRRLL = (P1P2) (3.26)

An approximate solution is then obtained by neglecting the cross interaction between the double dots in
all but those six matrix elements, leading to an expression for the cuwhlangein double dot 1,

2eT 1y
A== 2 (Re(pl p2) — Re(p1p2)) (3.27)

which is proportional to the (real parts of the) cross coherences. The increase of the cusrentais
due to a corresponding peak of '[hﬁIpz).
A further analysis is possible by introducing pseudo singlet and triplet states,

|Ty) =|L)1|L)2, |T-)=1|R)1|R)> ,

1 1
|To) = NG (I1L)1[R)2 +R)1lL)2),  |So) = NG (IL)1[R)2 — [R)1|L)2) - (3.28)

Forep ~ ¢p, one has\/; « 2Re(pIp2) = (Pr,) — (Ps,), where P is the projection operator on the triplet
(singlet) state, and it follows that the current enhanceménis due to an increased probability of finding

the two electrons in a (pseudo) triplet rather than in a (pseudo) singlet state. This is in direct analogy
to the N = 2 Dicke effect for trapped ions as discussed above, with the difference that in the double
dot system a third ‘empty’ stat@) exists which allows current to flow through the system. One can use
the singlet-triplet basis, Eq. (3.28), together with five stég@8g |0L), |L0), |OR), and|R0) (indexes
referring to the state of the first and the second double quantum dot) to derive nine coupled rate equations
for the corresponding occupation probabilitj#81]. Assuming identical tunnel ratdsto all four leads,

one obtains the inelastic current (for positive intra-dot b)alrough the first double dot, as well as the
triplet-single occupation difference,

x(4x + 1) 2x(x+2)(x —1)

H=el 2T e = ,
1= 2B r 1 P P~ 793532 + 11x + 2

x=v/I, (3.29)

wherev = 8r(T/4)?J (4) is the inelastic decay rate within one double dot. This result is in excellent
agreement with the numerical solution of the full Master equatiorkigf. 15 It explicitly demonstrates

that superradiance exists in arrays of artificial atoms, and can be probed as an enhanced current throug!
the two double quantum dots at resonasce: ¢».

Tuning the individual tunnel rates can be used to generate cwstdrdadiance, which occurs in a
configuration where the two double quantum dots form a singlet state and electrons in the second double
dot are prevented from tunneling into the right lead (inseffigf 15 right). The current peak; then
develops into a minimum as the tunneling ra&te 2 is decreased to zero, which leads to an increased
probability of the singlet statgsy) and anegativecross coherenc(q;ir p2) at resonance.

A second configuration with fixed negative bias< 0 in the second double dot can be used to generate
a current switch The resulting blockade of the second double dot can be lifted by the first one if the
resonance conditiosy = —ep for the cross-coherendg1 p2) in Eq. (3.27) is fulfilled, when energy is
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Fig. 15. Left: enhancement of the tunnel currgfit at the resonancg =¢» =30pueV as a function of the dimensionless electron
phonon coupling constagt = 2«. The additional current vanishes @t~ 0.02 when the tunnel rates to the double dot and
between the dots become equal. The inset shows the difference in probabilities for triplet and singlet. Right: transition from an
increased to a decreased current through the first double quantum dot for different tunniekrat@s peV) andep; = 30peV.

The left inset shows schematically the set-upffar, = 0 and the right inset gives the difference of triplet and singlet for the
same case. Frofi91].

transferred from the first to the second double dot, allowing electrons to tunnel from the left to the right
in the second double dot.

3.2.3. Oscillatory superradiance for large N

Another extension of the Dicke model was discussed by Brandes et [490) for a superradiant
‘active region’ of N; identical two-level systems coupled to an ‘in’ (lefffy and ‘out’ (right, R) particle
reservoirstes by a tunnel Hamiltonian

Hr =Y (tel ey +1fef peiy +He) (3.30)
ki
wherec,lr creates an electron in reservmmndc , creates an electron in the upper/lower state(1, |)
of theith two-level system. The real electron spln is assumed to play no role here and crucially, the tunnel
matrix elements irH; are assumed to hendependent.

In the extended Dicke model, the active region without electron reservoir coupling is assumed to be
superradiant due to collective emission of bosons (photons, phonons). For a total numbe&rm\Gf
electrons, this is the usual Dicke superradiance situation as described by a density operator in the basis
of Dicke state§JMN), Eg. (3.12), where however additional quantum numbers other fhéand
represented by the indexn Eqg. (3.12)) are already neglected. Tunneling of electrons into and out of the
active region now provides a mechanism for pseudo-spin ‘pumping’ assuming large positive (negative)
reservoir chemical potentials;, (ug), electrons tunnel into the active region via upper levels 1,
whereas they tunnel out of the active region from lower levets| .
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Transitions between eigenstatedficke, EQ. (3.14), due to electron tunneling are described by rates
LyMN— 1 MN's

2

Tuns gy =T Z (J'M'N'|cL |IMN)| fu(Epmrn — Equn)
io
2
+ T (I M'Nlcigl JMN)| [1— fu(Egun — Epprn)] (3.31)
io
T*=2n)  UH*(E — &), a=L/R. (3.32)

k

where the:} are single particle energies in reservoand the dependence Bf on the energy difference
AE between final and initial state is neglected. This approach to tunneling of electrons through a region
characterized by many-body states is in close analogy to (real) spin-dependent transport through quantum
dots containing electrons interacting via Coulomb interaction as introduced by Weinmann and co-workers
in their work on spin-blockadgL92]. In the extended Dicke model here, the role of the real electron spin
is replaced by the (upper-lower level) pseudo spin, the total pseudo spin and its projection being denoted
asJ andM, respectively.

Similar to spin-blockade related transport, the rates Eq. (3.31) are determined@igiiseh—Gordan
coefficientdor adding or removing a single pseudo-up or down sp#a 1/2 to the active region,

2 2

1
> (J’M/N’|cjg|JMN> Nonan| Y. (I'MIM, j = Sm=0a) (3.33)
jo o==+1/2

=541 0y, g+17200M" M+172(J + M + 1)
+ o m—12(J — M + 1)]
+ oy 5-12l0m M11/2(J — M)
+ o m—172(J + M))) . (3.34)

where any further dependence on the specific form of the many-particle wave function in the active region
is neglected and the proportionality factor is absorbed into the coristafg. (3.32).

Within these approximations, the dynamics of the active region is described in terms of rate equations
for the probabilities(J M N), which are the diagonal elements of the reduced density operator &t time
in the basis of the Dicke statggM) at a given numbeN of electrons,

d 1
ar p(JMN) = — o0 Limp(JMN) — Ijpm41p(JM + 1N)]
+ Y rmn—smunpI'M'N') = Ty i p(TMN)] (3.35)
J'M'N'
wherel ;) denotes the superradiant emission intensity, Eq. (3.16). The rate equations Eq. (3.35) can be
either solved numerically or be used to derive an analytical solution in a quasi-classical approximation for
largeJ > 1. In this limit, fluctuations oM andJ are neglected and the probability distribution is entirely



T. Brandes / Physics Reports 408 (2005) 315-474 367

160 T T T T T T T I —
14 T T T T T T T r=0 _6_
140F it 3r 1 T=16-- i
P 121 1 T=32
11 B — l
120 + ~ 10} 1 T1=64 { ——
9r i
= 8t _
5 100 - g: ] i - :
E FE 5 L L L L L L L —.— —
@ 80Fi.: 8 6 4 2 0 2 4 6 8 .
Pseudo-Spin electron-feol
1 15 2 25 3 35 4

TIME[1/T]

Fig. 16. Left: time evolution according to Eq. (3.35) of the emission intengity = 1, /I'fiwg (I’ Spontaneous emission rate

of single two-level systemyq level splitting) in a superradiant active region of two-level systems coupled to electron reservoirs
with tunnel ratesT. The Dicke peak is followed by oscillations, the angular frequency of which is approximately given by

o=~2I'T, Eq. (3.37). Inset{J), vs. (M), for T = 64. Right: analogy between pseudo-spin and electron—hole model, cf. Eq.

(3.38). From[190].

determined by the expectation valugg), M (1) and N (¢) only [179], i.e. p(JMN); = dpr, m1)07,7t)
dn,N@)- Assuming identical tunnel matrix elemefitgor in- and out-tunneling, one obtains a set of two
differential equations (thl equation decouples),

M@)=—T[J@)+MOII@) —M@) +1+T, J@&)=TM@®)/J () (3.36)

which are governed by the two paramet&randT, the emission rate and the tunnel rate, respectively.
These equations hawamped oscillatorgolutions, cfFig. 16 In contrast to oscillatory superradiance
in atomic systemglL78], the oscillations are not due to re-absorption of photons, but due to tunneling of
electrons into an active region characterized by a total pseudd.gdso in contrast to the original Dicke
problem,J is no longer conserved but develops a dynamics that is driven by the tunneling process which
leads to a coupling afandM as described by Eq. (3.36). The total numNef electrons varies through
single electron tunneling that changes the quantum nund@rdM and can lead to doubly occupied or
empty single particle levels. The changef J is proportional toM itself, which follows from angular
momentum addition rules (Clebsch—Gordan coefficients), whéveaereases by electrons tunneling
into the upper and out of the lower levels at the tunnel Tate

Instead of simple superradiant relaxation of the emission intensity (as described by Eg. (3.18)), the
transient behavior is now determined by a superradiant emission peak, followed by emission oscillations.
In fact, after eliminating) from Eq. (3.36) for largd, one obtains a single oscillator equation,

M —2IMM + »°M =0, wo=+2IT, (3.37)
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which for T > 2I' describes a harmonic oscillator with angular frequecgnd amplitude dependent
damping. For smalleT, the oscillations are no longer visible and Eq. (3.37) does no longer hold. For
T — 0, there is a smooth crossover to the usual Dicke peak, Eg. (3.18), with vanishing intensity at large
times and without oscillations.

In [190], two physical systems were suggested for an experimental realization of tunnel-driven, oscilla-
tory superradiance. The first scenario described a forward bpagedction in a system of electrons and
holes in semiconductor guantum wells under strong perpendicular magnetic fields, the latter guaranteeing
dispersion-less single electron levelwith inter-band optical matrix elements diagonal iin initial
optical or current excitation of the system was predi¢i€iD] to lead to a superradiant peak of emitted
light that would become strongly enhanced if the tunneling rate became higher. The correspondence with
the pseudo-spin model was established by mapping its four basic single particle states to the states of the
electron—hole system;

lemptyy — |0, k), |J])—10,0), |double — |e,0), |1)— le, k), (3.38)

i.e., the empty state becomes the state with and additional|®0#¢, the pseudo-spin down electron
becomes the empty sta@ 0), the doubly occupied state becomes the state with an additional electron
le, 0), and the pseudo-spin up electron becomes the|gtdigwith an additional electron and hole which
can radiatively decay. This realization, however, neglects Coulomb interactions that can lead to strong
correlations among electrons. The kinetics of four-wave mixing for a two-dimensional magneto-plasma
in strong magnetic fields was calculated by Wu and HA198] in a regime where incoherent Coulomb
scattering leads to dephasing that increases with the magnetic field. Still, the possibility of collective
quantum optical effects in the quantum Hall regime remains an open though not entirely new problem,
since Landau-level lasing was suggested by Aoki already back in[1986

The second possible realization for superradiance with ‘electron pumping’ was prdh66gds an
array of identical quantum dots with the ability to collectively radiate, with the dots having well-defined
internal levels that allow transitions under emission of photons, cf. also Sections 3.2.

3.3. Superradiance and entanglement in other quantum dot systems

3.3.1. Double quantum dot excitons

Chen et al. further investigated the formal analogy, Eq. (3.38), between the pseudo-up/down spins
and the electron—holgefz)) and ‘empty’|00) states, and predicted superradiance in the electric current
through excitonic double quantum d¢i®95]. Superradiant enhancement of excitonic decay in reduced
dimensions is well-known, budurrentsuperradiance was argufi®5] to be an alternative tool for the
detection of such collective effects. The main idea was to employ two spatially separated quantum dots (1
and 2) which are radiatively coupled, €fig. 17, but with only dot 1 being coupled to hole and electron
reservoirs, which in fact is similar to the ‘Current Switch’ configuration for the two double quantum dots
considered above. Introducing the four states

|0) =10, #;0,0), |U1)=le, h;0,0), |Uz)=10,0;e,h), |D)=]|0,0;0,0), (3.39)

where |0, i; 0, 0) denotes the state with one hole in dot|@,0; 0, 0) represents the ground state
with no hole and electron in the quantum dots, and the exciton &take 0, 0) (in dot 1) can be
converted t0|0, 0; e, #) (in dot 2) through exciton—photon interactions. The latter was described
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Fig. 17. Left: double quantum dot exciton device structure suggested by Chefil863IRight: stationary current, Eq. (3.46),
and interference effect due to decay rates Eq. (3.45) as a function of the dot distance (insef).95tom

by a Hamiltoniar{196]

1 . )
Hy= ; 7 g{Dxb[(L+ €5T)[So) (D] + (1 — €5 | To)(D|] + H.c.} , (3.40)

with super- and subradiant stateq &g = \/% (|U1) — |U2)) and|Tp) = \i@ (|IU1) + |U2)), respectively.
Furthermoreby is the photon operatag,D| the coupling strength,is the position vector between the two
quantum dots, andis a constant with the unit of the tunneling rate. Note that the dipole approximation
was not used and the full'd terms kept in the Hamiltonian. The coupling of dot 1 to the electron and
hole reservoirs was described by the standard tunnel Hamiltonian

Hy = (Vgeh10)(Ua] + Wqd{10)(D| + H.c) (3.41)
q

wherecq anddq are the electron operators in the left and right reservoirs, respectively, giving rise to
tunneling rated’y (electron reservoir) anfip (hole reservoir). The state, 0; 0, 0) was argued to play

no role for a dot configuration with thick tunnel barriers on the electron side. Equations of motion for
the time-dependent occupation probabilitigst), j= 0, D, So, To were then obtained in close analogy
with Eq. (2.16) and transformed intespace,

. 1
ansy/10(2) = Figlpso.0(2) — pp.se(D]1+ T'u [Z —nsy(z) —nry(2) — nD(z)] , (3.42)
. 2r
znp(z) = —iglpse.p(2) — Pp,5o(2) + P1o,0(2) — P, 16(2)] — TD np(z) , (3.43)
Pjo.n(2) =igyinj(z) = I'pyjpjo.n(@), Jj=S,T, (3.44)

whereps, p =PD.so andpr, p= Pp 1, are off-diagonal matrix elements of the reduced density operator,
and a decoupling approximation similar to the one in Section 2.2.3 was perf¢t®8dThe decay rates
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for superradiant and the subradiant channels,

sin(2nd /7.0) )

3.45
2nd /20 (3.49)

8575 =10 (1 +
depends on the ratio of inter-dot distarttand the wave lengthy of the emitted light in an oscillatory
form (yq is the exciton decay rate in a single quantum dot). This is in close analogy to the ion trap
experiment discussed in Section 3.1.2, cf. Eq. (3.21). In the stationary limit, the current as defined by
the temporal change @fp (1) was obtained195] as

402y
gl , (3.46)
vs +yrll+2y5(g/IT'p +g</T'y + I'p)]

which itself showed oscillations i/ Ao via Eq. (3.45), cfFig. 17, in close analogy to the two-ion case in
Section 3.1.2. The current is suppressed as the dot disgtasoeuch smaller than the wavelengih The
emitted photon is reabsorbed immediately by the other dot and vice versa, with the current being blocked
by this exchange process. The superradiant and the subradiant transport channels are in series in the limi
where transport is determined by radiative degay, r <I'v;p, With I ~ 4[1/g?%ys + 1/g%y7]1 7.

Chen et al[195] suggested to include the double-dot system into a photon micro-cavity with strong
electron—photon coupling. For a cavity of lengtithe three-dimensional version Eqg. (3.45) for the two
decay rates would then become

(im0 =

8 Tcaus = = [L £ 2/ VPO (3.47)
A further property of the excitonic double dot system was the fact that the interaction with the common
photon field lead to emission-induced entanglement between the two dots. The maximum entangled state
(1So0)) was reached as< 4o which was checked by calculating the occupatiog)s in the stationary state.
This entanglement was induced by the cooperative spontaneous decay which however can be controllec
by, e.g., a voltage applied to a metallic gate that effectively tunes the band gap dfl@&j.2

Chen and co-workers also calculated quantum noise in their electron—hole systems in close analogy to
the formalism developed in Section 2.3 for dissipative transport in doubld18% The Fano factoF
in their model was enhanced by a factor of 2 for dot distaaces (phonon wavelength) due to photon
enhanced entanglement, Efg. 18 with the approximate expression

S;p(0) 5 [ 1 (1 1) 2FDi|
F= ~ 2 — 242 +3(—+ =) +=21, 3.48
2e(I) 88| g2y I'p Ty g2 (3.48)

analogous to the result for current noise in the Cooper pair box by Choi[&83].
In addition, one can compare the current noise withgthetonnoise in the fluorescence spectrum,
cf. inset ofFig. 18 defined as

Sph(@) = % Re /0 GV dr | (3.49)

GV[a] o |14 €242 pg, p(0) pp 5o (1)) + 11 — €2"/*2(pr p(0) pp.1,(7)) (3.50)

and use the quantum regression theorem in order to cala@l&tg]. For small dot distances</, the
exciton does not decay and the photon noise approaches zero.
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Fig. 18. Left: current noise Fano factor as a function of inter-dot distance. The vertical and horizontal uifs(@yg2e/ and
/4, respectively. Inset: photon noisgh(w) is equal to that in the one-dot limit faf — oo (dashed line), while it approaches

zero noiseasd = 0.00% (red line). Right: effect of measurements on current néisg(w) ( "maximum” superradiance,

2297 = 2¢%)0, g%75 = 0). Solid and dashed lines correspondip = 2079 andI'p, = 7o, respectively. Right inset : the case of

no superradiance. Left inset : expectation value of the excited stafgand(n7) as a function of . From[196].

A further interesting observation was the dependence of the current noise on thg,rafehole
tunneling, the effect of which can be thought of as a continuous measurement similarguaatitem
Zeno effectLargerl p turned out to narrow the noise spectrdim, (w), cf. Fig. 18 right, and to localize
the exciton in its excited state, withs,7) approachin%.

3.3.2. Nuclear spins in quantum dots
Eto et al.[198] suggested a collective entanglement mechanism for nuclear spins by single electrons
tunneling on and off a quantum dot. In their model, they assumed a hyperfine interaction

N

Hnt =2 oS- Ii (3.51)
k=1

betweerN nuclear spins; and the dot electron spBwith interaction constants, for nuclei at positions

rg. They used a simple model for a double quantum dot with Zeeman-splitiirand on-site Coulomb
repulsionU, cf. Fig. 19left, where tunneling of an electron into the left dot leads to spin blockade when
the additional spin is parallel to the one in the right dot. This spin blockade is lifted by a spin flip of the
electron in the left dot under emission of a phonon, giving rise to a leakage electron current that can be
measured. In lowest order perturbation theorydip and the electron—phonon interactiél, the rate

I for an electron spin flip, e.g. from up to down, is a simple product of rates,

I'=9egnt.  7he = [(¥i 1 |Hntl L ¥1)12, (3.52)

whereygy, is the rate for phonon emission (required for energy conservation), and thgrdépends on

the state of the nuclear spins before/after the spin #ip;,. A simple approximation for the dynamics

of the coupled electron—nuclei system is now found by following the temporal change of the nuclear
state when electron spins tunnel on and off: assuming identjcal « for small dots, an initial state

p©O — ij;icjm;ﬂjm; /) with random coefficients ,,, in the basis of the collective statgsn; /),
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Fig. 19. Left: spin blockade in double quantum dots in the collective nuclear spin entanglement model by Eto, Ashiwa, and
Murata[198]: the spin of an electron entering the left das parallel to that of the electron trapped in 8tE , is the Zeemann
splitting andU the on-site Coulomb interaction. The interaction ¥igs, Eq. (3.51), and emission of phonons of enefgy

leads to a leakage current through the dots. Right: spin-flipiéite= "r'ep)"r(#)r ;vf#) =2/ rn=1) Eq (3.53), as a function

of numbem of transported electrons accompanied by spin flip. Ffo98].

cf. Eq. (3.12), is transformed inte® = 1/v/FOY", . cjn.;ljm + 1; 2), depending on whether the
spin flip is up or down. The next electron spin transfor®’ into another collective spin state®?
of the nuclei, and so on, and recursive equations for the corresponding expansion coeiﬁ@igr&ed

factorsF ™ =5 /a2 aftern flips are derived as

- ; F 2
T | ( Z)C(.”—” £ = kS 3> M@/ + D ©)n) (3.53)
Sl I fln2y 2N Lt (N/2+ ]+ DUN/2= Pt '

+ A . ..
Wherecjm = Jj(j+1) —m(@m=£1), cf. Eqg.(3.15), andN is the total number of nuclei in the dot

interacting with the electron spin. The total spin flip r&t®’, Eq. (3.52), aften flips increases linearly
with n, '™ ~ nr©@ for 1<n <N /2, and saturates fov /2<n asI'™ ~ (N/2)r'9, a behavior which
is reflected in the electronic currehtr) through the dot, cfiFig. 19right.

3.4. Large-pseudo-spin models

Inthe previous sections, the two-level system and its interaction with a dissipative environment played a
prominentrole. Infact, the famous spin-boson syqtedrb 1]is one of the best studied models for quantum
dissipation, and its importance has never been more obvious than in the light of experimental success in
the generation of quantum superpositions and entanglement in noisy solid state environments, such as
Cooper pair boxeR1] or semiconductor double quantum dfit89]. On the other hand, the cooperative
phenomena (super and subradiance) discussed above relied on collective effects in combination with
dissipation and therefore required a description in terms of spin-boson models for (pseudo}s}oin
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3.4.1. Collective spins and dissipation

There are several physical systems where dissipation of large spins plays a k8¢Jrdigrinsic spins
greater than one half appear, e.g., in the elements Gallium and Areenledrspin of 3/2). Experiments
by Kronmdiller et al[200,201]and Smet et al. demonstrated the prominent role nuclear spins can have
in thequantum Hall effect

Apel and Bychko\J202] discussed collective spin relaxation in quantum Hall systems due to spin-orbit
interaction,Vso = —efi/2mc2S - E x p for electrons with spir§ = %a and momentunp in an electric
field E due to piezo-electric lattice distortions. They used time-dependent perturbation th&gyy fior
electrons in the lowest Landau level split by the Zeemann engngith a free electronic Hamiltonian
Ho=-4 Zp (c;TcpT — c;¢cp¢). Near filling factorv =1 and in Hartree—Fock approximation, they found
the time-dependent spin relaxationddfr) = S*(r = co) — S%(¢) given by

0,6°(t) = —i FWle+ @), &= \/41\7(1 +N)+ (v =12, (3.54)

where the relaxation timedepends on the dispersion of the collective spin-exciton modesydsthe
average phonon number. The form of the kinetic equation Eq. (3.54) is identical to the one obtained from
a simple non-interacting model for (incoherent) excitonic relaxation.

Nuclear spin relaxation was also studied by Apel and Bychl2®8] who generalized the Bloch
equations to higher spin. Furthermore, Maniv et[2D4] considered the hyperfine interaction, cf.

Eg. (3.51), and predicted a strong enhancement of the nuclear spin relaxation rate due to collective
spin rotations of a single Skyrmion in a quantum Hall ferromagnet.

Another large-spin example molecular magnetthat contain a small number of metallic ions which
couple magnetically, the most prominent examples;Mand Fe@, being described by a spin of size
10[205,206] Chudnovsky and Garan[207] considered a system df magnetic atoms (or molecules)
with spinS, in nearly degenerate situations where each magnetic atom is described by an effective two-
level system (pseudo—spéb,-), giving rise to an effective HamiltoniaHes = —AJ, — W J, with total
pseudo-spin/, = %Zfil oy, @ = X,,2, cf. EQ. (3.10). They considered the spin-phof267] and
spin-phonorj208] interaction of the atoms in the small-sample limit of superradiance and described the
dynamics for large total pseudo-spis-1 by the Landau-Lifshitz equation,

N=nxawmg—oan x (N X wg), wo=Ae,+We, n=J/j, (3.55)

with the dimensionless damping coefficient= jI'1/v/ 4% + W2 proportional toj = N/2 indicating
superradiancel{; is the relaxation rate for a single atom).

High-spin systems are also candidates for so-called ‘qu-dits’ which are discussed in the context of
quantum information processing and extend the standard qubitiy;nxina higher-dimensional Hilbert
space. Ensembles of two-state systems whose polarization is described by a large pseudo-spin can als
be found in crystals and amorphous solig89]. Ahn and Mohanty have suggested collective effects of
two-level systems as a possible friction mechanism in micro-mechanical resdiatdls

3.4.2. Large-spin-boson model: weak dissipation
Vorrath[211] studied thdarge-spin-boson Hamiltonian

H=¢J,+2T.J; + J; Z Vq (a;r +a_g)+ Z wqa;aq , (3.56)
q q
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that generalizes the usual spin-boson Hamilton#ass, Eq. (2.10), to arbitrary spin> % Various other
generalization of the spin-boson Hamiltonian were already studied by other authors in dissipative tight-
binding models for multi-state systerf&l2—214,51] or double-well potentials with additional, excited
stateqd215,216] In the form Eg. (3.56), the Hamiltoniat at zero biag = 0 is canonically equivalent

to the Dicke model,

Hpicke = wp J; + Jx Z Vq (a;r +a_y)+ Z wqa;aq = e 17/2)y g /2y (3.57)
q q
with the identificationup = —2T7,, also cf. Eq. (3.14).

Vorrath [211] derived the Master equation in second-order Born and Markov approximation for the
reduced spin density matrp(r) corresponding to the Hamiltonian Eq. (3.56) as

. . 1

p() =ilp(®), eJe + 2TeJ3] = =5 (6T + 4TI )[J,, J.p(t) [, Jep()]
2TC 1 2 % 2 %

+ = Tl L]+ —5 G+ ATz, p(0 ]
2T.¢ 2T,
A—; (I* = Iy, p(t) 5] — 76 T, p(0) ], (3.58)

where an initial factorization condition was assumed and rates

:—J(A)coth( )——][ dw](w)(—+—A),

][ de(w)COth(ﬁ )( - — = >—i§J(A), I'=r.(4— 0 (3.59)

2 o+4 w—4

with 4 = \/4T? + ¢2 were defined.

For spinj = 3 and a spectral density

T(@) =Y 1741%0(0 — wg) = 2005 0 expl—w/o,) (3.60)
q

for weak Ohmic dissipation = 1 with <1, cf. Eq. (2.52), Vorrath derived Bloch equations for the
expectation values/;) as a function of time and compared the solutions with those obtained by Weiss
within NIBA approximation for intermediate temperaturgsl’ = 27, and with the solutions beyond
NIBA [51] at zero temperature. The Born—Markov approximation turned out to correctly describe the
spin-boson dynamics for weak dissipation at all temperaturdsigef2Q although systematic quantitative
comparisons were not made.

For larger spinj > 1/2 andz # 0, the spire-componentJ,) showed superradiant behavior in the form
of increasingly faster, collective decay (as a function of time) with increasing $piri]. Furthermore,
a detailed analysis for spin= 1 and biag = 0 revealedjuantum beats the time-evolution of the spin,
cf. Fig. 21, with similar beats occurring for higher spin. Non-resonant bosons lead to corrections of the
energies for the spin eigenstates, |0), |—), which in second order perturbation theory are given by

@ _ 1 [ 1 @ _ @ | @
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Fig. 20. Dynamics of a spil% according to the Bloch equations (as derived from Eq. (3.58), solid line) and the approximate
solutions by Weiss (dashed line); a and:b: T, « = 0.05 (inset:a = 0.2), w, = 50T, andkgT = 2T, (dashed line: Eqgs.
(21.132) and (21.134) of Rgb1]); c and d =0, x=0.05,w, =507, andkg T =0 (dashed line: Egs. (21.172) and (21.173) of
Ref.[51]). From[211].

thus leaving the eigenstates not equidistant any longer. The beat frequency

[ —2T, (2T,
wp = awe + oT, [eZTc/wca (—C> — g 2le/oeEj <—C)] , (3.62)

We e

which for large cut-oftu. > T, is well approximated by, = «w,, was found to be in excellent agreement
with numerical solutions of the Master equation.

3.4.3. Large-spin-boson model: strong dissipation

For the large-spin-boson model in the regime of strong dissipation, Vorrath and Bi@2ilesed
perturbation theory foH = Hp + V, EqQ. (3.56), with respect to the tunneling p&irt= 27, J,. Using a
polaron transformation, cf. Section 2.2.3, one obtains

2 JR N —aJ, __ _ 2 T — /_q t_
Ho=€""Hoe ™ = ¢J, —kJ2 + Zq: wgalag, o= Xq: o (@) —a_y) . (3.63)

with k = Zq |yq|2/cuq = 20w, for Ohmic dissipation. Spin and boson subsystems become independent

and can be treated separately. A new non-trivial termlzz, appears in the spin part of the transformed
Hamiltonian (3.63). In the spin-boson model with spig 1/2, this term is constant and has no physical
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Fig. 21. Time evolution off; (black line) and/ (grey line) for different interaction strengths with the environmgnt(, =0,
we = 50T, andkg T = 0). From[211].

consequences, whereas for larger spinsl/2 it dominates the properties of the system. The eigenen-
ergiesk,, of the spin subsystem directly follow froitip as

En=em—xm?, —j<m<j, (3.64)
whereas in the transformed picture the tunnel term

V=T.(J . X+J_XD, X=e¢, (3.65)
now contains the unitary boson displacement (‘shake-up’) operatort Section 2.2.3. The Markov
approximation is applied by assuming that the memory time of the environment corresponding to the
width of the correlation functiort (z) is the shortest time-scale in the problem, which howeveiois

identical to the replacement @f(¢) by a Delta-function.
The Master equation for the spin density operator is calculated in the basis of the Dickejstates

B (1) = 20 T2 |:—cj_m2P(3 — 1(2m = 1) (1) — C}LmzP(—s + 12 A+ 1)y (1)

_ 2 ~ 2 ~
o P(—&+ K(2m — 1)1 ma () + ¢}, “Ple = k(2m + 1) i +1(t)i| . (3.66)
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Fig. 22. Left: time-dependence df for a spin% with different initial values { =0, « = 1, w. = 50T, andkgT = 0). Inset:
eigenenergies of the unperturbed system. Right: logarithmic plot of the relaxation of a spin p&si4& with initial value
(J2)o=1/2 (e=0,0=1, w. = 50T, andkg T = 0) and the approximation (3.71) with= 0. From[82].

where in addition to the superradiantfactojtg, Eqg. (3.15), the rat® (E) for inelastic transitions due to
boson emission or absorption from the dissipative environment appears, cf. Eq. (2.59) in Section 2.2.7.
Here,Eis the energy differencE = ¢ — (2m + 1) between the Dicke statégn) and| jm £1). The range

of validity of Eq. (3.66) is restricted to that of the NIBA (strong couplings,1 at zero temperature and
intermediate to strong couplings at finite temperatures).

For spinj = 1/2, one recovers the usual results of the spin-one-half boson nfetelwith the
Master equation predicting an exponential relaxatiod,ab the equilibrium valuéJ,),, = (P(—¢) —
P(e))/2(P(—¢) + P(¢)) with relaxation ratey = ZnTCZ(P(—s) + P(¢)): 1) for the zero temperature
version ofP (¢), Eq. (2.62), the spin remains in its initial state at zero kiad), which is the well-known
localization phenomenon of the spin-boson modelzatl [217,218] For a finite biag # 0, the system
relaxes with rate

2nT22 1

—&/ ¢
V0= —5-—=—F© , 3.67
YT=0 a)ga F(ZDC) ( )

which agrees in leading order épiw. with the relaxation rate of the spin-boson mojl]. 2) ata=1/2,
the Spin-Boson model has an exact solution and corresponds to the Toulouse limit of the anisotropic
Kondo model. Using the analytic expression Eq. (2.64), at zero bias the relaxation rate is

2aT?I (1 + 2/fwc)
we|F(1+ 1/ fwr) |2

Ve = 4~ 1/Bwe (368)

which correctly converges to the zero temperature result of the spin-boson medelrf/wc, cf.[219].
While spinsj = 1/2 are localized fon>1 ande = 0, spinsj > 1/2 relax towards one of the two
energy minima off, i.e. the polarized statdg, £ ;) on the inverted parabola, dfig. 22 depending
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on the initial spin value. For an initial valu¢mg) on the ascending branchg > 0, the Master equation
describes transitions — m + 1 at rate
2
Tmsmyr = 2nT7ch, “P(—e+ x(2m + 1) , (3.69)
which at zero temperature, Eg. (2.62), obéys.,,+1<I'»—1-, Such that each transition happens
much slower than the previous one. As a consequence, the transitioh — m is completed before
the next transitiorip, — m + 1, becomes effective. The spin therefore cascades down to its equilibrium

value +j, with the timer (m) needed to relax to a statgm) approximately being independent of the
initial state and only governed by the last transition. An estimate is obtained from Eq. (3.69),

1
t(m) ~ 3 . (3.70)
2nTczcj_m P(—e+ k(2m — 1))
Furthermore, for Ohmic dissipation one can derive an approximation for
1
(o)~ —In(t) +C, (3.71)
4y,

where all other parameters are absorbed in the conGtartte logarithmic relaxation, cFig. 22 is due

to the exponential cut-off in the boson spectral densiiy) = 20we™/, cf. Eq. (2.52). Other forms of

J (w) will therefore lead to other time-dependences of large-spin relaxation in the strong coupling limit.
At finite temperatures, the spin can also absorb energy from the environment and transitions in both

directionsm <> m + 1 are possible. Due to the detailed balance relation, Eq. (2.60), the absorption rate

is much smaller than the emission rate and does not deviate much from the zero temperature ‘ultra-slow

radiance’ behaviof82].

3.4.4. Collective decoherence of qubit registers
Reina et al[220] considered an exactly solvable spin-boson model where the coupling to a number of
L spin—;s (qubits) to a bath of boson modgss via the individual spire components?” only,

L L
H= Z en0s + Z Z a;‘(gZa;r + gZ*aq) + Z wqa;raq . (3.72)
n=1 q n=1 q

The absence of tunneling term with couplingtomakes this model somewhat unrealistic from the point
of view of applications to real physical situations. Models like Eqg. (3.72) are sometimes called ‘pure
dephasing models’in the literature; the fact that they can be solved exactly makes them attractive for, e.g.
illustrating the temporal decay of off-diagonal elements of a density matrix due to dissipative environment
coupling.

The exact solution is accomplished by calculating the time evolution operator, which is gitgrihy
=T exp—i fé dt’H;(¢')] in the interaction picture with respect to the free spin and boson part of Eq.
(3.72), where care has to be taken to properly take into account the time-ordering op&ratfothe
discussion ifj220]. A case of particular interest occurs for ‘collective decoherence’where all the coupling
constantg, = g, are identical and the matrix elemenmis ; (¢) of the reduced density operator of the
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spin systems evolve as

2 2 2
Pin.jn () —expli@(r) {(Z z) - (Z jm> } - r(z){z (im — jm)} ]p,,, ROF

(3.73)

@(t)_/ dwM [wt — sinwt], F(t)_/ da)M (1 — coswt) cosh<ﬁ;> .

(3.74)

Theresult Eqg. (3.73) reflects the abelian nature of the dephasing: the time evolution of the density operator
only consists in a multiplication of the initial density operator with an exponential factdr expvhich,
however, itself depends on the coordinatgs,. Note that the real ‘decay ratgl{z) is given by the real

part of the functionQ(¢) in Eq. (2.21),I'(t) = ReQ(t), which therefore with the explicit expression

Eq. (2.53) can be calculated analytically.

Reina et al[220] discussed the case bf=1 and 2 qubits fos = 1 (Ohmic) ands = 3 (super-Ohmic)
dissipation in detail. An interesting result is the fact that, apart from the diagonal elements of the density
operator Eq. (3.73), the matrix elements| |p()| {1) and ({1 |p(®)| 1{) do not decay at all. For
identicalgy, the interaction part of the Hamiltonian Eqg. (3.72) in fact gives zero on the $tatgsand
| J1). In contrast, the matrix element$t |p(¢)| |{) (and correspondinglyl | |p(¢)| 11)) decohere
fast according to

(11 e ) =exd—4r 111 [p(O)] L) (3.75)

which has been called ‘super-decoherence’ in an earlier paper by Palm§2edal.

3.4.5. Superradiance in arrays of Cooper pair boxes

Rodrigues et al[222] proposed a model for collective effects in the Cooper-pair tunnel current in an
array of Cooper-pair boxes coupled to a large, superconducting reservoir with BCS Hamiltogian
They started from a total Hamiltonian

H = Haray+ H'BCS+ AT | (3.76)
lp

Haay=» | ENo?, A1 == Tii(oicryer +HC) . (3.77)
i=1 k,i

where in# array and the tunneling Hamiltoniar’7 each of thd;, Cooper-pair boxes was described as a

two-level system with pseudo sp%m Fori-independent charging energiéﬁ1 and tunnel matrix elements

Tr.i, the Cooper-pair array was described by a collective Spiof sizel, /2. In addition, they wrote the

BCS Hamiltonian using-dependent Nambu spia;* _c,I ch etc. and assumed a strong coupling limit

in which the dispersion of the particle energiggcounted from the chemical potential) and the pairing
field 4 became negligible, giving rise to a spin representatics ~ 2:S° — S;tA4 — S, A* (the total

spinS, =1,/2 — oo represented half the degeneracy in the reservoir), which they checked to reproduce
standard BCS results.
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Fig. 23. Left: line narrowing due to collisions of a Doppler-broadened spectral line in the original 1953 Dick¢l¥&}efhe
radiating gas is modeled within a one-dimensional box of wilthis the light wavelength. Froifl75]. Right: imaginary part

of the polarizabilityy(k, ) in units ode/F (d: dipole moment) around = wq for a one-dimensional model (see text). All
frequencies are in units of the collision rdtef the radiating atoms with the atoms of the buffer gas. The spontaneous emission
ratey = 0.1; the atom mask! and the light wave vectdeenter into the frequencyy = kpg/M which determines the width of

the momentum distribution. For broad distributions (langgrthe sharp ‘Dicke-peak’ appears on top of the Doppler-broadened
line-shape.

Neglecting furthermore thiedependence of thg, ; allowed them to work with an effective Hamilto-
nian with two large spins representing the box-artagyafd the reservoir},

Hett = ENSE 4+ 2687 — STA— ST A —T(SSS7 +85Fs,) . (3.78)

Using lowest order time-dependent perturbation theory’in they then calculated the expectation value

of the tunnel current operatdr= 7(S, S, — S, S;") for various initial conditions (number and coherent
states for array and reservoir). They found a current proportional wqiereof the numbei, of boxes

in the array which demonstrated the Dicke superradiance effect in their system. In a further calculation,
Rodrigues et al. also made explicit predictions for a collective, time-dependent quantum revival effect in
analogy with the quantum optical revivals in the Jaynes—Cummings rfiel

4. Dicke effect and spectral line-shapes
4.1. Introduction

The original Dicke effect as predicted by Dicke in 19835] is a phenomenon that occurs in the
line shapes of absorption spectra in a gas of atoms. Line shapes for the absorption of light with wave
vectork are subject to Doppler broadening due to frequency skiftsvherev is the velocity of an
individual atom. Dicke showed that velocity-changing collisions of the radiating atoms with the atoms
of a (non-radiating) buffer gas can lead to a substanaalowing of the spectral line shape in the form
of a very sharp peak on top of a broad line shape, centered around the transition frequency of the atom,
cf. Fig. 23 Theincoherentcoupling of two independent relaxation channels (spontaneous emission and
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velocity-changing collisions) leads to a splitting into two combined decay channels for the whole system,
cf. Section 4.2. This phenomenon is somewhat in analogy witbdherentoupling of two (real) energy
levels (level repulsion), leading to the formation of a bonding and an anti-bonding state. The difference is
that the Dicke effect is related to the splitting of decay rates (‘imaginary energies’), and not real energies,
into a large (fast, superradiant) and a small (slow, subradiant) decay rate. In fact, the splitting into two
decay modes can be considered as a precursor of the phenomenon of Dicke superfhtddnobere
a symmetric mode dfl radiators gives rise to an abnormally large decay on a time s¢ale 1

From the theoretical point of view, spectral line-shapes are determined by poles of correlation functions
in the complex frequency plane. The poles are eigenvalues of a collision matrix which, for the simplest
case of only two poles, belong to symmetric and anti-symmetric eigenmodes. As a function of an external
parameter (e.g. the pressure of an atomic gas), these poles can move through the lower frequency half-
plane, whereby the spectral line-shape becomes a superposition of a strongly broadened and a strongly
sharpened peak.

From an abstract point of view, the Dicke effect has its roots in the properties of eigenvalues and
eigenvectors of matrices of a special form. Consid&r a N matrix

1 g q ¢

g 1 q ¢
A=lq q 1 ¢ : (4.1)

9 q q 1
representing a coupling amohpbjectsi =1, ..., N with identical real coupling strengths_.; =4 and

unity ‘self-coupling’. The eigenspaceAfs spanned by a single, ‘superradiant’and symmetric eigenvector
(1,1,1,...,1) with eigenvalue 1 ¢(N — 1), and N — 1 degenerate, ‘subradiant’ eigenvectors, e.g.
(1,-1,0,...,0),(1,0, -1, ..., 0), etc. with eigenvalue * ¢. This splitting into sub- and superradiant
subspaces is a very generic feature due to the high symmefyyamid has important consequences for
physical systems where such symmetries play a role.

Although the Dicke spectral line effect has been known and experimentally verified for a long time
in atomic system$l77,178,223] only recently predictions were made for it to occur in transport and
scattering properties of mesoscopic systems such as for resonant electron tunneling via two impurities
[224], resonant scattering in a strong magnetic f[@b], or the emission from disordered mesoscopic
systemg[226]. This section represents an introduction to the effect by an explicit calculation of the
collision-induced narrowing of the polarizabilipw) of an atomic gas (as was considered in Dicke’s
1953 paper), a short overview over the results from the seminal paper by Shabazyan and Raikh, and recen
work related to the effect.

4.2. Atomic line shapes and collision effects

The Dicke effect (line narrowing due to collisions), its experimental consequences and the conditions
under which it can been observed have been reviewed by Bd&#ah Here, we provide a short review
of the theoretical aspects of the original effect by using the Boltzmann equation for a gas of two-level
atoms of mas# as described by a one-particle density matrix, defined as a trace of the statistical
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operatorp,
oo (M1, 123 1) = Tr(pW(rat) Pe(rar)) | (4.2)

where the field operatd¥/ (r») creates an atom at positiop with the upper level¢= 1) or the lower
level (= |) occupied. The ‘spin-index thus denotes the internal degree of freedom of the atom. An
electric fieldE(x, t) now gives rise to dipole transitions within an atom at posikolfi the corresponding
matrix element is denoted as(for simplicity we setd = d,, = d,4), and the transition frequency is
o, the Hamiltonian of the system in second quantization is

H=Y" / dBxwr (%) [a% _ %] W, (X)

o=%
+ [ xR 007,00 + ¥ 00w 001 (4.3)
where4 is the Laplacian and we have get 1. The quantum-mechanical distribution function
1 .
1) = d3r’e P (s t 4.4
forn= s / p(r '3 1) (4.4)

with r = (r1 +r2)/2 andr’ = r1 — r, obeys an equation of motion as derived from the Heisenberg
equations of the field operato¥s; (x),

o . .
<5 — lwo +Ver) fiT(p9 r, t) = IdE(rv t)[fTT(p» r, t) - f\L\L(pv r, Z)] )

(% +iwo + Ver) fru,r, ) =—idEr, O fr4(p,r, 1) — fL (P, 1, )] (4.5)
with vp =p/M and corresponding equations fér; and f| | . The electric fieldE(x, ) has been assumed
to spatially vary on a length scale which is much larger than the de-Broglie wave length of the atoms;
apart from this Eq. (4.5) is exact.

The Dicke effect has its origin in collisions of the atoms with a buffer gas. These collisions are assumed
to change only the momentumof the atoms and not their internal degree of freedorRurthermore,
the buffer gas is optically inactive; a situation that in a condensed matter setting would correspond to
elastic scattering of electrons at impurities in electronic systems like metals or semiconductors. In the
theoretical description of these scattering events, one introdumm@bsaon term

L foo 1P T, 1) =— / dp'W (@, P) [ fo,o (P, T, 1) — fo0 (P, T, D)] (4.6)

on the r.h.s. of the kinetic equation Eq. (4.5), wh®&f€p, p’) is the probability for scattering from to

p’, which can be calculated in second order perturbation theory (Fermi’'s Golden rule) from a scattering
potential. Furthermore, the spontaneous decay due to spontaneous emission of light from the upper level
of the atoms leads to a decay of the polarization at ayraféis dissipative process is introduced as an
additional collision term forf; | and f| 4

L'Nfi)==vf1r, LUfrl=—2fr (4.7)
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Thepolarizationof the atom gas

P(r, 1) =d/dp[f¢¢(p, r,0)+ fir(p,r,1)] (4.8)

is obtained ifinear respons¢o the electric field, i.e., the occupation probabilities of the upper and lower
level are assumed to be constant in time and spgcep,r.t) — f,,(p.r,t) =N(p). The resulting
equation of motion forf; | then becomes

o . .
<5 +imo+ 7+ Ver> fru.r, ) =—idE(r, ))N(p) + ZLfr 1P, 1. 1) , (4.9)

which s a linearize@oltzmann equatiofor the distribution functioryy ; . Dicke originally considered the
scattering processes in a one-dimensional model: atoms bouncing back and forth within a one-dimensional
container{175], a situation that easily allows one to understand the line narrowing from Eq. (4.9). Due
to energy conservationy (p, p’) « §(p2 — p'?), which one can write as

W(p, p)=T(p)s(p—p")+d(p+p)Hl, (4.10)

whereI'(p) = I'(—p) is a scattering rate with dimensiorftime. In the collision integral, only the
back-scattering term remains, i.e.,

Ll frolp,r, 1) = —fdp’F(p)é(p + P foo(pr 1) = fo0(—=p, 1, 1)]
= —F(P)[fa,a/(P’rJ)—fo,a/(—P»”,f)] . (411)

The solution of Eq. (4.9) is easily obtained in Fourier-space where —iw ando, — ik;
(=i +iwg + 7y + I'(p) +ivpk) fr i (p, k, @) — I'(p) f1,(—=p, k, w) = —idE(q, ®)N(p) . (4.12)

This can be solved by writing a second equation for(—p, k, ) by simply changingp — —p. The
result is a two-by-two system of equations &, (p) and f; |, (—p) (omitting all other variables for the
moment),

<—iQ,,+r(p) —T(p) >( f11(p) ):( g(p) > (4.13)
—I'(p) —1Q_p +I(p) ) \ fr1(=p) g(=p))

with the abbreviationg(p) = —idE(k, o) N(p) andQ, = o — wo — v,k +iy. Note that the velocity,,

is an odd function op, v, = p/M = —v_,. Inverting the twox two matrix yields

. —i(w — wo + vpk +iy) + 2I'(p)
Lk, =IdEk, w)N
Jr(p- ko) =1dEG o)N P) - e — o (p. 0]

, (4.14)

where the two poles (p, k) in the denominator of Eq. (4.14) are given by

0 (p, k) = wo — iy —i(I'(p) £,/T(p)* — v2k?) (4.15)
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Fig. 24. Zerosv4+ — wg according to Eq. (4.15) appearing in the distribution function Eq. (4.14) and the polarizability Eq. (4.16).
The real and imaginary part of the frequencies are in units of the Dopplewshiftrhich is fixed here. The two curves are plots
parametric in the elastic collision rat&p); the arrows indicate the direction of increasing). ForI'(p) > [vk|, both curves
approach th®icke limitEq. (4.17), where the imaginary part©f. — wg becomes the negative gfand the imaginary part of

w4 — wg flows to minus infinity.

andthe resultfoy |+ (p, k, w) is obtained from Eq. (4.14) by changing — —wo andN (p) — —N(p).
Using these results, one can now express alinear relation between the Fourier transform of the polarization,
Eq. (4.8), and the electric field (k, w),

Pk, w) = y(k, w)E(k, )

— k+i 2ir
X(k,w):dzfde(p) o — wo + vpk + iy 4 2 (p)

[0 — o (p, K)o —w_(p, k)]

The spectral line shape is determined bypb&rizability y(k, ), the form of which in turn depends on
the position of the poles (p, k) in the complexw-plane. It is useful to consider two limiting cases:

— (wg — —wg) . (4.16)

(1) the collision-less limit™2(p) <v2k?, cf. Fig. 24 in this caseqw-(p, k) ~ wo =+ vpk — iy. The line-
width is determined by the broadening through spontaneous emjsaiwhis shifted from the central
positionwg by theDoppler-shiftstv,k. Note that the final result for the polarizability still involves
an integration over the distribution functiovw(p) and therefore depends on the occupations of the
upper and lower levels. This leads to the fiBalppler broadeninglue to the Doppler-shiftsv k.

(2) theDicke-limit%(p)>v3k?, cf. Fig. 24 is a more interesting case, where in the square-root in the
two poles the Doppler-broadening can be neglected and

wy =wg—1y—2I'(p), w_=wg—1iy. (4.17)

Thefirst polen,. corresponds to a broad resonance of wjdtl2"(p), the second pole_ corresponds
to a resonance whose width is solely determined by the ‘natural’ line-wjd# a resonance which
is no longer Doppler-broadened.
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The splitting into two qualitatively different decay channels is the key feature of the Dicke effect. We
have already encountered it in the emission of light from a two-ion system, Section 3.1.2, where the
spontaneous decay split into one fast (superradiant) and one slow (subradiant) channel. In fact, in the
Dicke-limit the polarizability is given by a sum of the two resonanegs from Eq. (4.16), one obtains

- k+iy+2ir
X(k,w)=d2/dp1v(p)w wo + vpk 41y + 21 (p)|: 1 1

- } — (wo — —wo)
O—wy  O—0_
(4.18)

W4 — W—

In the Dicke-limit, this becomes

5 (k, w)mﬂ/dp N_(p) [ vk 2I0(p) } — (wp — —ap) . (4.19)
=2il(p) lo—wy ©—o_

The two resonances thus correspond t@ati-symmetric termv,k/(» — w4) (odd function ofp) and

a symmetric tern®il’(p)/(w — w_) (even function ofp). Note that the anti-symmetric term gives no
contribution toy(k, w) for even distributionV (p) = N(—p). Still, the appearance of a definite type of
symmetry together with each type of resonance is typical for the Dicke effect and has its origin in the
coupling of the two componentg(p) and f(—p) in the matrix equation Eq. (4.13). The latter can be
re-written (again considering only the componght),

B fm(p)):_- (l> :(vpk—if(p) ir(p) )
“ “)(m(—p) #P1) A=\ irg) ok —irp) (4.20)

whereN (p) = N(—p) and/. = w — wo + iy. Inthe limit I'(p) > |v k|, the matrixA has the eigenvectors
(1, 1) and(1, —1) with eigenvalues 0 and2iI'(p), respectively. For the symmetric eigenvectbyl),
the effect of the collisions is therefore annihilated to zero, and this eigenvector solves Eg. (4.20) with

—Afr1(p) = —ig(p), meaning

dE (k, w)N(p)
o—wg+iy

frip) = (4.21)

This agrees with the previous result Eq. (4.14) in the Dicke-lingjt) > |v,k|: the collision broadening
has disappeared and the line is determined by the remaining natural linewidtis instructive to
discuss a quantitative numerical example, using a Gaussian distribution funation= f14 — f,, =

—(ano)_l/ze—f’z/zl’g. The imaginary parj{i(k, w) of the first term in the polarizability Eq. (4.16),

— wo + vpk 4+ iy + 2il'(p)
— o1 (p, Bllo —w_(p, k)]’

corresponds to the resonance around: wg. The result (which requires one numerical integration)
for constantl’(p) = I' is shown inFig. 23 (right) for different widthsvg = pok/M of the distribution

N (p). For a sharp momentum distribution (smaj), the line-width is determined by the spontaneous
emission rate and there is basically no Doppler-broadening (Dicke-limit). In the opposite case of a broad
momentum distribution, the form of the line is determined by a sharp peak of wi¢lthn top of a broad
curve of width~ v, which reflects the appearance of th polesw, andw_ in y(k, w).

2k, ) EdZSmfde(p) [:: (4.22)
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Fig. 25. Resonant tunneling through two impurity levels, from Shahbazyan and R2#h Left: tunnel junction with two
resonant impurities 1 and 2 in a distantén horizontal and distance;» in vertical direction. Right: linear conductance

for identical impurity levelsE as a function off = Ep — E, whereE is the Fermi energy of the tunneling electron. The
characteristic shape of the spectral function Eq. (4.26), as known from the Dicke effect, appears here in the conductance
with increasing parameter=0,¢ = 0.75,4 = 0.95, cf. Eq. (4.25)I" is the tunneling rate through the left and the right barrier.
From[224].

4.3. Spectral function for tunneling via two impurity levels

The appearance of the Dicke effect in a spectral function for electronic states was first found by
Shahbazyan and Raikh in their paper from 18224]. They considered two-channel resonant tunneling
of electrons through two impurities (localized states) coupled to electron reservdtig, @5 If Coulomb
interactions among the electrons are neglected,dhductancef the whole system can then be expressed
by its scattering propertid45,16,227]

We follow the discussion of Shahbazyan and Ulloa who later generalized this problem to the case of
scattering properties in a strong magnetic f[@Rb]. The starting point for the analysis of the conductance
is the spectral function of the system, which can be expressed by the imaginary part of the retarded Green’s
function[57,88] For the case of two energy levelsande, that are assumed to belong to two spatially
separated localized impurity states, the spectral function is defined by a two-by-two matrix in the Hilbert
space of the two localized states,

1
w—34+iW
Scattering between the localized states |k) — j is possible via virtual transitions to extended states
(plane wavesk)) of the electron reservoir. Thehijs diagonal in the;, andW is a self-energy operator

that describes the possibility of transitions between localized Ie2eld] via extended states with wave
vectork. In second order perturbation theory, the self-energy opebétmrgiven by

1 1
S(w)=—=3m=Tr (4.23)
T 2

Wij=m Y tiktkjo(w — Ek) , (4.24)
k

where#i =1 and the dependence arof W is no longer indicated. The quantitigs are overlaps between
the localized stateisand the plane wave&), their dependence on the impurity positignis given by
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the phase factor from the plane wave at the position of the impurity;.ec exp(ikr ;). Note that this

spatial dependence of the matrix elemgpis similar to the relationsé o exp(iQr ), ocg o exp(iQr g)

that lead to the interference in the matrix elements for electron—phonon coupling in double quantum dots
as discussed in Section 2, cf. Eq. (2.54). The non-diagonal elegptsan be shown to be oscillating
functions of the impurity distance;,

Wi2 =g WiWa, q = Jo(rizkr) , (4.25)

wherek is the Fermi wave vector anfy the Bessel function that results from an angular integral in the
plane of the two impurities. If the diagonal elemeiits; and W», and both energies are assumed to be
identical,e; = ¢2 = ¢ andWy1 = Woo = W, one has

W:W(; §> S(w):i[ V- W } (4.26)

21 | (0 — &)+ W2 (w—e)z-i-Wi

with Wo=(14¢)W. This spectral function consists of a superposition of two Lorentzians (one narrow line
with width W_, corresponding to a subradiant channel, and one broad line with Widtltorresponding

to a superradiant channel) and therefore represents another example of the Dicke spectral line effect
discussed in the previous section. Furthermore, this splitting is analogous to the spitting of a radiating
decay channel of two coupled radiators as discussed in Section 3.1. If the pamgiasteall,g <1, one

hasW, ~ W_ ~ W and the spectral function is a simple Lorentzian if withThe crossover to the

Dicke regime with the splitting into a sharp and a broad pafi(ef) is thus governed by = Jo(r12kr)

and therefore by the ratio of the distance of the impurities to the Fermi wavelength of the electron. This
again shows that the effect is due to interference. The two localized impurity states are coupled by the
continuum of plane waves. As for their scattering properties, they have to be considered as a single quantum
mechanical entity, as long as their distance is of the same order or smaller than the wavelength of the
scattering electrons. In this case, the (linear) conducténég-) for resonant tunneling shows the typical
feature of the Dicke effect as a function of the enefgyof a tunneling electron: aS(Er) is determined

by the spectral functiof(w) [227], the Dicke peak becomes directly visible in the conductanc&;gf.

25. If the energies; ande; of the two impurity levels differ from each other, the resonant peak even shows

a more complex behavior; as a function of the paramgtlere is a crossover to a sharp transmission
minimum|[224].

Several authors have built upon the 1994 paper by Shahbazyan and Raikh and found features in
electronic transport which in one way or the other are related to the Dicke effect. Shahbazyan and Ulloa
[225] studied the Dicke effect for resonant scattering in a strong magnetic field, using an exact solution
for the density of states in the lowest Landau level as calculated from a zero-dimensional field-theory
[228]. Furthermore, Kubala and Konig studied a generalization including an Aharonov—Bohgifiax
ring-geometry connected to left and right leads with resonant scattering through single electronic levels
1 andes of two embedded quantum dd29,230] They calculated the transmissid@riw) through the
ring within the usual Meir-Wingreen formalisf231],

-1

T(w) = Tr[G*(w)TRG" (w)It], G’ (w) = (4.27)
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with 2 x 2 matricesI">/R for the coupling to the leads and retarded and advanced Green’s functions,
G'/%(w). The imaginary part o6’ (w) ! contains the sum of the tunnel ratés= I';, + I'r and again
has ‘Dicke’ form, cf. Eq. (4.1), leading to a sharp suppression of transport arpune, = 0.

4.4. Cooperative light emission from disordered conductors

A large part of mesoscopic physics deals with universal properties of disordered, coherent electronic
systems. The related topic of ‘random lasing’ has attracted a lot of attention recently; some shorter Review
Articles by Hackenbroich and Haake, and by Apalkov et al. can be fouf&BR].

Shabazyan et aJ226] studied a related problem, i.spontaneousooperative emission from a dis-
ordered mesoscopic system, motivated by experimental evidence for collective excitonic light emission
from strongly disordered polymers. They used a completely classical description of superradiance as a
collective phenomenon, which was in the spirit of a generalization of the classical description of spon-
taneous emission from a single, classical radiator. The microscopic, quantum mechanical description
of superradiance in fact is two-fold and can be performed following two alternative scligi®dsin
the Schrodinger picturea Master equation for the reduced density operator of the electronic system is
derived. The degrees of freedom of the electromagnetic field are regarded as dissipative bath leading to
spontaneous emission; they are integrated out whence the coupling to the electromagnetic field basically
enters as one single parameter (the decay rate of a single radiator). On the other hartdeisehkerg
picture, the equations of motion for the field operators of the polarization, occupation numbers, and the
polarization are derived, and the electromagnetic field is dealt with on a classical level by using Maxwell’s
equations. This second approach is in particular useful in order to study the classical aspects of superradi-
ance, and furthermore additional aspects like propagation effects for the electromagnetic field, etc. Both
alternatives are valid (though entirely different) routes towards cooperative emission (superradiance),
cf. the discussion in the Review article by Gross and Har¢thg).

The starting pointinthe work by Shabazyan et al. was a systédf classical harmonic oscillators of
charges, massm, dipole orientatiom; at random positions and with random frequencies, interacting
via their common radiation fielt(r, #). The equations of motions for the oscillator displacements,

iii (1) + wPui(t) = — @, 1) (4.28)
m

are closed by using the wave equation for the electric field,

AE(r,t) — Clz E(r,1) = L:;J(r, 0, Jr,n= ez Nitt; (£)o(r —r;) , (4.29)

where the source term (the macroscopic polarization) is again determined by the oscillator displacements.
As mentioned above, the combination of the two sets of equations, Eq. (4.28) and (4.29), for light—-matter
interaction constitutes the ‘classical’ approach to superradiance and is complementary to the completely
quantum mechanical approach based on collective spontaneous emission as presented in the introductiol
to Section 3.1.
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After Laplace transforming and expansion into eigenmodes of the field, one arrives at a simple set of
linear equations for the (re-scaled) oscillator displacemeliis),

1 ) i
(w;j — w)v; + ; Z (ﬁij + Ioc,-j)vj = _é e_"”i , (430)
J

wherey;; andp;; are the imaginary and the real part of the effective interaction matrix elements between
the radiators as mediated by the electric fielt; the radiative life time of an individual oscillator, and
¢, the initial oscillator phases.
The limit of pure Dicke superradiance then follows from neglecting the dephasing ferifvehich
are due to effective dipole—dipole interactions) and by setting

oij =oning, o = 1 (4.31)

with (1 —a) ~ LZ/xg <1, wherel is the system size an@ the wavelength corresponding to the central
oscillator frequencyng. For identical oscillatorg); = wg and identical dipole moment orientations
the eigenvalue problem Eg. (4.30) is identical to the one for the mAtdiiscussed in the introduction,
cf. Eq. (4.1), and one obtains an emission spectrum

(N -1 —a)/t (1— o+ aN)/t ]
(0o — )2+ (L —0)2/2  (wg— )2+ A —a+aN)2/2] "’

which is a superposition of a wide Lorentzian (corresponding to the single superradiant mode) and a
narrow Lorentzian (corresponding 3 — 1 subradiant modes), dfig. 26

Disorder in the orientations; alone was shown to have no qualitative effect on the emission spectrum.
For frequencies; randomly distributed in an intervaédog — Q, wo + Q), however, strikingnesoscopic
features appear if(w). Instead of the naively expected smearing of the sharp (subradiant) Dicke peak Eq.
(4.32), the coupling of the oscillators leads to a multitude of sharp peak®in cf. Fig. 26 Shabazyan
et al. showed that the splitting into a single superradiant®nd 1 subradiant modes persists even in
the disordered case, as long as thean frequency spacing/N is much smaller than the inverse life
time (individual oscillator line-widthy—1. The precise form of (w) depends on the specific (random)
choice of thaw; and is therefore a ‘fingerprint’ of the frequency distribution. On the other hand, a detailed
analysis showed that some universal features(a depend or, @2, L, andN only. In particular, in an
intermediate regim@:<N<Qr(1 — «)~?, the width of the many peaks was shown to decrease with
increasing\, with the system behaving as a ‘point sample’, whereas for |&t@ecross-over occurs into
a regime with peaks becoming broader with increasing

1 () [ (4.32)

4.5. ac-Drude conductivity of quantum wires

The Dicke spectral line effect also appears in the ac conductivity of quantum wires in a magnetic
field, which is yet another example of electronic transport in a mesoscopic system. Quantum wires are
electronic systems where the motion of electrons is confined in two perpendicular direction of space
and free in the third5—-8,60,181] In the presence of impurity scattering and when only the two lowest
subbands of the wire are occupied, the absorptive part@fshows (as a function @f) the Dicke effect
in analogy to the spectral line narrowing discussed above. The parameter that drives the effect is the
magnetic fieldB. Impurity back-scattering becomes more and more suppressed with incrBasgihigh
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Fig. 26. Mesoscopic superradiance from disordered systems after Shahbazyf2Péi.dleft: spectral intensity o identical
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andx = 0.9 (solid line). Right: spectral intensity for several sets of random oscillator frequenciesh Qz =5.0 andx = 0.8.

From[226].

leads to a crossover i5(w) from a broad Lorentzian to a very sharp and high peak on top of a broad
Lorentzian. This is due to inter-subband scattering, by which the transport rates for the two subbands
become coupled and split into one fast and one slow mode, corresponding to the superradiant and the
subradiant channel in the superradiance problem.

A model for this effect takes a quantum wirexrdirection within a quantum well in the-y-plane
under a magnetic field imdirection, cf.Fig. 27left, with the wire defined by a harmonic confinement
potential of frequencyyg. The single electron eigenstate) with eigenenergies,; of the clean system
(noimpurities, Landau gauge) have two quantum numib@randau band) anki(momentum in direction
of the wire)[14]. In the Drude model for the conductivitfw) of the wire, quantum interference effects
and localization of electrons are disregarded, and the electronic transport is determined by the average
electron scattering rate at the impuritj@83—236] Thememory function formalisioy G6tze and Wolfle
[237,238]is an alternative to a calculation &fw) via the Boltzmann equation, as has been done by, e.g.,
Bruus et al[68] or Akera and Andd239] for = 0. One of the advantages of the memory function
formalism is that non-trivial interaction effects can in principle be incorporated into the formalism by
interaction dependent correlation functions. This in particular is useful to combine exact results, e.g. for
correlation functions of interacting one-dimensional systems, with a perturbative description of impurity
scatterind240,241] Such effects, however, are neglected in the calculation below, and the final result can
be shown to coincide with the one obtained from the Boltzmann equation in the limit of zero temperature
and small frequencies.
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Fig. 27. Left: subband dispersiayp; of a wire (upper left) in a magnetic fiel. Right: real part of the frequency-dependent
Drude conductivity of a two—channel quantum wire in a magnetic field, Eq. (C.25), in unitg of ezsvpor/n (s=1 for
spin—polarized electrons). Different curves aredgywg =0, 0.4,0.8,1.2, 1.6, 2.0, 2.4, 2.8, wherewq is the frequency of the
harmonic confinement potential, ang = ¢ B/m the cyclotron frequency for magnetic fietl

The Hamiltonian of the wire is given by

H = Z 8nkC:kan + L_ls Z Vim (Q)C,chkarq . (4.33)
nk nmkq

whereL; is the length of the wire;,,; the electron creation operator for bamdandV,,,, (¢) the matrix

element for impurity scattering with momentum trangférom a state with quantum numbekto a state

mk + q. To simplify the notation, the spin indexin the operators,(lzg has not been written out explicitly.

The scattering potential is assumed to be spin-independent and summation over the spin is included in all

k, k'=sums. The linear response of an electronic system to a monochromatic electigietdg wr) in

general is governed by a non-local conductivity tengar, X', w). Many electronic transport properties

of quantum wires (many-subband quasi one-dimensional systems) have to be discussed in terms of the

conductancé’ (the inverse resistancg)s,16,242—245jather than the conductivity, although the formeris

related to the latter in special ca$246—250] The conductance is regarded as the proper transport property

to explain, e.g., phenomena like step-like features in the electronic transport properties, i.e. a quantization

of I in multiples of 22/ h [87]. This and other phenomena like localization due to disdidjiin general

exist due to phase cohererj2®1-253] In presence of phase breaking processes, a crossover to a regime

that can be described by a Drude-like theory is expected even for one-dimensional systems when their

length Ly becomes larger than the distancg over which phase coherence is maintained. In this case,

the conductivitys(w) becomes a meaningful quantity. Furthermore, the conductivity as physical quantity

in quantum wires is also used to descridmyiationsfrom ideal, unperturbed situations, e.g. deviations

from conductance plateaus due to scattering processes where a low order (sometimes renormalized

perturbation theorj254] is possible.
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The homogeneous conductivity as a function of complex frequerisyexpressed in terms of the
current-current correlation functiq@37,238]

2
o@)=—1 = (x0- %) . (4.34)
Z m

where

1) = ((J; })). = —iLy /0 dré“ ([ (1), j(O)1o (4.35)

is the (Zubarev) correlation function of the=0 component of the mass current density opeg%\i:ef(q =
0). Furthermore, is the electron density;e < 0 the electron charge amd* its conduction band mass.
The multichannel wire is described as a set of quasi one-dimensional subbands (chaarils). , N,
of dispersiore,; and corresponding electron velocitigg = 0z, /0k (we setti = 1). The current in the
total system is the sum of the currents of all channels,

j= L—ls > vmkehen =D jn s (4.36)
n.k n
which allows one to write the conductivity as
e? ne o
a(z) = —I? (an: Ynm (2) — %) v Tam (@) = —({ns Jm>>z (4-37)

in terms of a matrix of current—current correlation functions. The total number of eled¥ioissgiven
by Ne = >, <k, Here, the Fermi momentu, in subbandh is related to the Fermi energy- as

enk = €F, k = k,, which in turn is determined by the total number of electronsNjia= Zn,\k|<k,, and
the magnetic field dependent band struciyre One has

n N .

m—i = o Lo = Oum “Uns Un = Vnkek, = k,/m*, s spin degeneracy (4.38)

whereu,, is the Fermi velocity in subbandand the sum in Eq. (4.38) runs over all occupied subbands. In
Appendix C, a multichannel version of the memory function forma[@87]is used to find the expression
for the frequency dependent conductiwity») at zero temperaturE =0 and small excitatiorni&s» around

the Fermi surface, i.e. frequencies<|¢r — &,—0.x=0l/%. In the following, excitations much smaller

than the inter-subband distantep = #, /wg + »? are assumed, whetg. = |¢|B/m*c is the cyclotron

frequency for magnetic fielB. An estimate for the relevant frequency rangeBot 0 isfiwg = 1 meV,

i.e.wo=1500 GHz, and frequenciesfrom 0—100 GHz< wg are in the microwave spectroscopy regime.
The general expression fefw) is given in Appendix C, Egs. (C.15), (C.7), together with (4.38). In

the case where the two lowest subbands0 and 1 are occupied, the expression for the conductivity is

5 28 /m(vo + v1) + i[vo/v1L11 + v1/voLoo — 2Lo1]

a(z) =ie - - TR
(z +1nLoo/svo)(z + InL11/sv1) + neLg/s“vov1

(4.39)




T. Brandes / Physics Reports 408 (2005) 315-474 393
with
S ) 2s
Loo=Ls (|V01(k0 — kn)I? + [Voa ko + ko)1 + — Voo(2k0)2> ,

S V1 2s
L= L (|V01(ko — k1) |2 + |Vor(ko + k1)|? + ;vﬂ(zmz) :

R
Lov=— L;(IVoi(ko + k1)|?2 — |Voi(ko — k1)|?) . (4.40)

Here,s = 2 if the electrons are taken as spin degeneratesaad. if the electrons are assumed to be
spin-polarized. In lowest order perturbation theory (Born approximation) in the scattering off random
impurities, it is sufficient to know the impurity averaged square of the matrix element

Vi (k — K2 =nZP >~ Ju(@)|?| (nk|e ¥ |n'k) |2 (4.41)
q

that enters into the expressiohsg; in Eq. (4.40). Hereu(q) is the two-dimensional Fourier transform

of the static potential of a single impurity potentiglx, y). All impurities are assumed to be identical
scatterers and distributed with a concentrati®l per ared.2. Finite quantum well thickness corrections
(form factors) are neglected here for simplicity. The averaged matrix elements are calculated in Appendix
C.2 for Delta-scatterers, where the Fourier componet)|*> = V¢ is a constant. The dependence on

the magnetic field is only through the rafio= (w./wg)?. We express the scattering matrix elements by

the scattering rate" without magnetic field,

L = n2PVEm* | At (4.42)

where in comparison witf68], t 1 is defined with an additional factor of /4x for convenience.

The frequency dependence of the real part of the conductivity, Eq.(C.25), is shadwig. 87 for
the Fermi energy fixed between the bamds: 1 and 2, i.esr = 2fiwp. The real partRes(w) has a
Lorentzian shape for small magnetic fields. For increasing magnetic field, i.e. targes, this shape
develops into a very sharp Lorentzian on top of a broad Lorentzian, indicating that one of the two poles
z+ In a(z) approaches zero which again is theeke effectas discussed above. Here, in the Dicke limit
the subradiant pole is zero and has no small finite imaginary part, since scattering processes other than
impurity scattering is not included, which is in contrast to Eq. (4.17), where spontaneous emission at a
ratey lead to a finite imaginary partiy in both zeros.

The two poles of(z) determine the width dRe s (w). For large magnetic field3, one can neglect the
terms which are not due to intersubbandvard scattering inLoo, L11, Lo1, and

Loy~

S ~ Vo ~ ~ V] ~
|Vortko — k1)1?,  Loo=— Loz, Li1=— Loz . (4.43)
sT v1 vo

The quadratic equation that determines the poleg9fthen has the solutions
—ilVortko— kD> (1 1
_ —ilVoi(ko — k1)| (——i——).

7-=0, z4= (4.44)
Ly vo V1
In this limit one of the poles becomes zero, corresponding to the very sharp piak ().
This analysis demonstrates that the coupling of the two subbands by the intersubband impurity scattering
is essential for the appearance of the Dicke effect in this example of electronic transport. Furthermore,
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Fig. 28. Left: classical circuit to simulate the Dicke effect in a two-subband quantum wire. Right: real part of the inverse
impedanceZ ~1(w) (conductance in units &) for a classical circuit, that simulates the Dicke effect in a two-subband quantum
wire, Fig. 27.

for large magnetic fields, backscattering with momentum tran&tgr221, andkg + k1 from one side to
the other side of the wire becomes largely suppressed due to the exponential dependence of the matrix
elements on the square of the momentum transfer, cf. Eq. (C.23), (C.20). With increasing magnetic fields,
such scattering processes become much weaker than intersubband forward scattering, i.e. scattering
between the bands = 0 and 1. This absence of backward scattering, of course, leads to a larger DC
conductivity.

In the Dicke-limit Eq. (4.43), simple algebraic manipulations lead to an expressietizZowith the
Fermi velocitiesvg andvq in subband: =0 and 1,

. N Uyt V_
o(z) = ie? 2 + ,
T\Z—24+ Z—2—

vo/v1 — 1 4vov
— = = )
vo/v1+1 vo + v1

The conductivity then becomes a sum of two contributions from the ‘superradiantmode correspond-
ing to z+ and the ‘subradiant’ mode corresponding;ta Note that these modes are superpositions of
contributions from both subbands= 0 and 1 Fig. 298.

Another observation is the fact that it is possible to simulate the behavide efw) as a function of
w by aclassical electrical circuitomposed of two impedances in parallel: this circuit consists of one
huge inductancé which is in series with a small resistangg, the whole being in parallel with a small
inductanced., a large resistand®, and a capacitandein series. Such classical circuits were in fact used

vy = (vo — v1) (4.45)
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in the past to simulate the ac transport properties of more complicated systems such as mesoscopic tunne
barrierg[245,255] The complex impedance

ioC 1

Z Y w) = — _ 4.46
(@) =1 orC —o?rC T Ro T ioLo (4.46)

contains the time scaRCand the three parameters
o= L/R’C, B=Lo/RRoC, 7,=R/Rg, (4.47)

by which a fit that qualitatively compares well witkes(w) can be achieved. Note that the c#se =
LoRo/LR > 1 together withyg = R/Ro> 1 sets very drastic conditions for the possible rafiggL and
Ro/R, if one tried to simulaté&ieqs(w) by a classical circuit in real experiments.

Checking the range of frequencies where the effect could be observed experimentally, one recognizes
from Figs. 27that w has to be varied such thatl¥»:<5 in order to scan the characteristic shape of
the Dicke peak. Impurity scattering times for AlGaAs/GaAs heterostructures are betBeerl3@ 12s
and 38 x 10195 for mobilities between £010” cm?/Vs, cf.[6]. A scattering time of 101 s requires
frequencies ofo ~ 100 GHz formt ~ 1, which is consistent with the requirementwofeing much
smaller than the effective confinement frequenoy £ 1500 Ghz foriwg = 1 meV). An experimental
check of the Dicke effect in quantum wires under magnetic fields would therefore require microwave
absorption experiments, i.e. determination®ds(w) in relatively long wires. The above calculation
applies for the case where the two lowest subbands are occupied. TempéFatuoesd be much lower
than the subband-distance enetigy;, because thermal excitation of carriers would smear the effect. For
fiwp of the order of a few meV] should be of the order of a few Kelvin or less. The Dicke peak appears
for magnetic fields such thai. /wo becomes of the order and larger than unity. For convenience, we note
that the cyclotron energy in GaAsfis).[meV] = 1.728B[T].

5. Phonon cavities and single electron tunneling

Optics deals with light, acoustics deals with sound. Optics has an underlying microscopic theory that is
linear both in its classical (electrodynamics) and quantum version (quantum electrodynamics), whereas
in acoustics the linearity is an approximation: sound is based on matter—matter interaction which is
non-linear.

Propagation of waves in media can be controlled by boundary conditions, material properties and
geometry. On the optics side, photonic crystals or photon cavities are examples where the solutions to
Maxwell’'s equations are ‘designed’ in order to achieve a specific purpose (refractive properties, confine-
ment of single photons etc). In a similar way, vibrational properties of matter can be controlled (sound
insulation being an example for classical sound-waves). The theoretical framework is elasticity theory,
the simplest model being an isotropic material with a displacementdigldobeying a ‘generalized
wave equation’

02 292 2 2
@u(r,t):c,v ur,t) + (g —cHV(V-u(r,t)), (5.1)

with the transversakf{)and longitudinal ¢;) sound velocities entering as parameters.
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Fig. 29. Left: scheme foliateral (L) andvertical (V) configurations of a double quantum dot in a phonon nano-cavity. Right:
deformation potential induced by dilatational (left) and flexural modes (centgpat =/2 (n = 2 subbands), and displacement
field (right)u(x, z) of n = O dilatational mode atl = 7icg. Greyscale: moduli of deformation potentials (left) and displacement
fields (right) (arb. units). Frorf263].

Given the importance of electron—phonon interactions as a dissipation mechanism in single electron
tunneling, it is natural to ask how to control these interactions. In quantum optics, the controlled en-
hancement or reduction of spontaneous emissionEhofonsfrom atoms defines the primary goal of
cavity quantum electrodynamics (cavity QED). As for phonons, one obvious approach towards control
of phonon-induced dephasing therefore is to build the electronic system pfimren cavity

Regarding the possible combinations of phonon cavities and electronic transport, one can broadly
distinguish between two classes of cavities: (1) ‘natural’ phonon cavities, where the modification of
the vibrational properties of the system comes ‘for free’ and goes hand in hand with the modification
(as compared to the bulk) of the electronic properties. Recent examples are carbon nagi2&iipes
or individual molecule$257-261] (2) ‘artificial’ phonon cavities, which are the subject of the rest of
this section and where the electronic system (2DEG, single or double quantum dot) is embedded into
a nanostructure whose phononic properties are modified by additional fabrication steps such as under-
etching and material removgl62).

5.1. Lamb-wave cavity model

The simplest phonon cavity model is a homogeneous, two-dimensional thin plate (slab) of thickness
2b. Debald and co-workelf263] used this model and calculated the transport current through a double
quantum dot in various configurations, €ig. 29 left, where it turned out that phonon cavity effects
strongly determined the electronic properties of the dots.

The phonons were described by a displacement figtdl, cf. Eq. (5.1), which was determined by
the vibrational modes of the slgB64]. These modes (Lamb waves) were classified according to the
symmetry of their displacement fields with respect to the slab’s mid-plane. Dilatational modes yield
a symmetric elongation and compression, whereas flexural modes yield an anti-symmetric field and a
periodic bending of the slab, cfig. 29 right. The third mode family consists of vertically polarized
shear waves but turned out to be less important because these waves do not couple to charges via th
deformation potential (see below).
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Fig. 30. Density of states (left) and dispersion relation (right) of typical cavity phonons. The characteristic energy is given by
fiwp, = fic; /b with the longitudinal speed of sourgand the cavity width 2. For a GaAs planar cavity of widthh2= 1 um, one

hasfiop = 7.5peV. The minimum in the dispersion of the third subband leads to a van Hove singularity in the phonon DOS at
fio, ~ 2.5%wp,. From[265].

5.1.1. Phonon confinement and nano-mechanical ‘fingerprints’

Debald et al[263] showed that the confinement due to the finite plate thickness leads to phonon
guantization into subbands. The corresponding phonon dispersion relation was determined from the
Rayleigh—Lamb equations,

tang; b 442q1 1q £l

qt.n [ 4l.ndt.n 5 ) 5 - ,
a - , O =cilqf +4qi,) =c(q)ta5,) (5.2)
tang;,,b |:(qﬁ — qZZ’n)Z:| n.q| L) Ln 1\ t,n

where the exponentgl correspond to dilatational and flexural modes, respectively. For each in-plane
component of the wave vector one obtains infinitely many subbands (lapeiich correspond to a
discrete set of transversal wave vectors in the direction of the confinement. The two sound velocities
andc; in the elastic medium are associated with longitudinal and transversal wave propagation and give
rise to two sets of transversal wave vectays, andg; ;.

Examples of a cavity phonon dispersion relation and the corresponding phononic density pf(states
are shown irrig. 30for flexural modes. As a particularly striking featupononic van Hove singularities
appear at angular frequencies that correspond to a minimum in the dispersion rejafjdor finite ¢ .
These zero phonon group velocities (with precediagativephonon group velocities for smallgin the
corresponding subband) are due to the complicated non-linear structure of the Rayleigh—Lamb equations
for the planar cavity. They occur in an irregular sequence that can be considered as a characteristic
‘fingerprint’ of the mechanically confined nanostructure.
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5.1.2. Inelastic scattering rates in double quantum dots

Mechanical confinement effects in nano-structures modify the electron—phonon interaction in phonon
cavities. Since double quantum dots are sensitive detectors of quantum[80]sef( Section 2.2.7), the
boson spectral density(w), and vialiy = —e2rT2J (¢)/¢? (cf. Eq. (2.61)) the inelastic current through
a double dot ‘detector’, is strongly modified due to phonon confinement.

In analogy to the bulk phonon case, one can define bosonic spectral density for a confined slab geometry
in the vertical and lateral configurations,

Jverticall®w) = Z Mﬂex(q” ”)|243m2 (qlzn )5(60 On.qy) (5.3)
qy.n
nd
Jateral(w) = Y _ 14Go(qy, m)[?1€9¢ — 1/? cog’ (qu) (e = Ong,) » (5.4)
q.n

where again the vectarconnects the two dots, and the electron density is assumed to be sharply peaked
near the dot centers which are located symmetrically within the slab. Here, the matrix elements for the
deformation potential (DP) interaction are given by

;Ldll/flex

d d

(q1. ) = B\ (q)) (2, — aD)a?, + aDtsaqnb, B = Fy(hE%/2pp 00,4, A)Y? . (5.5)
where tsac=sinx or cosx for dilatational and flexural modes, respectivélys the deformation potential,
py the mass densityh the area of the slab, anl, the normalization constant for theh eigenmode
[263]. Similar expressions can be derived for the piezo-electric potd@68]. Three observations can
be made with respect to the properties of the spectral densities, Eq. (5.3):

1. In the vertical geometry only flexural phonons, and in the lateral geometry only dilatational phonons
coupletothe dots via the deformation potential. Thisis a consequence of the symmetry of the modes and
the corresponding electron—phonon interaction vertices. For the piezo-electric interaction, this sym-
metry is actually reversed, where vertical (lateral) dots only couple to dilatational (flexural) phonons
[263].

2. The deformation potential Eq. (5.%nishedor g = ¢;,,. For this value ofy;, the divergence of the
displacement field(r) is zero, cf. Fig29. From the Rayleigh—Lamb equations, Eq. (5.2), one obtains
the corresponding smallest energy in, e.g., the lateral configuration (dilatational phonons) as

T th
J2 b
3. The quantization intsubbandsand thevan-Hove singularitiesn the bare phonon density of states

p(w) = un,né(w — wn,q,), have to appear in the spectral densities Eg. (5.3) as well.

fimg = (5.6)

All these features are confirmed by numerical calculation&ign 31, the inelastic electron—phonon
scattering rates

2 J(w)

Vdp(®) = 2nT; (5.7)
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Fig. 31. Inelastic phonon emission ratg,(w) of vertical (V) and lateral (L) double dots in a phonon cavity of widthdie to
deformation potential. Phonon-subband quantization effects appear on an energywgeale; /b with the longitudinal speed
of soundc;; yo nominal scattering rate (see text). Couplindléxural (top) anddilatational modes (bottom, dashed: bulk rate).
Inset: suppression gfjp(w) from slab phonons ab = wg (arrow). From[263].

for the deformation potential coupling in the vertical (V) and lateral (L) configuration are shown in units

of a nominal scattering ratg, = TCZEZ/ﬁpcf'b for b = 5d. The van-Hove singularities appear up as
singularities in the inelastic rate in both cases. The phonon-subband quantization appears as a staircas
for the flexural modes (V), and as cusps for the dilatational modes (L). In the latter case, the overall form
of the curve is (apart from the singularity) quite close to the bulk scattering rate. The most striking feature
there, however, is the suppression of the inelastic rate for snaadtl itscomplete vanishingt the energy

fiwo, EQ. (5.6). Nearng, the remaining contribution of the= 0-subband mode is drastically suppressed

as compared with bulk phonons.
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5.1.3. Suppression of dephasing

In [263], it was argued that properties (1)—(3) discussed above are generic features due to the slab
geometry. In particular, a similar vanishing of the inelastic rate occurs for piezo-electric (PZ) coupling
to phonons, where the angular dependence is reversed as compared to the deformation potential case. A
a result, one can ‘switch off’ the coupling to dilatational phonons either for PZ scattering in the vertical
configuration, or for DP scattering in the lateral configuration at a certain eneggy he electron—phonon
scattering is then mediated by the remaining, other interaction mechanism that couples the electrons to the
flexural modes. Since the ratig,/yqp b2, for very thin plates (smab) the DP interaction dominates
and the proper choice to ‘switch off’ the scattering would be the lateral configuration, with a small
contribution remaining if the material is piezo-electric, and vice versa.

If the level-splitting4 of a dissipative two-level system was tuned to a dissipation-free poiafiwg,
this would in fact constitute a ‘dissipation-free manifold’ for one-qubit rotations, for example in the
parameter space;, 7.) of two hybridized states witht = /¢2 + 4T2 = #iwg, cf. Eq. (2.4) and the
discussion in Section 7.5.1.

The Golden-rule type calculation of the inelastic rates, Eq. (5.7), however, neglects 4th and higher
order terms in the coupling constant (virtual processes) that can lead to a small but finite phonon-induced
dephasing rate even at = fimg, not to speak of other dephasing mechanisms such as spontaneous
emission of photons (although negligible with respect to the phonon contribution in secon{26&iir
or plasmons and electron—hole pair excitations in nearby leads.

Ratherthan the suppression, émhancemerftan-Hove singularities) of the electron—phonon coupling
in nano-cavities actually seems to be relevant to experiments with quantum dots in phonon-cavities as
discussed in Section 5.3.

5.2. Surface acoustic wave cavity model

Vorrath and co-workerf265] discussed another phonon cavity model based on ideas by Kouwenhoven
and van der Wie[267], who suggested to place a double quantum dot between two arms of a surface
acoustic wave (SAW) inter-digitated transducer.

The model is defined for a surface of a semiconductor heterostructure with an infinite lattice of metallic
stripes (spacingp, infinite length), with two coupled quantum dots located at a distag&®neath the
surface at the interface of the heterostructureFf. 32 left. Surface acoustic waves propagate along
the surface of a medium while their typical penetration depth into the medium is of the order of one
wavelength. In piezo-electric materials like GaAs, their displacement field generates an electric potential
that dominates the interaction with electrons. As the piezo-electric potential of the wave has to meet
the electric boundary conditions at the interface between the medium and the air, the electron—phonon
interaction strongly depends on the electric properties of the surface. The (connected) metallic stripes
give rise to an additional boundary condition for the potential

o(x =nlp,y)=const, neZ, (5.8)
where the width of the stripes is neglected.

Surface waves propagate as plane waves with wave vgctorg,, g,) along the surface. Consid-
ering only standing waves ir-direction and traveling waves idirection, the displacement field is
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Fig. 32. Left: surface acoustic wave cavity model (top view) with quantum dots beneath the surface between metal stripes.
Crystal axes include an angle of 45 degrees with the stripes. Right: spectral phonon density for finite system=engt)

Eq. (5.13). The quantum dots ajg= 100 nm beneath the surface and their distance is equal to the spacing of the metallic stripes
lp = 250 nm. Material parameters are taken for GaAs. The frequep@orresponds to an energy of 28V. From[265].

given by

a(q, z) COg®) COYgx)
) , (5.9)

Wq(r, 1) = Ce@r=en (ia(q, z) Sin(«) sin(g,x)
—b(q, z) sin(g.x)

where the functiona(q, z) andb(q, z) describe the decay of the SAW amplitude with deptif the
medium andx is the angle between theaxis and the wave vectay. The corresponding piezo-electric
potential is

Pq(1.1) = —C =2 (c08 () — SiP() £ (g2) sin(g,) €4~ (5.10)

0
with e14 the piezo-electric stress constamtthe dielectric constant, andhe relative permittivity of the
medium. The functiorf (¢z) describes the decay mdirection and follows from the boundary condition
for the electric field on the surface. Assuming a non-conducting surface together with the boundary
condition Eg. (5.8), one obtains the restriction
T

x = T . .
q m m e N (5.11)
lo

Vorrath et al. derived the corresponding electron—phonon interaction potential as

Vep(r) = Y [—epq(r. 1 = 0)1(bg,.q, + by ) - (5.12)
q

whereb,, 4, is the phonon annihilation operator for the made, g,), —e the electron charge, ang, the

piezo-electric potential, Eq. (5.10), where the normalization conStem(5.9) is defined aé’:% fi/ pAv
(p is the density of the mediuni, a material parameter andthe velocity of the SAW) and does not
depend on the wave vectqrbut on the quantization ardz.
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The boson spectral densit}(w) corresponding to interaction with SAW modes in Eq. (5.12) was
calculated af265]

1 4 ee14)\? m<w/oy Wy 2 2
saw(®) N 7'527"2,021)3( ros ) oy f (wZO/v)le3 [ N\ ( )

where a (finite) system-lengthwas given in units oN spacingsL = Nlg, and the typical frequency
scalew, = nv/lp was introducedFig. 32right shows numerical examples d§aw(w), from which
the corresponding inelastic current through the double dots again is givBNHy= —e2nT62J(s)/82,
Eg. (2.61), in lowest order of the tunnel couplifig For energies smaller tham, the lowest standing
wave mode cannot be excited and consequently the inelastic current exhibits a gap in that energy region.
The excitation of higher modes manifests itself in steps in the inelastic currerftgt=1, 3,5, ... .
Furthermore, ab/w, = +/2 the spectral density vanishes, because the SAW would be emitted along the
crystal axes without any piezo-electric interaction in that direction.

The scaling of/saw(w) with the inverse of the system lendthis due to the fact that the energjy,
of one phonon is distributed over the whole sample. By incredsitige amplitude of the displacement,
the piezo-electric potential, and therewith the interaction strength is decreased and finally vanishes. For
traveling waves, this effect is canceled by an increasing number of modes within each interval of energy.
In the cavity model however, the standing wave modes are independent of the system-size and therefore
the boson spectral densifgaw(w) is completely suppressed by the metallic stripes in the limit co.

5.3. Experiments on electron tunneling in suspended nano-structures

Weig and co-worker268] performed transport experiments with single quantum dots embedded into a
phonon cavity that was produced as a freestanding, 130 nm thin GaAs/AlGaAs membrane. The technique
of embedding and controlling a two-dimensional electron gas into a suspended semiconductor structure
was pioneered by Blick and co-workd262].

The phonon cavitykig. 33left, was produced by completely removing the layer beneath the membrane,
and the quantum dot was formed by two constrictions on the membrane. A negative gate Vgltage
applied to the nearby in-plane gate electrode created tunnel barriers for the dot and controlled the dot
electrochemical potentigd(N + 1). Standard Coulomb diamond diagraf82,34] as a function ofV,
and Vgq, the source—drain voltage, were used to analyse the linear and non-linear transport through the
dots, cf.Fig. 33right. At a finite perpendicular magnetic fieRl= 500 mT and an electron temperature
T, = 100 mK, conventional Coulomb blockade (CB) was observed in the form of CB oscillation peaks
as a function o, in the conductanc&, and an electron number &f ~ 1400 was deduced.

A novel feature was found for zero magnetic field in the form of a complete suppression of the linear
conductance over several CB oscillation peaks, and the opening of an energylggtpreen the CB
diamondsFig. 33 right (b), which resulted into a blockade of transport that could only be overcome by
either increasing/sq or the temperatur€, Fig. 33 right (c).

A simple mode[268]was developed along the lines of single electron transport in molecular transistors,
where similar energy gaps in transport througdy molecules were observed by Park and co-workers
[257]. Fig. 33 left (b) compares the situation of conventional Coulomb blockade (i) with Coulomb
blockade in a suspended phonon cavity (ii), where electron tunneling excites a localized cavity phonon
with energy#Qph that goes along with a drop of the chemical potenti@ + 1) of the dot, leading to
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Fig. 33. Left: (a) suspended quantum dot cavity and Hall-bar formed in a 130 nm thin GaAs/AlGaAs membrane. (b) Level
diagrams for single electron tunneling: (i) In the orthodox model electrons sequentially tunnel through the dot, if the chemical
potentialu(N + 1) is aligned between the reservoirs. (ii) Tunneling into the phonon cavity results in the excitation of a cavity
phonon with energyiQpp, leading to a level mismatcly and thus to ‘phonon blockade'. (iii) Single electron tunneling is
re-established by a higher lying electronic st&tenN + 1) which re-absorbs the phonon. Right: transport spectrum of suspended
single quantum dot and zero bias conductance: (a) Single electron resonances at electron temperature 100 mK and a perpendicule
magnetic field of 500 mT. (b) At zero magnetic field conductance is suppressed for bias voltages balddt8do phonon
excitation. (c) The conductance pattern at 350 mK shows that phonon blockade starts to be lifted because of thermal broadening
of the Fermi function supplying empty states in the reservoirs. H&&8].

a blockade (‘phonon blockade’) of single electron tunneling. The energypgad 00ueV was found to
compare well with the phonon energ®ph in the thin plate model of Section 5.1 corresponding to the
lowest van-Hove singularity, where electron—phonon coupling is expected to be strongly enhanced. In
an analogy to the Mdssbauer effect feradiation emitting nuclei in solids, the ‘recoil’ of the tunneling
electron is taken up by the crystal as a whole, if the dot is produced in a usual, non-freestanding matrix,
with the resulting transport being elastic (case i). On the other hand, a freestanding phonon cavity picks
up the recoil energy of the tunneling electron, with the electron relaxing to a new ground state trapped
below the chemical potentials of the leads (case ii). To re-establish single electron tunneling (case iii),
the cavity phonon has to be re-absorbed such that (similar to Rabi oscillations in a two-level system) the
electron can tunnel out again via a higher lying electronic state with chemical poteripaH 1).

Weig and co-workers presented additional data on the vanishing and re-appearance of the ‘phonon
blockade’ effect at different magnetic fields, cf. F&#, left, by tuning excited states with angular mo-
mentumi#, /=1, 2, . . .inresonance and thereby lifting the ‘phonon blockade’, cf. (b) and (d). Furthermore,
Fig. 34right, shows conductance traces for various bias voltages and zero magnetit#iéld(a), and
the linear conductance near two CB peaks at fiBitéb) and (c). The energies of the excited states in
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Fig. 34. Left: transport spectrum for (&) = 0mT, (b) 170 mT, (c) 260 mT, and (d) 450 mT. The line plots give the zero bias
trace. At certain magnetic fields (b,d) excited quantum dot states with higher magnetic momentum are brought into resonance
with the cavity phonon re-enabling single electron tunneling. Otherwise (a,c) transport is suppressed due to phonon blockade
with an excitation barrier of around 1@@V. Right: (a) Line plot of conductance resonaneemd f at B = 0 and different
source—drain bias voltages between 0 a:8D0pV. Blue lines follow the ground states, while red lines mark excited states. (b)
Zero bias conductance for resonanqaotted against gate voltagg, and magnetic field. Finite conductance appears for 57,

170, and 400 mT. (c) Similar plot for resonangéblue: 002, red: 2:S): Non-zero conductance is found for 230 and 510 mT.
From[268].

(a) matched the number of discrete magnetic fields in (b) and (c) which was a further indication for the
lifting of the ‘phonon blockade’ by excited states.

6. Single oscillators in quantum transport

Single bosonic modes play a key role in the modeling for the interaction of matter with photons or
phonons in confined geometries. A prime example with respect to matter—light interaction is cavity quan-
tum electrodynamics where the coupling between atoms and photons is used in order to, e.g., transfer
quantum coherence from light to matter (control of tunneling by electromagnetic f28€} and vice
versa270,228,271]The discussions in Sections 2 and 5 have made it cleapliwaionsnteracting with
electrons in confined geometries can give rise to what might be called ‘semiconductor phonon cavity QED’
in analogy with semiconductor cavity quantum electrodynanffié®]. Furthermore, the newly emerg-
ing field of nano-mechanics shows that vibrational properties of mesoscopic systems give rise to new
and surprising electronic transport phenomena such as ‘shuttling’in movable nano-stiat8+&y 6]
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cf. Section 6.3. More or less closely related topics are single-phonon physics, the quantization of the ther-
mal conductance, displacement detection, and macroscopic superposition and tunneling of mechanical
states, which are topics covered in a recent Review article by Blenf@¥v@ on quantum electrome-
chanical systems.

The following two subsections present models in which one of the fundamental models in Quantum
Optics is adapted to electronic transport. It is probably fair to say that the Rabi Hamil{@igin

A Rabi = > az + gax(a +a)+Qa'a , (6.1)
is the simplest and at the same time the best studied model for the interaction of matter wigdjght
where ‘matter’ is represented by the most elementary quantum object, i.e., a (pseu@&n’ﬁon 6.1
deals with a single boson model in one of the ‘classic’ areas of mesoscopic physics, i.e., the transmission
coefficient for the motion of (quasi) one-dimensional, non-interacting electrons in a scattering potential.
Section 6.2 then presents the opposite extreme of electron transport in the strong Coulomb blockade
regime, where the limit of one single boson mode in the open Spin-Boson model, similar to the double
guantum dots from Section 2, is discussed. Section 6.3 gives a very brief introduction into non-linear
boson coupling and electron shuttling, and Section 6.4 shortly discussed recent experimental results on
a realization of Eq. (6.1) with Cooper pair boxes.

6.1. Transmission coefficient of a dynamical impurity, Fano resonances

An exactly solvable mesoscopic scattering model for the transmission of electrons through a barrier in
presence of coupling to a boson (photon or phonon) mode was discussed by Brandes and Robinson in
[279]. The model describessingleelectron of massiin one dimension that interacts with a delta-barrier,
the coupling strength of which is itself a dynamical quantity,

2

H= 571 +6(x){go + gala’ +al) + Qa'a . (6.2)

Here,a' creates a boson of frequengyandgi[a' + a] is a dynamical contribution added to the static
coupling constangg. The constant zero point energy is omitted since it merely shifts the energy scale
by ©/2. The lattice version of this model was originally introduced by Gelfand ¢280] in 1989 in

the study of tunneling in presence of Einstein phonons of frequendyheir model had the form of a
one-dimensional tight binding Hamiltonian,

HESR= —;; + 6;;[Voi + Vadio(a +a")] . (6.3)

and they used a continued-fraction expansion which lead to singularities (cusps and infinite slopes)
in the transmission coefficient as a function of energy, similar to the results in the continuous model
discussed below. Lopez-Castillo et @81] compared these results shortly afterwards with those from a
corresponding time-dependent classical Hamiltonian,

HEY = —t;j + 6;;[Voi + VadiosinQr] , (6.4)
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and found very similar features. The time-dependent, classical version of the continuous model Hamil-
tonian, Eq. (6.2), reads

2

Hoi(1) = 2 + 0(x){go + 21 COS1)) (6.5)
and is obtained as the interaction picture Hamiltonian of Eq. (6.2) with respdé te: Qa'a, after
replacing the boson operators by=a = 1.

In its time-dependent version, Eq. (6.5) was used as a model for scattering in quasi-one-dimensional
quantum wires by Bagwe[R82], who found Fano-type resonances in the transmission coefficient as
a function of the energy of an incident electron. It soon turned out that the scattering properties of
this Hamiltonian are quite intriguing as they very much depend on the relative sign and strength of the
two coupling parameterg andg;. Bagwell and Lakg283] furthermore studied the interplay between
evanescent modes and quasi-bound states in quasi one-dimensional scattering. Very recently, Martinez ant
Reichl[284], and Kim et al. investigated the behavior of the transmission amplitude of a one-dimensional
time-dependent impurity potential in the complex energy p[28&].

One should mention that in contrast to the classical, time-dependent Eq. (6.5), one immediate pitfall
of the quantum model Eq. (6.2) is the fact that its many-electron, second quantized counterpart is non-
trivial: even without electron—electron interactions, the coupling of the Fermi sea to a common boson
mode induces effective interactions among the electrons, and one has to deal with a non-trivial correlation
problem.

6.1.1. Transmission coefficient

In the comparison between the peculiarities of the quantum version Eq. (6.2) with those of the classical
modelH(¢), Eq. (6.5), itturns out that beside transmission zeroes, there are points of perfect transparency
in the Fano resonance that only appear in the ‘quantum’ niadbeit not in He). In order to calculate the
transmission coefficient, the total wave functidf) of the coupled electron—boson system is expanded
in the oscillator basi§|n)} as

(x|P) =Y ¥, (0)n) (6.6)

n=0

with wave function coefficients, (x) depending on the positiotof the electron. One solves the stationary
Schrédinger equation at total enerffy> 0, implying a scattering condition for the electron part of the
wave function in demanding that there is no electron incident from the rightx E610, they,, (x) are
superpositions of plane wavedtfis above the threshold for thth boson energy,

Y, (x <0) =a,&* +p,e* Yy (x>0 =" k,=vE—nQ E>nQ, (6.7)
whereas normalizable evanescent modes ocdtirsfbelow the threshold,
Vv, (x <0)=b,€"", y,(x>0=te"" Kk,=+vnQ—E, E<nQ, (6.8)

where one sets = 2m = 1. Imposing the condition that the boson is in its ground state for an electron
incoming from the lefta, = d,.0, and setting the corresponding amplitutle= Ag to unity, one obtains
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a, + b, = t, for all n from the continuity ofi,,(x) atx = 0, whereas the jump in derivative ¢f,(x)
across the delta barrier leads to a recursion relation for the transmission ampijtudes

813/ntn—1 + (80 — 2i7,)tn + g1v/n + Lin1 = —2i7,8,.0 , (6.9)
where they, are real (imaginary) above (below) the boson ener@y

Py = kn0(E — nQ) +ix,0nQ — E) . (6.10)
The total transmission coefficiefit(E) is then obtained from the sum over pfbpagatingmodes,

[E/Q]

T(E)= ) _

n=0

ky(E)
ko(E)

It (E)? (6.11)

where the sum runs up to the largessuch thatk, remains real. Although Eq. (6.11) is a finite sum,

its evaluation requires the solution of tidinite recursion relation Eq. (6.9) due to the fact that the
propagating modes are coupled to all evanescent modes. The transmission amplitudes can be determine
from the linear matrix equation

Mt=a, t=(t,11,12,...), a=(—-2iy,0,0,...)

go—2ipp  V1g 0
Vigt  go—2iy1 2¢O
M= o 6.12
0 V2g1 g0 — 2ip, (6.12)
0 .

Numerically, this is easily solved by truncation of the maivixAlternatively, one can solve Eq. (6.12)
recursively which actually is numerically more efficient. In particular, the result for the zero-channel
transmission amplitude)(E) can be written in a very intuitive form: defining the ‘Greens function’
Go(E) by

Go(E) = [-2iyo(E) + gol ", (6.13)
one writesrg(E) with the help of a recursively defined ‘self-energy’V) (E),
—2iyg(E Ng?
to(E) = o(E) s (E) = 81 (6.14)

GoH(E) — zD(E) GoH(E — NQ) — sN+D(E)
and by using, (E) = yo(E — nQ) the self-energg® (E) can be represented as a continued fraction

g3

sO(E) = , (6.15)

2g%

GoM(E — Q) — 5
G-1 3¢1

4t

GoX(E —30Q) —

which also demonstrates that £) depends o only through the squarﬁ.
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Truncating the matri¥ to aN x N matrix corresponds to the approximation that &8 (E) = 0 and
recursively solves Eq. (6.14) fa‘¥N D (E) down tox™ (E). In the simplest approximation, truncating
at N = 2 one obtains

o (B —2iyg(E)
o B~ 2= aiyg(b) 4 g0 - — L
J— 1 l

from which an interesting observation can be made with respect to the stability of the recursion for large
coupling constantg1: the truncation atv + 1 is only consistent if the truncated self-eneify’) (E)

is a small correction to the inverse ‘free propagatmgiﬂGal(E — NQ)| < |G51(E — (N — 1)),

which by use of Eq. (6.13) at largé implies Ng2 <4NQ or g1 < 2/Q. In [279], it was argued that

the tridiagonal form of the matrix, Eqg. (6.12), implies that the recursion method is perturbative in the
coupling g1, and it was conjectured that fgg above the critical value, the perturbation based on the
oscillator basiq|n)} should break down, similar to other numerical approaches that start from a weak
coupling regime in single boson Hamiltonians, such as the standard Rabi Hamif@8&Eq. (6.1).

6.1.2. Comparison to the classical case
Arecursion relation corresponding to Eq. (6.9) for the classical time-dependent Hamiltonian, Eq. (6.5),
was derived (and discussed) by Bagwell and Li@&3] as

g1tn—1+ (go — 2ip )ty + g1tn+1 = —2iy,000, n=0,+£1,£2, ..., (6.17)

wherer, is the coefficient of the time-dependent electron wave function in photon sideabandn runs
through positiveand negativéntegers. In further contrast to the recursion relation Eq. (6.9), the factors
/n and+/n + 1 multiplying the coupling constagt do not appear in the classical case. This latter fact
is an important difference to the quantum case where these terms lead to thel‘ﬂatb’atrmultiplygf in
the self-energies™)(E), Eq. (6.14), and eventually to the breakdown of the perturbative approach for
largegs in the quantum case.

A continued fraction representation#gf E) for the classical case was derived by Martinez and Reichl
[284], and the corresponding matrix defining the transmission amplitydes . ., t_», t_1, to, 11, 2, . . .)
is the infinite tridiagonal matri¥ ¢ with go—iy, on the diagonal angh on the lower and upper diagonals,

0
80— 2iy_q g1 0
Mg=| O g1 go — 2iyg g1 0. (6.18)
0 g1 go — 2iy;
0 .

Following [279], Fig. 35presents a comparison between the transmission coeffiEigt, Eq. (6.11),

for the quantum and the classical barrier. In the repulsive case witfh0< go, the dynamical part of the

barrier is only a weak perturbation to the unperturbgd= 0) case. Additional structures (cusps) appear

at the boson (photo side-band) energigsalthough the overall’ (E)-curve resembles thig, = 0) case.
The more interesting case occurs for barriers with an attractive staticggatt) (Fig. 35, right).

A Fano type resonance appears below the first threskicid? where the transmission coefficient has
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Fig. 35. Transmission coefficient through a dynamical one-dimensional delta barrier with repgdsive,(left) and attractive
(g0 < 0, right) static part, cf. Eqg. (6.2) and (6.5 is the energy of the incident particle. Frd2v9].

a zero in both the classical and the quantum case. In the classical case, this is a well-known phenomenor
[283]: the transmission zero for weak coupling (small shows up when the Fano resonance condition

2k1(E) 4+ g0=0 (6.19)

is fulfilled. There, the energy of the electron in the first side channetl () coincides with the bound
state of the attractive delta barrier potentiél— Q = —g3/4. In thequantum casethe self energy in
Eq. (6.14) diverges at the zeros®fE),

EOEIt=0. (6.20)

Forgs — 0,5D(E) — 2\ ,(E) = g2/(2x1(E) + go), cf. Eq. (6.16), and the two conditions Eq. (6.19)
and Eq. (6.20) coincide.

The most interesting feature in the scattering properties of the dynamical quantum barrier however
is the appearance of an energy close to the first chamnell) threshold whergerfect transmission
T (E) =1 occurs. This is clearly visible in the vanishing of the reflection coefficROk) = 1 — T (E),
in the logarithmic plot~ig. 36 For a repulsive static pargg = 0.3, this occurs at an energy below the
energy where the reflection coefficient comes close to unity, and above that energy if the static part is
attractive go = —0.9). On the other hand, in the classical case the reflection coefficient never reaches
zero in neither the repulsive nor the attractive case. This contrast becomes even more obvious in the
two-dimensional plot where the zerosRtorrespond to ‘ridges’ in thgg-E plane, cf.Fig. 37.

Perfect transparency®(= 1 — T = 0) can be understood by considering the transmission amplitude
to(E) which determines the total transmission below the first side-band threshold. Recallingihat
—2iko/ (—2iko + go — P (E)), in the quantum case the transmission coefficient becomes unity when

go— P (E)=0. (6.21)

The exact continued fraction expression for the self-energy, Eq. (6.15), then implies that fox(,
SO (E)isreal becausé:gl(E —nQ)=2/nQ — E + gois real forn > 1. The condition Eq. (6.21) then
means that the self-energy renormalizes the staticggart the scattering potential to exactly zero.
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Fig. 36. Logarithmic plot of reflection coefficie® = 1 — T for dynamical delta barrier with static repulsivg (> 0, left) and
attractive go < 0, right) core. Fronj279].
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Fig. 37. Density plot of IR (reflection coefficient) for the quantum delta barriegat= 0.5. Exact solution from Eq. (6.14)
(left), from the N = 2 truncation Eq. (6.16) (center), and from the classical model Eq. (6.5) (right). The light ‘ridges’ correspond
to curves of perfect transmissidicf. Egs. (6.22) and (6.23). Frofa79].

This renormalization was analysed[2V 9] for smallg; with the perturbative expression correspond-
ing to truncating the matrid, Eq. (6.12), to a two-by-two matrix. The perfect transparency condition
Eq. (6.21) then becomes

N
2k1(E) + go

which determines the position of the perfect transmission energy. The solution of the quadratic Eq. (6.22)
defines two curves in thie-go-plane with perfect transmission for<0E < Q,

g0=-VQ—E+,/Q—E+g?, (6.23)

which can be clearly identified in the logarithmic density plots of the reflection coeffiient — T, cf.
Fig. 37. The N = 2 approximation to the transmission amplitude, Eqg. (6.16), thus turns out to reproduce
these features quite well even at moderate coupling congtants

£0 =0, O0<E<Q, (N =2 truncation), (6.22)
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The above results are consistent with general properties of resonance line shapes in quasi-one-
dimensional scattering as reviewed by Noéckel and S{@8&]. The boson mode in the Hamiltonian
H, Eq. (6.2), can be regarded as representing a simple harmonic oscillator confinement pajential
in transversal directiog of the quantum wire and thus giving rise to sub-band quantization of the trans-
mission. The above truncation At= 2 corresponds to the two-channel approximation in the Feshbach
approach287]. Furthermore, from this picture the difference between the transmissions in the quantum
and the classical (time-dependent) case, Eq. (6.2) and Eqg. (6.5), becomes clear: in the quantum case
one has inversion symmetry of the potenti&ls) and Vs y) which was shown to imply that there are
energies for which the transmissidrgoes to zerand unity near the Fano resonance. In the classical
case, this inversion symmetry is broken and the zero reflection goit), 7 =1, is lost.

6.2. Rabi Hamiltonian and beyond: transport through quantum dots coupled to single oscillator modes

One obtains a ‘transport version’ of the Rabi Hamiltonian, Eqg. (6.1), when one allows the particle
(electron) number on the two-level atom to fluctuate. This situation usually cannot be achieved in atomic
physics unless one ionizes the atom. On the other hand, the restriction of fixed particle number can easily
be lifted, e.g., in the solid state by tunnel-coupling to particle reservoirs. The Cooper pair box or in fact
the double-dot model (which formed a central part in Section 2) is therefore a natural candidate for a
‘transport Rabi Hamiltonian'. Using the double-dot version, the Hamiltonian reads

H = Hdot+ Hdp+ Hv + A+ Hres Hdot=eLiL + sRﬁR + T (p+ph,

Heap= @i+ +9p+7 @ +ah, Ay =Y (Vi |0/ + He)
kii=L/R

Hres= Z ek,.c,;rickl., %B:waTa, (6.24)
ki.i=L/R

which is the direct generalization of Eq. (2.9) to a single boson naddend was studied by Brandes
and Lambert irf288]. In contrast to the multi-mode boson version in Section 2, in the one-mode version
Eg. (6.24) the boson degree of freedom is not regarded as a dissipative bath, but treated on equal footing
with the electronic degrees of freedom.

The transport Master equation for the reduced density operatoof the systems (dot + boson) reads,

d _ Iy, t t
a p(t) = —i[Hdot+ Hdp+ A, p(t)] — 7(SLSLP(t) — 25, p(t)sp + p(t)sLs;)

I'r Y
— 5 (spsRA() = 25Rp(D)sg +p(WD)spsk) — 5 2apa’ —a'ap — pa'a) .

wheres; = |0)(L|, sg = |0)(R|, and again only the three states ‘empty’, ‘left’, and ‘right’ are involved in
the description of the double-dot, where tunneling to the right and from the left electron reservoir in the
infinite bias limity, — ugr — oo occurs at rates;, . A further damping term of the bosonic system at
ratey, in Eq. (6.25) describes photon or phonon cavity losses in Lindblad-f28®] and is crucial for
the numerical stability in the stationary limit.

In order to numerically solve the system of linear equations resulting from taking matrix elements of
Eq. (6.25) in the boson number state basis, the bosonic Hilbert space has to be truncated at a finite numbe
N of boson states which leaves the total number of equation§ a#510N + 5. The numerical solution
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Fig. 38. Left: stationary current in ‘transport Rabi Hamiltonian’ (double quantum dot coupled to single boson mode) with
I'y =I'g =0.1, T, =0.01,y, = 0.05 and boson coupling varyingg2N: number of boson states in truncated Hilbert space.
Right: approximate (POL) and numerical results. F{@88].

becomes a standard inversion of a fully occupied matrix and is easily achieviddifoto 20 on a PC,
whereas for largelN more advanced methods like Arnoldi iteration in Krylov subsp4té42] are more
efficient.

6.2.1. Stationary current

The stationary current, cf. Egs. (2.43) and (2.44), for various boson coupfings—of = 2g, y =0,
is shown inFig. 38 left. Resonances appear at multiples ¢; — ¢g = nw > 0 similar to photo-assisted
tunneling (cf. Section 2.4), but in contrast to those only for positigecause on the absorption side of
the profile ¢ < 0) the damped bosofy;, > 0) relaxes to its ground state. Analytical expression for the
stationary current can be obtained when the polaron transformation method (POL) from Section 2.2.3
and the corresponding result for the current, Eq. (2.50), is used together with an expression for the boson
correlation functionC(¢) in presence of damping. The latter can be calculated from a Master equation
for a damped boson mogg (7),

d . Y
a pa(1) = —ilwa'a, pg] — Eb(ZClPBaT —a'apg — pga'a) , (6.25)
and leads to
. 4
C(t) = expl—|¢|A(1 — e n/2Hionyy - ¢ 28 (6.26)
w

The analytical results compare quite well with the numerics for small coupling congtaatshown in
Fig. 38 right.

6.2.2. Boson distribution, Wigner representation
The stationary state of the boson mode is obtained from the total density matrix by tracing out the
electronic degrees of freedomy, = lim,_. o Trgotp(7). With an electron current flowing through the
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dot and interacting with the boson mode, this will not be a thermodynamic equilibrium state but a non-
equilibrium state that is controllable by the system parameters, sucinassthe tunnel rates; .

For ¢ <0, an approximate solution fqr, is obtained by noting that the electron is predominantly
localized in the left dot and one can approximate the opeegter |L){(L| — |R)(R] by its expectation
value(s;) = 1 whence the boson system is effectively described by

Hett = 2g(a + a4+ wa'a , (6.27)

a shifted harmonic oscillator with ground st&feS) =| —2g /w) (|z) denotes a coherent staigz) =z|z)),
which can easily be seen by introducing new operakoss a + 2g/w whenceHest = wb'b — 4g2/w
andb|GS) = 0. It follows thatp, ~ |z)(z|, z = —2g/w and that the occupation probability, = (o).,
is given by a Poisson distributiop,, = |(n|GS)|2|z|2”e*|Z‘2/n!, which is well confirmed by numerical
results[288].

In the general case of arbitragyone has to obtaip, numerically. A useful way to represent the boson
state is the Wigner representation, which is a representation in posiiand momentump) space of
the harmonic oscillator, where

(a+ah) i(—a+ah)
=—, = 6.28
x 7 p 7 (6.28)
and the Wigner function is defined g290]
1 x+ip
Wi(x, p) = - Tr(ppD(20)Up), o= N (6.29)

whereD(2) = explea’ — o*a] is a unitary displacement operator abig = explina’a] is the parity
operator for the bosof291]. W (x, p) is known to be a symmetric Gaussian for a pure coherent boson
state, and a symmetric Gaussian multiplied with a polynomial for a pure numbefGlaté&sing the
number state basi$z)} and the matrix elements:(>n),

(m|D(@)|n) = (m| DT (@)|n)* = (=1)"" (m| D(2)|n)* (6.30)

|
_ izxm—ne—%\&lzLZl—”ﬂodz) , (631)
V m!

whereL” " is a Laguerre polynomial and= (x +ip)/+/2, one obtains¥ (x, p) directly from the matrix
elementsn|p,|m).As shown inFig. 39 W (x, p) closely resembles a Gaussian between two resonance
energies = nw, whereas close to the resonance energies, the distribution spreads out in rings around
the origin, which is consistent with the increased Fock state occupation numbers. Additional calculations
[288] show that the position and momentum variances also increase at these energies. The resonances ¢
¢ = nw > 0 correspond to the emission of bosons by the electron as it tunnels through the dot.

6.3. Non-linear couplings, nano-electromechanics, and shuttle effects

Single oscillators play a central role in the emerging field of nano-electromechanics, where vibrational
(mechanical) and electronic degrees of freedom are strongly coupled to each other, leading to novel trans-
port regimes. Single electron shuttling was introduced by Gorelik and co-wdgk8kas a mechanism
to transfer charge by a cyclic loading and unloading of a metallic grain oscillating between two electrodes.
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Fig. 39. Wigner distribution functions for the single bosonic mode in the ‘transport Rabi model'. Paramefgrs-arg=7,.=0.1,
7, = 0.005,¢ = 0.2, N = 20. Stationary current resonances occur-at0.0, 1.0, 2.0, ... . From[288].

Weiss and ZwergdR74] used a Master equation in order to combine the Coulomb blockade effect with

shuttling, a method used later by Erbe e{ar5] to compare with experimental data in a ‘quantum bell’.
One important and novel ingredient in quantum shuttles is a non-linear dependence of the matrix

element for electron tunneling on the oscillator coordinatermour and MacKinnor276] introduced

a three-dotmodel with a central dot oscillating between two other dots that are connected to external

electron reservoirs. A generic Hamiltonian foorge-dotmano-mechanical single electron transistor, used

by several groups, combines a single ‘resonator’ (oscillator) mode with the resonant level model (no

electron spin included),

H = Hdot+ Hosct Hv + AB+ Hres ,

p2 man?x?

Hdot = (0 — eEx)cTc, Hosc=—+——, Hy= Z 7 (x)c,:c +H.c), (6.32)
om 2 kii=L/R l

where #res = Zk,-,i:L/Rekicl-(ricki describes leads on the left and right sid€ég is a dissipative bath
coupled to the oscillatoE is the inner electric field, and thedependence of the left and right tunnel
matrix element/, (x) is assumed to be exponential,

VkL (x) = VkL e—x//l, VkR (x) = VkReX/)L : (633)

The analysis of the Hamiltonian, Eqg. (6.32), is complicated by the fact that it contains a number of length
and energy scalesis the electron tunneling lengtkg = /%/mw is the amplitude of oscillator zero-point
fluctuations, and = ¢E /m®? is the ponderomotive shift of the oscillator by the fi@ldFurthermore,

Vsd = u; — ng gives the source—drain bias between left and right resefvoihe oscillator energy, and
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Fig. 40. Wigner distributions in the phase-space analysis of the ‘quantum shuttle’ (single electron plus resonator) model Eq. (6.32)
by Novotny and co-workerf292], showing the transition from tunneling (strong dampijfigo shuttling (smally). The latter

regime is indicated by the half-moon shapes of the charge-reséyg(Lpper row describing an empty level when the oscillator

goes from right to left) andv11 (middle row, describing an electron shuttled from left to right), whei®as = Wog + W11

(lower row) corresponds to the total oscillator state. Ff2@2].

I'1 g are bare left and right tunnel rates derived fremy . In addition, the batt¥’g introduces a damping
ratey and temperatur@ (which in principle can differ from the temperature of the leads).

In transport regimes where single oscillator modes are of primary importance, methods from Quantum
Optics like phase space representations and Master equations are obviously relevant theoretical tools.
Novotny, Donarini, and Jauh@92] used the numerical solution of a Master equation corresponding to
Eqg. (6.32) in a truncated oscillator basis and in the lilg§ — oo, including oscillator damping in
Lindblad-form at rate. They used a Wigner function representation (cf. Section 6.2.2) for the discharged
and charged oscillator states in order to clearly identify a tunneling-to-shuttling crossover that occurred
when tuning from strong to weak dampipgn a ‘quantum regime’ defined by~ xq, cf. Fig. 4Q This
crossover was further analysed by a calculation of zero-frequency shot noise in a subsequ¢2®phper

Fedorets et al[294] studied the regime > xg in an analytical treatment of two coupled equations
of motion for the Wigner function$v. (x, p) corresponding to the sum and difference of the ‘empty
dot’ and ‘occupied dot’ density matrix elements. Using polar coordinate in phase spacésing and
p = A cosg, they found a stationary solutidi;. (A) for the oscillator state that reflected the instability
towards shuttling when the dissipation was weak enough, which was consistent with the numerical results
for Wiot in [292], cf. Fig. 4Q In their analysis, they furthermore distinguished between a classical regime
for large fields,E > E,, and a quantum regime for fields< E, below a certain field,, .

Armour etal[295]on the other hand used a Master equation by essentially treating the bosonic mode asa
classical harmonic oscillator in the regime of large source—drain voltage kg T, fiwo. Their description
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involved Poisson-brackets similar to the ‘mixed quantum classical ensembles’ used by Kant@@&]ch

They found an effective temperature and intrinsic damping caused by the action of the tunneling electrons
on the resonator, similar to Mozyrsky and Marf97] who derived an effective friction coefficient by
comparison with the Caldeira—Leggett model.

6.4. Superconducting cavity-QED experiments

The Yale group successfully demonstrated the coherent coupling between single photons and a super-
conducting Cooper-pair box in experiments by Wallraff ef208] and Schuster et gR99]. They fabri-
cated the two-junction Cooper-pair box onto a silicon chip between the walls of a quasi-one-dimensional
‘on chip’ wave-guide resonator (transmission line cavity for the photons). Blais[808l described the
Cooper-pair box in the two-level charge regime limit by the usual two-level Hamiltonian,
o e Ejcoqnd/dg) _
CPB= —5 0z~ — > Ox
with Pauli matrices in the basis of the island-eigenstates Maind N + 1 Cooper-pairsy the dimen-
sionless, voltage-tunable polarization charge, Bpdogn®/®g) the flux(®)-tunable Josephson energy.
At the charge degeneracy point, = 1/2, they showed that their system (without dissipation) could be
described by the Rabi Hamiltonian, Eqg. (6.1), which they approximated by the Jaynes—Cummings model
in the rotating wave approximation (RWA),

e=4Ec(1—2n,) , (6.34)

Hjc = fo, (aTa + ;—) + h?Q o, + hg(aTa_ +aoy), (6.35)
wherew, is the resonator angular frequengyhe coupling constant that determines the Rabi frequency
VRabi = £/7, andQ = E; con®/Pg) the energy spitting in the basis of the eigenstatel&ss.
In the experimentf298] at low temperature® < 100 mK with photon occupations= (a'a) < 0.06,
the frequency-dependent transmission spectrum of a probe beam through the coupled resonator clearly
showed two peaks split by the Rabi frequengy,i ~ 11.6 MHz, as expected from Eg. (6.35) at resonance
4= Q— w, =0withv, = w,/2r = 6.04 GHz. In this regimeg > x, y was strong enough to treat the
cavity and the qubit decay (at rateaindy, respectively) perturbatively, and weak enoughyi/v, <1 to
use the Jaynes—Cummings instead of the Rabi Hamiltonian.
Another interesting case was tested for the ‘dispersive regime’ of large detuimitly g /4 <1, where
the Hamiltonian Eq. (6.35) to second ordergiican be approximated through a unitary transformation
U =exp(g/4)(act —aTo_)] as

2 2
Hy =+t |:wr + gj az:| ala + Z [Q + Z] o, . (6.36)
The frequency shift-g2/4 could be identified in the phase shifts of a transmitted microwave at a fixed
frequency by tuning the gate charge and the flux®. In a second experimeii299], Schuster et al.
verified the ac-Stark shift (termng?/4 in Eq. (6.36)) by measuring the qubit level separation as a
function of the microwave power and thereby the photon number

The coupling of a single harmonic oscillator and a superconducting qubit was furthermore achieved by
the Delft group in experiments by Chiorescu e{3fl1], who integrated a flux qubit into a larger SQUID,
the latter providing the oscillator mode. Their system had an interactiontera’™ + ), leading to
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Rabi-oscillations in the SQUID switching when microwave pulses were applied. Goorden, Thorwart and
Grifoni gave an analysis of the related driven two-level system with coupling to a detector and a dissipative
environmen{302].

7. Dark states and adiabatic control in electron transport

One of the most remarkable features of quantum systems is the possibility to modify their physical
properties by creating quantum superpositions (linear combinations of states). The simplest and most
basic quantum system where that is possible is the two-level system, which is central to so many areas of
physics. It plays a major role in the modeling of light—-matter interactions, as is for example reviewed in
the classical textbook by Allen and EbefB6] on ‘Optical Resonance and Two-Level Atoms’. Shortly
after that book was published, the discovery of dark statéisree-level systensparked an enormous
amount of activities, leading to the establishment of several new branches of Quantum Optics and Laser
Spectroscopy, such as laser cooling and adiabatic population transfer.

This section reviews recent theoretical activities on dark resonance effects and the associated adiabatic
transfer schemes in the solid state. After a short introduction to coherent population trapping, dark
resonances and their use for control of electron transport are discussed, before we come back to two-level
systems (qubits) in the context of dissipative adiabatic transfer.

7.1. Coherent population trapping (CPT)

The first observation of dark states by Alzetta ef203] in 1976 occurred in the form of a black line
across the fluorescence path of a multi-mode dye laser beam through a sodium vapor cell. The three-level
system there consisted of the two Zeeman—splittéﬁm ground state hyper-fine levels, coupled by
simultaneous application of two near-resonant monochromatic radiation fields to an e%fiigcbﬁate.

A magnetic fieldH with a spatial gradient then matched the ground-state level spliitiog) with a
frequency difference between two laser modes at the position of the black line. The theoretical treatment
in the same year by Arimondo and Orri¢&04], and (independently) Whitley and Stro[805], laid the
foundations for explaining the trapping of dissipative, driven three-level systems in a superposition of the
two splitted ground-states which is decoupled from the light and therefore ‘dark’.

7.1.1. Coherent population trapping model

Dark states, coherent population trapping, and related phenomena in Quantum Optics are reviewed by
Arimondo in[306]. The basic physical effect is quite simple and can be explained in a model of three
stateg0y), |1), |2) driven by two classical, monochromatic fields

E;@)=&;coqw;t +9;), j=12, (7.2)

with angular frequencies; and phases;, cf. Fig. 41 In the A-configuration, by conventiof, &2 < ¢o,
although other notations are used in the literature as well. The two fields couple to the two transi-
tions|0) < |1) and|0) < |2) and aredetunedoff the two excitation energies b, = ¢ — 1 —

fiw; and7#idy, = e — g2 — fimp. The Hamiltonian in dipole approximation with coupling to dipole
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Fig. 41. Left: three-level system under irradiation. Dashed lines indicate decay due to spontaneous emission of photons. Right:
stationary occupation of the upper ley@). Q1 andQ, denote the Rabi frequencies corresponding to both radiation fields,
is the decay rate of the upper levehy = 2y, is the decay rate of lev¢2). From[307].

moment operators; is

2 2
H(t)=Ho— ) d;E;(t), Ho=) &lj)il, (7.2)
j=0 j=0
which is often replaced by adopting the rotating wave approximation (RWA) by neglecting counter-
rotating terms in Eq. (7.2),

Hrwa(t) = Ho+ Hi (1), Hi(t)=— Y —Le @ D0)(j| +h.c., (7.3)
j=12
where theRabi frequencies
1 :
Qj = <O|éajd ), (G=12 (7.4)

define the coupling strength to the electric field.

7.1.2. Dark states
The dark state is obtained by a simple rotation of the basis {fii@le|1), |2)} within the spafi(|1), |2)}-
subspace intdi(= 1)

10), |NC)(t) =cosl|l) — €D sing2), |C)(t) = sino|1) + €9 coso|2) , (7.5)
P(1) = (01 — )t + @p — @1,  COSO = Q2/,/Q2 4+ Q3. sin0=Qq/,/Q%+ Q3. (7.6)
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In the interaction picture with respect fé (denoted byas usual), the time-dependence N1C) (¢) is
governed by, (1) = —3Y°,;2;€@'=?)|0)(i| + h.c., and a simple calculation yields

SR=6r—d1=e14+w1—62—wr=0—> H{)|INC)(1)=0, (7.7)

which means that @&aman resonancé; = 0 thedark state(non-coupling state)N C) () completely
‘decouples from the light’, i.e. once the system is in the (time-dependent) superpdsaititr), it
can no longer be excited into the sta@. In contrast, the coupled stat€)(¢), which is orthogonal
to [NC)(¢), can be excited and couples to the light. Note thatdéfpr= 0, in the interaction picture
INC)(1) = %" [cos0|1) — €@27¢D sing|2)] is in fact time-independent apart from the trivial phase
factor e'e2/,

7.1.3. Dissipation, RWA, and dark resonances

The presence of a dissipative environment requires a description of CPT in terms of a density operator
rather than in terms of pure states. In fact, dissipation plays a central role in achieving a stable trapping
of the three-level system into the dark state: spontaneous decay from the uppetQevelthie A
configuration) into the two lower leveld) and|2) leads to a re-shuffling of the level occupancies.
The continuous pumping of electrons ir is only from the coupled stat€’), whereas spontaneous
emission leads to transitions inteththe coupled statg”) and the dark statgvC). The combination of
this one-sided pumping with the two-fold decay drives the system into the dark state as a stationary ‘dead-
end’. Dissipation in the form of spontaneous decay, in combination with the time-dependent pumping by
the two external fields, is the driving force for CPT to evolve but also leads to decoherencegétthe
superposition within thil)-|2) subspace. A quantitative analysis starts from the stationary solution of the
Master equation for the matrix elemenis(z) of the reduced density operator of the three-level system,

poo = —T"pog + 1921 COLw11) po1 + 122 COLw21) poy — i1 COLw1t)p1g — Q2 COSw2t)pag (7.8)

p11=1lpog + 27, p22 — 121 COLw11) pog + 121 COLw11) 10 (7.9)
paz = 02I%po — 2, p22 — 192 COLw2t) poz + 122 COw2t) g (7.10)
po1=—(I"°/2+iwo1) poy + Q1 COLw11) (oo — p11) — Q2 COYwat)pos (7.11)
po2=—(I"°/2 + iw02) poz + 192 COSw21) (pog — p22) — 191 CO(w11)pos (7.12)
p21=—(7, + iw21)pr1 + Q1 COS@1t)ppg — 1Q2 COLw2t) pos (7.13)

with pf; = p;; andtiw;; = E; — E;. The decay of the excited sta into |1) (12)) occurs at rates; I'°

(22I'®, a1 + 02 = 1), wherea$2) relaxes intg1) at twice the dephasing ragg within the Born—Markov
approximation, cf. Eq. (2.30).

In the rotating wave approximation (RWA), the coupling to the external fields and the damping are
assumed to be small and the system is close to resonance,

Q1, 2. 1°7,. |01 — 0o1l, |0z — woz2| <w1 ~ w2 . (7.14)

Introducing the unitary operatéf(r) = diag(1, e '(@1-®@2) e=io1) jn the eigenstate basisl, |2), |0)},
one obtains transformed quantities in a rotated frameg as UToU, Hy(t) = —ihU+%—[t] +UTHU,
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with (E1 = 0 for convenience)

Q )
0 0 5 (Lt e o)
Hy(t) =4 22 2wt
Q : Q .
?l(l + eIZ(ult) 22 (l + eIszt) 51

In the RWA, one neglects the oscillating partif (+) which is replaced by an effectitene-independent
Hamiltonian[308]

(9]
0 0 —
2
Hrwn =1 | g —51 4 67 % (7.15)
1 Q-
= 2
2 2 !

that governs the equations of motion of the density operator in the RWA. Alternatively, one can start
from the RWA Hamiltonian Eq. (7.3) and derive the corresponding equations of motions for the density
matrix by directly transforming away the fast dependencies in the time evolutiof3Ggjeand below.
Corrections to coherent population trapping due to counter-rotating terms were investigated by Sanchez
and Brande$308] in a systematic truncation scheme beyond the RWA.

The bestinsightinto the phenomenon comes from plotting the stationary matrix elements of the density
matrix as a function of the ‘Raman’ detuning, i.e. the difference of the relative detunings of the external
light frequencies from the two transition frequenciesfFad.. 41 This can be achieved, e.g., by fixing the
second frequency, exactly on resonance such tldat= 0 and varyings1 = —dg. The populatiorpgg
of the upper level then shows a typical resonance shape, i.e. it increases coming frofdylpro@ards
the centebr = 0. Shortly before the resonance condition for the first light sourcej.e.0, is reached,
the population drastically decreases in the form of a very sharp anti-resonance, up to a vagisfing
or =0. Forér =0, the population (i.e. all the electrons in the ensemble of three-level systems) is trapped
in the dark superpositiofivV C) that cannot be brought back to the excited sf@teThe dephasing rate
7, and the two Rabi frequencies determine the small half-wigth of the anti-resonand@06],

12|
2r0 -
whereQg = (Q3 + 032,

012 X7, + (7.16)

7.2. Dark resonance current switch

A new transport mechanism based on the coherent population trapping effectin tunnel-coupled quantum
dots was suggested by Brandes and Renzof308]. The original proposal with two coupled quantum
dots in the strong Coulomb blockade regime is actually very close to three-level systems in atoms, with
the additional possibility to test the effect (and its modifications) in electronic transpdfigci2 The
dark state appears in the form of a sharp anti-resonance @tetienary currenthrough a double dot as a
function of the Raman detuning, i.e. the detuning difference of the two classical laser (or microwave)
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Fig. 42. Level scheme for CPT in two coupled quantum dots in Coulomb blockade regime. Two tunnel coupled ground-states
|G) and|G’) (small inset) form stateld) and|2) from which an electron is pumped to the excited st@tdoy two light sources
of frequencyw, andwy. Relaxation by acoustic phonon emission is indicated by dashed arrows[306in

fields. The half-width of the anti-resonance can then be used to extract valuable information, such as
the relaxation and dephasing times of tunnel coupled dot-ground state superpositions, from transport
experiments.

7.2.1. Model

The model is defined by a double quantum dot in the strong Coulomb blockade regime with two
tunnel-coupled ground statgs) and|G’) (seeFig. 42 inset) which hybridize via tunnel couplirig into
stateg1) and|2) with energy differencel = ¢ — 1 = (2 + 4T02)1/ 2 The excited stat{0) is assumed
to have an unchanged number of electrons and is realized in the right dot. The energy of the first excited
level |0') of the other (left) dot is assumed to be off resonance for transitions to and from the two ground
states, and the hybridization (@) with |0) can be neglected faty — ¢o|> T... The two ac-fields pump
electrons into the excited lev@) such that transport becomes possible if both dots are connected to
electron reservoirs. Again, the Coulomb charging endsgg assumed to be so large that states with
two additional electrons can be neglected (typical values are 161&¥ 4 meV in lateral double dots
[266]). Furthermore, the chemical potentialand,’ are tuned to values slightly abowsg this excludes
the co-tunneling like re-entrant resonant tunneling process that can exist in three-level dots and has beer
discussed by Kuznetsov and co-workg$0].

In the dipole and rotating wave approximation, the coupling to the time-dependent fields is described

by
VaL () = —Z[Qpe—iwmoxu + Qs S0y (2]] + Hec. | (7.17)

where for later convenience we have already introduced the EByAptokeS) notation for the two
(Rabi) frequencies p andws (2p andQys).
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The decay raté? is primarily due to acoustic phonon coupling. The branching ratics 1 — ap =
(4 + €)2/[(4 + ¢)? + 4T?] can be calculated using the eigenstates Eq. (2.4). Furtheri@préecays
into [1) at the rate 2,, wherey,, is the (dephasing) rate for the decay of the ‘coherence’ (density matrix
elementp,,) within the Born—Markov approximation, cf. Eq. (2.30).
If the chemical potentialg andy/’ are as indicated in Figh2, electron tunneling occurs big-tunneling
that change§E) into |G) ataratel’, and|E) into |G') at the ratd”, wherea®uttunneling from/G) and
|G’) is Pauli blocked. The corresponding rajgsndy, for tunneling into the hybridized stat¢l and
|2) arey; ,=[(4 £ )2l + 4T62F/]/[(A +e)%+ 4T62]. On the other hand, electrons can leave the dots only
by tunnelingout ofthe statg0) (but not in) at the raté into the right lead (negligible hybridization ¢d)
with |0') was assumed). Setting= I" for simplicity in the following and denoting the ‘empty state’ by
e (the symbol 0 is used already for the excited three-level state), the resulting density—matrix equations
then are given b{156]

pr1=o1T"poo+ I'pee+ 20,022+ IMQph1 o] , (7.18)
pa2=02pg 0+ Ip,, — 2ypp2,2 + 1M[Qsps 0l | (7.19)
po,0=—(' + ) poo— IM[2ppy o] — IM[Lspp 0] . (7.20)
fee=—2Tpy o+ Tpog (7.21)
- 1 . - i i .

pPLo=— [E(F +1% + |5P:| Prot 3 Qp(poo— P11 — 58sP12 - (7.22)
2 1 . - i i .

p2,0=— [E(F + 19 + Iés] p2,0+ > Qs(po,0 — P2,2) — > Qpp1o (7.23)
. L i . i .

p12=—(yp +10R)P12 + 58pPo2 — 5 2sP10 - (7.24)

wherepg; = ,5’;0 = pojei‘“f’ are the slowly varying off-diagonal matrix elements of the reduced density
operator of the double dot.

7.2.2. Stationary current
The solution for the density operator is used to obtain the electric current

I(1) = —el'lpg,o(t) — pe ()], (7.25)

as the net flow of electrons with charge < 0 through the dot. For the stationary caSig. 43showsl
as a function of the Raman detunifig for constant2; = Q, at zero temperatuf@09]. Close tadz =0,
the overall Lorentzian profile shows the typical CPT anti-resonance. The half-isigtiof the current
anti-resonance is given bpg = (Q2 + 03)%2)

|Qr |2

T = 0. (7.26)

0172 % yp +
which shows thabs, increases with the dephasing ratg In Fig. 43 7, = 2n(Tc2/A2)inezo(A) is
completely due to spontaneous emission of piezo-electric phonons for zero temperature (Eq. (2.30) with
p — oo and Eq. (2.56) withipiezo = 0.025). For fixed coupling strength to the time-dependent fields
and increasing tunnel coupliri}, y,, increases whence the anti-resonance becomes broader and finally
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Fig. 43. Left: tunnel current anti-resonance through double dot system with ground-state energy differettyeeV. Rabi
frequencie®; = 2, parameters a@g = (2 + 03)1/2 =0.2r0, tunnel rates = I’ = 1°=10° s1, wherer? is the relaxation

rate due to acoustic phonon emission fri@n Inset: Dephasing rate, =217,2/ A% Jpiezo(4) (in peV/#) with 4= (:2+472)1/2,
fic/d = 20peV, andopiezo= 0.025, Eq. (2.56). Dashed line: crossovey at= |§2R|2/2[F0 + I, cf. Eq. (7.26). Right: current
for fixed T, = 1pueV, Qg = 1.OF0, and different tunnel ratels = I'’. From[309].

disappears for largg.. The vanishing of the anti-resonance sets in for| Qg 12/2[r°%+ 17, cf. the inset of
Fig. 43 On the other hand, witimcreasingelastic tunnelind” out of the dot, the currentincreases until an
overall maximal value is reached Bt~ I'0, cf. Fig. 43(right); I (9g) decreases again and becomes very
broad if the elastic tunneling becomes much faster than the inelastic relax8tiand with increasing

I' the center anti-resonance then becomes sharper and sharper, its haliyywidpproaching the limit
7ps EQ. (7.26).

The three-level dark resonance therefore acts as an ‘optical switch’ based on an optical double-
resonance. The dark state thus created is protected deeply below the Fermi sea of the contact reservoir:
by the Pauli principle and the Coulomb blockade[309] it was furthermore pointed out that the CPT
transport mechanism differs physically from other transport effects in AC-driven systems (e.g., coherent
destruction of tunneling311,145] tunneling through photo-sidebanfBl2], or coherent pumping of
electrong164,313) that depend on an additional time-dependent phase that electrons pick up while tun-
neling, with dissipation being a disturbance rather then necessary for those effects to occur. In contrast,
the CPT effect in dots requires incoherent relaxation (phonon emission) in order to trap the system in the
dark state.

7.3. Adiabatic transfer of quantum states

A remarkable feature of coherent population trapping is the possibility to control and indeed rotate
the dark statéN C) into arbitrary superpositions within the qubit spgn, |2)). This can be achieved by
slow, adiabatic variation of the two Rabi frequendigsandQ,, where the adiabatic theorem guarantees
that a given state follows the slow variation of parameters in the Hamiltonian.
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7.3.1. Adiabatic transfer and STIRAP

Bergmann and co-workef814] have developed this technique for three-level systems, where it is
called ‘stimulated Raman adiabatic passage’ (STIRAP) and has found widespread application in coherent
control and the adiabatic transfer of populations (in the ensemble sense) from one state into another.

To be specific, consider the two Rabi frequencies in Eq. (7.17) as time-dependent parameters in pump
(P) and Stoke (S) pulse form,

Qp(t) = Qsinde=9YT? Qg(r) = Qe T? 4 cospe 1~/ T?y (7.27)

wheret andT are the pulse delay and pulse duration, respectively, and the Gaussian form in Eq. (7.27)
has been chosen for convenience. With this choice, the StokesS(ilslel E; (1) in Eq. (7.1) with time-
dependent amplitudis2(¢)| o« Qs(1)) first couples|2) to |0), before a second pulse (the pump pulse

P), partially overlapping witl, couples|1) to |0) [315,316,156] For large times>T, an initial state

|Pin) = |1) is then adiabatically transformed into a superposition,

[¥in) = |1) — |¥ ) =cos0|1) —sin0|2) . (7.28)

The requirement for this to happen is that during the whole process the Raman resonance condition,
or = &1+ w1 — &2 — w2 =0, is preserved and therefore dark states are adiabatically transformed into
dark states. The pulse sequence Eq. (7.27) is called ‘counter-intuitive’: transferring populatioflput of

is achieved by first ‘pumping’ thg) — |0) transition and not thel) — |0) transition.

7.3.2. STIRAP and transport in double quantum dots

A realization of STIRAP rotations with microwave pulses in double quantum dots was suggested
by Brandes et al. iffi156], where in addition a scheme to determine the dephasing jaft®em time-
dependent transport measurements was developed. Two-source microwave techniques have in fact bee
used to experimentally investigate ground and excited states in single quantum dots [8lt&ady

The STIRAP-transport model adopted[itb6] is an extension of the ‘current switch’ mod@&i09]
of Section 7.2 to time-dependent pulses, Eq. (7.27). The time-dependent cueriEq. (7.25), is
calculated by numerical solution of Eq. (7.18)—(7.24), which together with the prepdiddty F (1) =
(Prlp@)¥rl) of the final staté¥ ;) = cosf|1) — sin0|2) and the pulse form Eq. (7.27) is shownFiy.
44, left, for different values of ,. Fory,, =0, one obtains fidelity one because the STIRAP pulses prepare
the double dot in the desired superpositjty). The current through the dot is zero fgy=0, when the
dark state is stable and no electrons can be excited to|8}jatéor finitey,, > 0, the dark state decoheres
and leads to a finite current pulsé) which increases with increasing. As this indicator current is very
weak, a more sensitive detection scheme was sugggidiétiin the form of a double-pulse sequence,
where the two ‘preparation’ pulses Eq. (7.27) are applied simultaneously at a second, later tifbe

) o 2,72 o 2,712
PPy =, sinoe” AT Q%) = @, cos0 + p)e” (A Ti (7.29)

with the ratios of their amplitudes chosen to correspond/;c) (¢ =0) or to its orthogonal state)(= ).

Fory, =0 and¢ =0, nothing happens as the dot stays in the s{at¢ and the subsequent application of

the probe pulses Eq. (7.29) does not produce any current through the d¢t==arhowever, the probe
pulses are in anti-phase with the ground state superposition and a large current follows. For non-zero
7, # 0, the superposition decays into a mixture on a time scalg, and the application of the probe
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Fig. 44. Left: Rabi frequencies, fidelity and electric current as a function of the interaction time for STIRAP in double quantum
dots. Q0 =2r°, r=19/3,0 = /3,01 = ap = 1/2, T = « = 100/I'%. Right: second probe pulses Rabi frequencies, Eq. (7.29),
and current pulsé(z) in double pulse schemg,, =0.5I°, T), = 1/19 andAr = 500/1'9. From[156].

pulses results in a current through the dot both¢fer 0 and¢ = =. The largery ,, the less sensitive is
the current to the relative phageof the probe pulses which gives rise to the definition ofdbetrast

_ 1max(¢ =) — Imax(¢ = 0) (7 30)
Imax(¢ = 1) + Imax(¢ = 0) '

as a measure to extragt from a transport experiment in coupled dots.

7.3.3. Quantum dot excitons
Hohenester and co-workei318] proposed a STIRAP scheme in two coupled quantum dots with two

hole states|{) and|R)) in the valence band and one electron stajein the conduction band of a

p — i semiconductor double-quantum well structure. In their scheme, an external gate voltage and the
Coulomb blockade guaranteed population of the double dot with one additional hole only. An external
electric field leads to localization of the hole wave functions in the l§fb( the right R) dot, whereas the
electron wave function spread across both dots due to the smaller electron mass. Coulomb interactions
between electrons and holes were taken into account by exact diagonalization in the Fock—Darwin single
particle basig318,319] from which one could clearly identify a three-level system with the two low-
energy stategl) and|R) and the excited (correlated) charged-exciton st&te). The STIRAP process

was then realized within the usual two-pulse (pump-Stoke) configuration, allowing adiabatic population
transfer betweefL) and|R). Troiani et al. subsequently extended this scheme by taking into account the
spin-degree of freedom in order to realize an optical qubit [g2@], cf. 7.4.1.
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7.4. Higher-dimensional Hilbert spaces, geometrical phase

A generalization of adiabatic schemes based on STIRAP is obtained in Hilbert spaces of dimension
d>4. Unanyan et al321]used STIRAP in four-level systems and established a relation to non-Abelian
geometrical phase factors. Duan e{a22] showed how the universal set of one- and two-qubit quantum
gates can be realized by adiabatic variation of three independent Rabi frequencies. Facj@28i al.
applied this scheme to a network of superconducting Josephson junctions, with three fluxes varied cycli-
cally, and gave explicit expressions for non-Abelian holonomies. Somewhat closer to the original STIRAP
scheme, Kis and Renzoni used four-level systems and a double-STIRAP process to directly construct the
operator for adiabatic rotations around a given axis of arbitrary one-qubits.

The underlying physics of these schemes is again quite simple and can best be formulated in a geometric
fashion. One extends the Hamiltonian in the dipole and rotating wave approximation, Eq. (7.3)=®m
10y, |1), |12)) tod = N + 1> 3 levels (0), |1), ..., |N)), with N classical monochromatic ac-fields with
Rabi frequencieg; and all frequencies; = (Eg — E;) on resonance. In the interaction picture, one then
obtains aime-independer(for constant?;) interaction Hamiltonian,

N
fi .
H = —é(IO)(QI +12)(0), [|2) = ZQ;“II) : (7.31)
i=1
where the vectof2 = (Q1, ..., Qy) contains the (complex) Rabi frequencies. The interaction Hamil-

tonian, Eq. (7.31), immediately gives rise to @ — 1) dimensional subspace of dark statp$ with
H;|D) = 0, defined by th& N — 1) dimensional manifold of vector® that are orthogonal t® and
therefore haveéQ|D) = 0. In this language, one clearly understands that there are no dark states for
(two-level system), one dark state i¥r= 2 (three-level system), two linearly independent dark states in
N = 3 (four-level system) etc.

7.4.1. Double STIRAP and SU(2) qubit-rotations

The above-mentioned STIRAP schemes now start from maRitighe-dependent by allowing slow,
adiabatic variations such thg®|/|2| <|€2|. In the first step of their four-level double-STIRAP scheme
(N =3in Eq. (7.31)), Kis and Renzof824] chose a parametrizatiad® = (Qp cosy, Qpe " siny, Q)
withfixedy, n and (‘counter-intuitive’) Stokets) and delayed pumgXp) pulse, cf. Eq. (7.27) fat=n/2.
The dark subspace is spanned by the constant|gtate) = — siny|1) + € cosy|2) and the orthogonal
and slowly moving NC2) « Qg|C1) — Qp|3), where the bright statg”;) = cosy|1) + € siny|2). An
initial one-qubit staté¥i,) € spar(|l), |2)) is now decomposed into its orthogonal components along
|NC1) and|C1), with only the latter component slowly dragged along withC2) (which for large times
becomes-|3)),

[¥in) = |Pinter) = (NC1|¥in)INC1) — (C1]¥in)|3) . (7.32)
ThesecondSTIRAP step now ha® = (Qg cosy, Qsesiny, Qpe %) and a dark subspace spanned by

|NC1) and the slowly movingN C5) Qpe'?|Cy) — Qg|3). The intermediate stat®iner), EQ. (7.32),
lies in the new dark subspace. With the rolesgfandQp now exchangedNC5) moves from—|3)
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into e19|C1) whereagN C1) remains constant, and therefore
s i 5
|Pinter) = (NC1|¥in)INC1) + € '*(Ca|Pin)|C1) = €71/ exp(—l > no-) |Pin) . (7.33)

which apart from the overall phase factor¥2 is an SU(2) rotation of the initial qubi#;,) about the unit
vectorn = (sin 2y cosy, sin 2y siny, cos 2y) through the anglé (s is the vector of the Pauli matrices),

as can be checked by direct calculation. Note that the STIRAP direc®aar® chosen such that the
constant dark state h@&’C1|a|NC1) « n and thereby defines the rotation axis. The scheme is robust
against fluctuations of the pulse shapes and aegds) andQg (7).

Troiani et al.[320] showed how the Kis—Renzoni scheme can be utilized to achieve not only one-qubit
rotations, but also conditional (two-qubit) gates in coupled quantum dots with both orbital and spin degree
of freedom. Their scheme allows to rotate a spin qubit into an orbital qubit, and in addition to perform a
controlled NOT by utilizing STIRAP and charge—charge interactions.

Kis and Paspalakig325] suggested qubit rotations in three-level SQUIDs interacting with two non-
adiabatic microwave pulses. An initial state is again split into its components alohy ¢he|C) basis
belonging to2 = (Q(¢) cose, Q(1)€" sing), leading to a two-level system defined in the subspace or-
thogonal to the dark stat&V C), where switching on and off a@(¢) leads to the desired rotation in the
form of a standard Rabi rotation. Paspalakis and co-workers furthermore suggested adiabatic passage
to achieve entanglement between two three-level SQUIDs, and various other applications of adiabatic
rotations in double dots and SQUIDS26]. Along similar lines, Chen et al327] devised an adiabatic
qubit rotation for a single spin in a quantum dot.

Thanopulos et a]328] used a generalized double STIRAP for adiabatic population transfer between an
initial and a finawave packetomposed of nearly degenerate stat@s)). A Rabi frequency vecta®q
links the excited (‘parking’) stat®) with nnon-degenerate auxiliary states, whichin turn are linked to the
|k) states by linearly independent Rabi frequency vect@s(k=1, ..., n). AchoiceQq o Y} _jar 2k
with appropriater;, now allows to utilize the single dark state of the system to rotate between the wave
packets vig0).

7.4.2. Non-abelian holonomies

The Hamiltonian, Eq. (7.31), can alternatively be regarded as a part of some given Hamilfogian
£0/0)(0] + H; (in the Schrodinger picture), where all the energies of leyBls...|N) are the same
(and set to zero for simplicity). This second, more general interpretation actually gives rise to many
generalizations of adiabatic schemes beyond atomic physics.

Since the subspace spanned bythe 1 dark state¢D) of H is degenerate, cyclic adiabatic variation
of 2 gives rise to Wilczek-Zee non-Abelian holonom[829], that generalize the Abelian Berry phase
to amatrix phasethat involves superpositions of the degenerate eigenstates. Within that subspace, the
usual dynamical time-evolution of states is then replaced by ‘geometric evolutions’ that can be used, e.g.
for quantum computatiorhplonomic quantum computatipn

Duan et al[322] constructed the gate; = €122 with 2 = (0, @sin0/2€?, —Q cosd/2) in the
notation of Eq. (7.31), with a dark staf®) =cosf/2|2) +sin6/2€?|3) andd, ¢ cyclically varied (starting
and ending withy = 0), giving the Berry phas¢; = § sinddd de = ¢ d@, which is the solid angle swept
by the vector intad, ¢) direction. Similarly, they constructed the géate=e'#2%, oy =1(12)(1]—11)(2)),
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usingR = Q(sinf cosp, sind sin e, cos) with the two degenerate dark states,
|D1) = cosO(cosep|l) 4+ sing|2)) —sind|3), |D2) =cosp|2) — sing|l) , (7.34)

with againg, = ¢ dQ the solid angle swept b, ¢).

Following the non-Abelian holonomy schemes by Unanyan ef32ll], and Duan et al[322], an
application tonetworks of superconducting Josephson junctiwith variable SQUID loop Josephson
couplingsJ; (®;), i =1, 2, 3, was suggested by Faoro, Siewert, and Fgg48]. These authors considered
a Hamiltonian of the type Eq. (7.31),

3
1 _
H =0Ec|0) + 3 1221:(Ji(q§i)|0)(i| +Hc), (7.35)

whered; is the external magnetic flux through lobm units of the flux quantumc/2e, anddEc is the
energy difference between the three degenerate charge |giafesrresponding to one excess Cooper
pair on island) and the staté0) with one excess Cooper pair on a forth superconducting island. They
considered the dark subspace spannedtqy = —J>|1) + J1|2) and|D2) = —J3(J{|1) + J5|2)) +
(17112 + |J21%)|3), and unitary transformatiori$, on a closed loop in that subspace as

} d
Uy:Pexpyg > Ajdd;, (4))a = (Dal ==—IDy). x=12, (7.36)
Y j J

with the path ordering symbol P. Choosing appropriate lgdpshe parameter space of the three fluxes
@; then yields transformations corresponding to charge pumping, one-qubit gates, or two-qubit gates by
coupling two qubits via Josephson junctions.

7.4.3. Quantum adiabatic pumping through triple dots

Renzoni and Brandes suggestpeintum adiabatic followings a mechanism fartharge pumpingn
strongly Coulomb-blocked systerfisb4], in a regime that is opposite to adiabatic quantum pumping in
non- or weakly interacting systems. In the latter case, which by itself is a relatively new area of mesoscopic
transpor{150], parametric change of the scattering matrix leads to adiabatic pumping of charges through
mesoscopic scatterers which typically are in the metallic regime. Concepts from metallic systems, such
as mesoscopic fluctuatiof330,331] symmetrie$331], or resonance832], are then generalized to the
time-dependent case. Experiments in large quantun{888} have demonstrated the feasibility of such
‘adiabatic quantum electron pumps'. In contrast, the triple dot system considdfédris closer to the
original idea of adiabatic following in atomic physics, and extends the concept of (classical) adiabatic
transfer in single electron devicg&34,32](such as single electron turnstiles) to the (quantum) adiabatic
control of the wave function itself. The Hamiltonian

Ht)y= Y [eala)(al] +ATo()|IL)(C] + |C)(L|] + AT2(DIIC)(R| + [R)(CI] , (7.37)
o=L,C,R

describes the left, right, and central dot, Efg. 45 in a four dimensional Hilbert space with basis
{10y, L), |C), |R)}, where again0) denotes the ‘empty’ state and the time-dependence of the (real)
T:,i =1,2is slow.
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Fig. 45. Left: triple dot for quantum adiabatic charge pumping with time-dependent tunnel coufijinfis Right: transfer

of an electron from the right dot to the left dot. Tunnel-coupling pulse sequence (top) and corresponding time evolution of the
adiabatic energy eigenvalues (center) and populafibns ¢, (« = L, C, R, bottom), as determined by numerically solving

the Schrodinger equation, Eq. (7.39). In the left panel, only one of the tunnel barriers is open at a tim@58jom

For degenerate dot ground stateés = Er = E;, = 0, H(¢) is of the form Eq. (7.31) withV = 2,
|2) =—2T1(¢)|L) — 2T>(t)| R), and the central dot stat€') corresponding t¢0) in Eq. (7.31). Adiabatic
holonomies as the ones discussed above then correspond to rotations in the one-dimensional subspac
spanned by the single dark staterir),

1
D) = —=(T%|L) — T1|R)) , (7.38)
JTZ+ T2

which shows that by adiabatic variation Bf and 7>, the state of the triple dot can be rotated from, e.g.,
an electron in the right dot to an electron in the left dot, without intermittent occupation of the central dot
at any time.

For non-zeroground state energiesg = —E; >0 (andE¢ = 0), H(¢) no longer has the form Eq.
(7.31) duetothe free pato = > _,_; c rle.l) (x|l that gives rise to a dynamical phase (or alternatively,
in the interaction picture with respect #d, multiplication of theT; by fast oscillating phase factors
gEc—Ert d(Ec—ELN) gl adiabatic transfer witli (1) is possible for parametric time-dependence of
the T; (¢). The system state follows the adiabatic evolution of its eigenvakigs45 right. An electron
can be transferred adiabatically from the right to the left dot, using the double pulse sequencarfdr
T» as shown irFig. 45 right. A long 71 pulse, which alone would produce a pair of level crossings, is
followed by a shortefl» pulse which changes the second level crossing intandircrossing so that the
electron is adiabatically transferred to the center dot. For the transfer from the center dot to the left one
the role ofTy andT» are exchanged which results in the transfer of the additional electron to the left dot.
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In this picture, the above cagk = Er = E; =0 with the three adiabatic eigenvalues 0 dﬂg‘Tf + T22

corresponds to following the adiabatic rotation of the dark siatalong the (constant) zero eigenvalue.

This was used by Greentree et[8B5]in their triple dot system and their extension to multi-dot systems.
The coherent time evolution of the isolated triple-dot is governed by the Schrédinger equation

(@) =cL(t)exp—IEpt/A]|L) + cc(t) exp—iEct/h]|C) + cr(t) eXpd—iEgt /A]|R) ,  (7.39)
cp(t) = —iTi(t)cc () exp—i(Ec — Ep)t/h] ,

co(t) = —iT1(t)ep (t) exp—I(EL — Ec)t/h] — iTa(t)cr(t) eXd—i(Eg — Ec)t/h] ,

CRr(t) = —iTa(t)cc(t) eXp—i(Ec — ER)t/f] ,

but the coupling to left and right leads can be easily incorporated within a Master equation description
[154]. Transport from, e.g., the left to the right lead is then followed by a charge leakage to the right
lead at the tunnel ratEg. At the same time, charge tunnels at rAgefrom the left lead into the left dot
whence there is a net charge transport through the triple dot which after the tunnel-couplings sequence
(including a ‘leakage time’ of the order of Inin(I'z, I'g)) is returned to the initial state with (almost)
the whole charge in the left dot.

The whole adiabatic transfer scheme relies on the existence of pairs of level crossings and anti-crossings,
with alevelcrossingcorresponding t@ or 7> becoming zero. If the tunnel rates are kept at non-zero values
T; < Oallthetime, the previous degeneracies at the level crossings are lifted and the crossings become anti-
crossings. In this case, the transfer mechanism across these points is Landau—Zener tunneling, wherea
outside the ‘nearly crossings’ the dynamics remains adiabatic. In the very extreme case of arklibsarily
tuning of (never vanishingl; (1), the Landau—Zener tunneling becomes exponentially small and there is
no transfer of charge at all any longer.

Estimates for experimentally relevant parameters givgisd] assume the ground state energy dif-
ferencefiwg between two adjacent dots to fulfillog <U, 4, whereU is the Coulomb charging energy
and 4 the single particle level spacing within a single dot. Eep ~ 0.1 meV, one has operation fre-
quencies as ~ 10°s~1, with the temperature smearing of the Fermi distribution being negligible if
ksT <hwg ~ 1K, thus defining an operation window, kg T <fimg< U, A.

7.5. Quantum dissipation and adiabatic rotations

Dissipation clearly has a strong impact on the dynamics of quantum systems. This is very obvious
for the ‘usual’ dynamical time-evolution, for example in the damping of quantum mechanical coherent
oscillations of charge qubits as first observed by Nakamura|@ljlin superconductors and by Hayashi
and co-workers in semiconducting quantum d¢199], see below). Decoherence also occurs during
adiabatic rotations and can theoretically be dealt with in the usual quantum dissipative framework, i.e.,
using Master equations, spin-boson models, path integrals etc.

Loss and DiVincenzq22] introduced quantum gates based on the electron spin in quantum dots.
Dephasing of spin degrees of freedom due to spin—orbit coupling or the coupling to nuclear spins is
expected to be much weaker than dephasing of charge superpositions, but spin and charge can be:
come coupled during switching operations whereby charge dephasing also influences spin-based qubits.
Adiabatic quantum computation with Cooper pairs, including adiabatic controlled-NOT gates, was pro-
posed by Averif157,158] For adiabatic one- or two-qubit operations, one has a close analogy with the
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Fig. 46. Left: double dot with time-dependent energy level differerice= ¢; (1) — ¢g (1) and tunnel matrix element. (¢),

connected to electron reservoirs. Center: surface of the lower energy eigenvaltithe two-level HamiltoniarHél) 1), Eq.
(7.40). To adiabatically transfer an electron from the left to the rightsdmid 7, are varied as a function of time as in Eq. (7.40),
corresponding to the curve on the surface. Right: inversiofy;) for zero dissipation in a two-level system, Eq. (7.40), with
time-dependent tunnel matrix eleméhi{z) and energy splitting(z), cf inset. Energies (times) are in units of the amplitdge
(#/ T;) in Eq. (7.40); the other parameters aye-25,Q2=n/(2tg9), t=10,¢0=0.1,¢1 = —1. Dotted line: adiabatic approximation
(07)ag= —e(t)/A(t) (see text). Fron62].

dissipative Landau—Zener-problem (cf. the Review by Grifoni and H&igd] for further references).
Dephasing in geometrical quantum operations was discussed by Nazif3&!.

7.5.1. Dissipative adiabatic rotations in quantum dots
Brandes and Vorrat[62] investigated the role of dissipation for one- and two-qubit adiabatic state
rotations in the double dot model from Section 2. Coherent adiabatic transfer without dissipation in the
charge qubit spai|L), |R)} is described by the time-dependent Hamiltonian
gD — &(1) _ _ 2,2

o ()= - o, + T.(t)ay, &) =¢eo+e1c08Qt, T.(t)=—-T.exp—(—1t)/“], (7.40)
corresponding to a change of the bigs with a simultaneous switching of the tunnel couplifigr)
between the dots. If the rotation is slo@, 1, t0_1<A/h, an initial ground-staté¢L) of the system is

rotated into the instantaneous superpositief, Eq. (2.4). The timé is a parameter in approximate
expectation values like

(02)ag= —&(1)/A(1) (7.41)

(this is Crisp’s solution for the adiabatic following of an atom in a near resonance light[33[886),
where 4(t) is the time-dependent adiabatic level splitting betwgenand |+), Eq. (2.4). The exact
numerical solution fors,)(z) exhibits the expected quantum mechanical oscillations with frequency
A(¢) /% around the adiabatic value, which are strongest when the tunnel coupling is fully switched on, cf.
Fig. 46 right.

In[62], the influence of dissipation on this adiabatic rotation was described using the spin-boson Hamil-
tonian, Eq. (2.10). Generalizing the strong coupling (POL) approach, Section 2.2.3, to time-dependent
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andT,, one obtains an integro-differential equat{dd5]

t
%(@, =— / d’ Y [ (02, 1() 2T (1) T, (') Refe™ Jrdss© o — ¢y, (7.42)
0 +

which can be solved by standard numerical techniques and compared with the perturbative (PER) ap-
proach, Section 2.2.4. Due to Landau—Zener tunneling from the adiabatic ground-$tat¢he excited
statg+), there is always a finite albeit small probabiliy for the electron to remain in the left dot evenin
absence of dissipation. Introducing the deviati¢s), = (s.), + 1 from the ideal, non-dissipative value
—1 of (s,) after the rotation, one can discuss the trade-off between too fast (Landau—Zener transitions
become stronger), and too slow swap operations where inelastic transitions to the excited level will have
sufficient time to destroy the coherent transfer.

Due to the time-dependence £&dnd 7., one has to go beyond the simple Bloch equation description
of decoherencf838] by introducing a unitary transformation of the original Hamiltonian (2.10) into the
|£) basis, again considering the tirhas a slowly varying parametgt45,62] The deviations(s;), of
the inversion due to the coupling to the bosons is then given by

o{oz), = 2/0 doJ () {np(o) f(o, 1) + [1+np()]f (-, )}

t / / 2

flo,t) = / dr o) =i 5 asta)—o , (7.43)
0 At

wheren g () is the Bose equilibrium distribution at inverse temperafieand J (w) the boson spectral

density, cf. Section 2.2.7. Analytical results are obtained for exact ‘Rabi rotations’,

A .
T.(t) = —5 sinQt, &(t) = —A4c0sQrt (7.44)

for which one has an exact solution in absence of dissipation, determined by an ellipse ifi.thiane
with constantexcitation energyl = /&2 + 47T,(1)° to the excited state. For a pulse of length= /9,
one obtainsf (w, 1f) — (¢/2)d(4 — w) with ¢ = 73J3/2(r)/4+/2 in the adiabatic limi2/4 — 0 and
thereby

‘ N AN? [ QN\?_ rog J(4)/Q

wherewg = v/ Q2 + 42. The inversion chang&(s,) ¢ as a function of the pulse frequengyis shown
in Fig. 47. The 1/Q dependence of the dissipative contributiondte;)  is clearly visible at small
Q, indicating that for too long pulse duration the electron swap remains incomplete due to incoherent
dissipation. On the other hand, if the pulse duration is too short (laeyethe oscillatory coherent
contribution from(s,)?2° dominates.

The Rabi rotation, Eq. (7.44), keeps the energy difference to the excited-statenstant throughout
the adiabatic rotation. If thereforg¢ is chosen to coincide with a zero é{w) (as occurs for phononic
cavities, cf. Section 5), the dissipative contribution to Eq. (7.45) vanishes and one olitegtharence-
free manifoldn the parameter space of the system.
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Fig. 47. Left: inversion chang¥s;) s after timer » = n/Q for sinusoidal pulses Eq. (7.44) as obtained from the Master equation,
cf. Section 2.2.4, with Ohmic dissipation, Eq. (2.52) with 1. Dotted curves correspond to the analytical prediction, Eq. (7.45).
Right: inversion(a;) for strong electron—boson coupling (POL regime, Ohmic dissipation) after application of thelptlse
ande(r), Eq. (7.40), with crossover gt= 2o ~ 2 where the temperature dependence changes. f62m

Another interesting case is the zero temperature limit of the weak coupling form Eq. (7.43), where
only the term withf (-, t7) remains due to the small, but finite probability for spontaneous emission
during Landau—Zener transitions frofs) to |+) [145,62] On the other hand, for strong electron—boson
coupling there is a cross-over in the temperature dependence of the POL result, Eq. (7.¢2),for
cf. Fig. 47, right: for couplingsx<1 (Ohmic dissipation = 1, Eq. (2.52)), a temperature increase leads
to an increase ofs) ;, Which is as in the weak coupling case. However, abgyg, the temperature
dependence changes in that largeT lead to smaller values @& ) » because the system tends to remain
localized in the left dot statg.) and no tunneling to the right stat®) occurs. In this regime, higher
temperatures destroy the localization and lead to smatler;, which is consistent with the transition
(«=1) in the dissipative two-level dynami¢s0] for static bias and tunnel coupling.

7.5.2. Adiabatic quantum pumping

A combination of adiabatic rotations and electron transport in the above scheme wig2)sedxtract
the inversiony(a.) ¢, Eq. (7.45), from the average curreit§ pumped through the system. The pumping
cycle separates the quantum mechanical time evolution of the two-level system from a merely ‘classical’
decharging and charging process. An additional electron in the left dot and an adiabatic rotation of the
parameterss(t), T.(¢)) is performed in the ‘Safe Haven’ of the Coulomb- and the Pauli-blockz@ie]
with the left and right energy levels of the two dots well below the chemical poteptialg = uy of the
leads. The cycle continues with closed tunnel barfiee 0 and increasingg (¢) such that the two dots
then are still in a superposition of the left and the right state. The subsequent lifting of the right level above
the chemical potential of the right leads constitutes a measurement of that superposition (collapse of the
wave-function): the electron is either in the right dot (with a high probability %.5(02)]«-) and tunnels
out, or the electron is in the left dot (and nothing happens because the left level is stillbatmithe
system is Coulomb blocked). For tunnel rafgs I';, > 7~ the precise value dfg, I';, and the precise

cycle’ e
shape of the(r)-pulse forry <t < tcycle has no effect on the total charge transferred within one cycle.
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Fig. 48. Left: (a) double dot in the experiment by Hayashi €tl#9] with tunable source—drain voltad&p(z), energy splitting

¢(t), and tunnel couplin@, (=4/2 in [199]), giving rise to the time-dependent Hamiltonian, Eq. (7.47), and the sequence (c—€)
with quantum mechanical oscillations between left (L) and right (R) dot, (d). Right: non-linear current profile as a function of
near the two resonance peaksindp. (b) Mean dot occupanay, = I /efepas a function oWk (inter-dot bias;) and pulse
durationr,,. () The main result: coherent oscillations in the two two-level systemsd. (d) Central gate voltage dependence

of tunnel couplingd = 27,.. From[199].

With the probability to transfer one electron from the left to the right in one cycle beméa.(az)f, on
the average an electron current

(1) = —el1— 30(02) fligygre (7.46)

then flows from left to right. This scheme, with its pulse-like changes of the parameferand the

leads acting only as classical measurement devices, has great similarities with the scheme used in the
Nakamura et al[21] interference experiment in a superconducting Cooper pair box, and the pumping
sequence by Hayashi et §99] in their one-qubit interference experiment in double quantum dots, cf.

the next section.

7.5.3. Experiments in one-qubit double quantum dots

The NTT group with Hayashi et l199] successfully realized coherent time evolution of superposition
states in a single charge qubit based on semiconductor double quantum dots. Similar to the experiment
in superconducting charge qubits by Nakamura €t4l} and to the pumping scheme of Section 7.5.2,
they used a pulse technique to switch the source—drain voltage from largébiéslectrons can tunnel
in) to zero bias (the double dot is isolated),€iy. 48left. At the same time, the inter-dot biagvas also
switched, giving rise to a time-dependent Hamiltonian

e(t)

H(l’)ZTO'Z-i-TCO'x (747)
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which described the isolated double quantum dot. Coulomb blockade prevented other electrons to enter
the system in the isolated phase (€ig. 48left, with the coherent time-evolution of the system et 0

only disturbed by inelastic processes such as phonon coupling, or co-tunneling processes. Restoring a
large biasVsp after the pulse time,, Fig. 48(left e), provided a strong measurement and, since repeated
many times at frequencfiep = 100 MHz, a read-out of the charge state of the system in the form of an
electric current/,,.

The measurements were carried out at two resonant tunneling paak$, cf. Fig. 48(right a), each
corresponding to an effective two-level system as realized within the many-elestrory (Ng ~ 25)
double-dot (charging enerdy,. ~ 1.3 meV) at electron temperatur&s ~ 100 mK and a magnetic field
0.5T. The curves of, = Ip/efep as a function of pulse lengtty, Fig. 48 (right c), were extracted
from ther,-Vg-diagram,Fig. 48 (right b), where the gate voltage effectively tuned the biasiring
the coherent time-evolution phase of the isolated double dot. From these, decoherend@@ theee
extracted using a fit, (r,,) with an exponentially damped cosine function. Hayashi and co-workers then
discussed three possible dephasing mechanism: first, background charge fluctuations and gate voltage
noise was held responsible for random fluctuations &ading to strong dephasing for largesecond,
co-tunneling rates where found to be comparable to the ﬂlgéa rates for large tunnel couplings
I'=Tg ~ I' ~ 30peV, but to have a minor effect dt ~ 13peV. Third, dephasing rates, from
electron—phonon coupling were found to play a major role for lattice temperatures above 100 mK, where
the boson spectral density with Ohmic dissipatiss= 1) and a coupling parametgr= 2« = 0.03 was
used to calculate, according to Eg. (2.30).

7.5.4. Dissipative quantum oscillations in double dots

The damped oscillations af,(z,), as observed in the experiment by Hayashi et al., also follow from
analytical calculations for the time evolution of the double dot system from the Master equation with
weak dissipation, cf. Section (2.2.4). For the isolated dot, one has togset I';, = 0 and the initial
condition(ny)g =1, (p)g=0in Egs. (2.16), (2.17), and (2.25), which by Laplace transformation yield

B (z+7,)T% — 2T.3y,) — 2T Ry,
2z{(z +7,)2 + 2} — 2T Ry +7_) + @ + 9 ) AT2 = 213 (4 + 7

A

ng(z)

(7.48)

with the rates, andy,. defined in Eq. (2.30). The zeroes of the denominator in Eq. (7.48) to first order
in the dimensionless coupling constardre

r .
20=0, z1=-T), Ziz—?p—ylzlzlE (7.49)

T2 A 2ume?

C ﬂ TC
FPEZTC?J(A)COthf, VlEéS’lW’ E = A—Zlm("/++"/7) (750)

with B = 1/(kgT) and agai = /&2 + 4T2 as the level splitting of the double dot. Note that there is a
temperature dependent renormalization (Lamb shift) of the level splitting from the+t€fi4)Im(y . +
y_) inthe energye which determines the period of the oscillations. By simply Laplace back-transforming



436 T. Brandes / Physics Reports 408 (2005) 315-474

0.9r 9=0.1,w0:=20 T,
J £=0.1T,

2%
0.7F
0.6

+
N
+
u
+
+
+
(-

0.51

| [efred

s
0.4 f
+
; e
0.3f ;
'
0.2¢ kd

0.1k T=0.1 T, =

C 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

t [hbar/T]

Fig. 49. Calculated average current due to quantum oscillations of an electron in a double quantum dot dftetatitimgy in
the left dot at = 0. Ohmic dissipation at temperatuFecoupling parametey = 2« = 0.1, and cutoff frequency.. The curves
represent the numerical solutions of the Bloch equations whereas the crosses correspond to the analytical solutions Eq. (7.51).

Eq. (7.48), an explicit solution to lowest orderdins obtained forng), = n,(1)),

2172 71 eRepy r
~ R 1—eI»t 7.51
(nR); 72 {K+ [K r, T, 1—-e"") (7.51)
r r Re, . Im
_ e F | (Er T Y gingr 4occosEr [V, k=1— (7.52)
2FE ET. 1.

As shown inFig. 49 this perfectly agrees with the numerical solution of the Master equation which should
be called Bloch equation in this context as only two levels are involved, cf. Egs. (2.16), (2.17), (2.25).

Non-Markovian corrections to this Born—Markov theory have been calculated recently by Loss and
DiVincenzo[339].

7.5.5. Charge shelving and adiabatic fast passage

Greentree et al[340] suggested a pumping scheme with bias spectroscopy similar to the optical
Autler—Townes experiment. They considered a three-level Hamiltonian where the right/statea
double well|L), |R) qubit is coupled to an additional probe-staje),

H(t) =¢ep(0)|p)(pl = T(IL)(R| + [L)(R]) — T, () (IR)(p| + |P)(R]) , (7.53)

cf. Eq. (7.37) for the triple dot in Section 7.4.3. Similar to the time-dependent variatign) @nd7.(r)
in the double dot system, Eq. (7.40), they demonstrated pumping in the foomaaje shelvingy
linearly increasing, (1) and simultaneously switching the tunnel couplifig?) on and off at fixedr:

an initially anti-symmetric eigenstate(r = 0) = (1/+/2)(|L) — |R)) of the|L), |R) qubit is driven into
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|p), the population of which can adiabatically approach unity on a short time scale of &rfevDn the

other hand, for the initially symmetric sta¥&(r = 0) = (1/+/2)(|L) + |R)) with lower energy, the final
population of| p) is very small. Therefore, the third stdte) provides a read-out for the qubit which is
reversible in absence of dissipation such that an electron can be pumped back into the anti-symmetric
state and thereby reset the qubit.

7.5.6. Spin qubit swaps

The adiabatic swapping model in Section 7.5.1 can also be applied to study decoherence due to charge
dephasing in spin-based two-qubit systems, where spin and charge become coupled during switching
operationg22,341] An example is the Loss—DiVincenzo proposal for quantum operations with spin
states of coupled single-electron quantum da8. Thorwart and Hangdil61] discussed dissipation
and decoherence in quantum XOR gates within a numerical scheme, predicting gate fidelities to be very
sensitive to the dissipative bath coupling constant, but only weakly on temperature. Recently, Requist,
Schliemann, Abanov, and Loss calculated corrections to adiabaticity due to double occupancy errors of
two quantum dot spin-qubi{842].

Schliemann et a[159] suggested a swap operation where two electrons with spin are localized on two
coupled quantum dot& andB, giving rise to a basis of six states, with four basis vectors with the two
electrons on different dots (spin singlet and triplets),

181) = 27Y2(cl cf, — b0y
IT™Y =clch 10, 1T = CLTCLT|0>, 179 = 2—1/2((,{”53¢ + CLCTBT)@ , (7.54)
and two states with two electrons on dof'left’) or dot B (‘right),

L) = clych 10)=27Y2(1S0) + [S3)l,  IR) = chyep, 10) =27Y2(1S5) — |Sa)] (7.55)

which are superpositions of two spin singlégfs 3) = 2—1/2(cj”cjw + c;r%c;i)w) that differ in their
orbital wave function.
During a swap operation from an initial stat¢to a final state 1),

i) = HUT%) +1S0] = |f) = T — 501, (7.56)
(which can be achievd@2,341]by an adiabatically opening and then closing of the tunnel barrier between
the two dots as a function of timeghargedecoherence occurs for intermediate, doubly occupied states
in sparf|L), |R)} (= spar|S), |S3)}) which leads out of the subspace sfidn), |7°}. Piezo-electric
phonons then couple to the electron charge and incoherently mix states in the singlet sector which leads to
a loss of fidelity of the swap operation. This process can be described in a four-dimensional Hilbert space
#'®, spanned by the three singléss) and the triple{7%) = |0), with a time-dependent Hamiltonian

3
HP ()=o) U1+ T2 + 211 . (7.57)
j=0
wheree; denotes the energies of the spin singlet statess o, &2 = ¢0 + Up, 63 =¢0 + Uy — 2X
with the spin triplet energyo, the on-site Coulomb repulsidiiy > 0, the exchange ter > 0, and the
time-dependent tunnel coupling element between the Hats The total Hamiltonian in presence of
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Fig. 50. 1— (flp(0)| f) (fidelity) for a two-electron double dot qubit swap from initial stéteto final statd f), Eq. (7.56), as a
function of time (in units o/ i /#, U : on-site Coulomb repulsion); electron—phonon spectral density Eq. (2.56) with coupling
g = 20piezo@ndwy = c/d. Inset:(i|p(t)|i) and(f|p(1)| f) for g = 0. From[62].

bosons coupling to the charge degree of freeddig) (1) = Héz) )+ %GZA + Hpg, then has exactly the

same form as in the one-qubit case, but with the free Hamiltoﬂb@\(t) replaced byHéZ) (1), a new
coupling constangq [62], ands, = |L)(L| — |R)(R]| now referring to the two-particle states Eq. (7.55).
With the restriction 7 (t)| <« Uy, 2X, inelastic transitions are determined by the dynamics in the subspace
spanned by the stat¢?) and|3) and admixtures fronil) through the hybridization betweeh) and|2)
can be neglected.Within the Born—Markov approximation, the adiabatic rates then depend on the energy
differenced = 2X between?2) and|3) only. As 4 remains constant throughout the operation, this again
means that charge dissipation to second order can be switched off in phonon cavities iwiemed to
a ‘gap’ energyiwg, cf. Section 5.

Results for the fidelity f|p(¢)| f) are shown irFig. 50 where a puls§l59]

T = 1+ cosht/t)/ cosh(T /27) (7.58)

with Tp = 0.05, T = 400, = 50 was chosen, together with= 0.5 and a temperature/g = 0.1 (in units

of Uy). Even in absence of dissipation, the non-adiabaticity of the operation results in a finite value of
1— (flp@)|f) after the swapl59]. The electron—phonon interaction, modeled with a spectral density
Jpiezo(w) as in Eq. (2.56) with different coupling parametgrs: 2upiezo acts when charge between the

dots is moved during the opening of the tunneling barrier. Consequently, the two 2tated|3) become

mixed incoherently, leading to a finite, irreversible occupation probability of the energetic lowegBstate

even after the pulse operation. Spontaneous emission of phonons occurring during the slow swap leads
to a dephasing raté ~ ng X /#. In this case, even relatively small valuesgafan lead to a considerable
fidelity loss of the operation.
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8. Large spin-boson (single mode Dicke) models, chaos, and entanglement

Most of the material treated in this Review so far dealt with the appearance of quantum optical effects
in electronic transport properties of mesoscopic systems. A central topic was the interaction between
matter and light, and more specifically the interaction between bosonic (phonons, photons) and fermionic
degrees of freedom, where the latter sometimes corresponded to single electrons, or were represente
by ‘pseudo-spins’ such as in two-level systems and charge qubits. Many of the theoretical models that
were presented in the previous sections investigated these interactions within a wider context (e.g., with
coupling to other electron reservoirs in order to describe transport), which often required additional
approximations in order to make any progress, even in a completely numerical treatment.

Sometimes, a much ‘cleaner’ theoretical set-up can be achieved by going back to some of the original
quantum optical Hamiltonians, with the goal to look at them with a ‘mesoscopic eye’. This program has
been followed by a (seemingly growing) number of theorists, probably motivated by (at least partly)
some of the following reasons:—the realization that quantum optical concepts are useful in other areas of
physics as well,—the experimental success in Quantum Optics and related areas such as Bose—Einsteil
condensation,—the possibility to study ‘fundamental’ problems (measurement process, entanglement,
quantum chaos) in conceptually very simple systems. Mainly driven by this last motivation, the final
section of this Review therefore presents an overview over newer results on one important class of
models from Quantum Optics, the single-mode Dicke superradiance model (and some of its allies), and
their relation to ideas from quantum information theory (entanglement), quantum chaos and Mesoscopics
(level statistics, scaling), as well as the old question of the quantum-classical crossover.

8.1. Single-mode superradiance model

The single-mode Dicke model describes the interactioN bfio-level systems with a bosonic mode
of angular frequency,

% At t
+\/ﬁi2:ox’l(a +a)+wa'a , (8.1)
wherewy is the transition angular frequency between the upper and lower level, cf. Eq. (3.1), and the
factor 1/+/N is due to the dipole matrix element containing a factoy/V, whereV is the volume of
the boson cavity and one works at constant dens#yN/V, absorbing the factoy/p into the coupling
matrix element. Crucially, the coupling constéanto the bosonic mode does not depend on the atom
indexi. The interaction term in the one-mode Hamiltonian Eq. (8.1) in fact is a special case of the multi-
mode interaction, Eq. (3.9) for one single ma@®), where the dependence on the phase factBfsis
neglected. One can then introduce collective atomic operators (angular momentum operators),

- N N
Hbpicke = > Z 0z
i=1 =

=1

1 . .
J, = > Oni, o=x,y,2; Je=JLxiJ,, [J,Jel=xJy, [Jy,J-1=2],, (8.2)

cf. Eq. (3.10).
In cavity quantum electrodynamics, this model describes collective light—-matter interactions in a photon
cavity. On the transport side, possible candidates for experimental systems would be arrays of excitonic
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quantum dots (the casé = 2 would correspond to the system treated in Section 3.3.1), and electrons
in several quantum dots interacting with single phonon modes. An example of the latter is the ‘phonon
cavity quantum dynamics’ of nano-electromechanical systems, cf. Section 5.

8.1.1. Hamiltonians

For the rest of this section, we consider the= N/2 subspace of the2dimensional total atomic
Hilbertspace# y = (C?)®", which is spanned by Dicke statgsn) with maximum total angular mo-
mentum; = N /2, cf. the discussion in Section 3.1.1. In terms of the collective operators Eq. (8.2), the
single-mode Dicke Hamiltonian then reads

A
Hbicke = w0J + —2j(aT +a)(Jy +J) +wad'a, (8.3)

Nei

which is the generalization of the Rabi Hamiltonian
o . .
HRapi= 70 o, + Ma" +a)e, + wa'a (8.4)

to j = N/2>1/2. In Quantum Optics, the Dicke Hamiltonian is often considered within the rotating
wave approximation (RWA),

)
HRWA = woJ, + —2j(aTJ_ +aly)+wa'a, (8.5)

Neai
which in comparison with the full HamiltoniaHpjcke does not contain the ‘counter-rotating’tertfﬁs.br
andaJ _, and which is the generalization of the Jaynes—Cumming Hamiltonian

w0 ~ ~
HjaynesCummings= ) o7 + /I(aTU— +aoy) + wa'a (8.6)

to j = N/2>1/2. The absence of counter-rotating terms makes the RWA-Hamiltonian integrable and
therefore has dramatic consequences when it comes to the discussion of quantum chaos. The RWA-form
HEMA conserves thexcitation number operataYey, whereas the full Dicke Hamiltonian only conserves

the parity operatoril, both of which are definef843] as
I1=expinNeyl, Nex=ala+J.+]. (8.7)

The meaning of these operators can be most easily understood in the analogy of the spin-boson Hamilto-
nian with a single particle on a two-dimensional lattice,Ki§. 51, where each point represents a basis
vector|n) ® | jm) with |n) representing the number state¥;|n) = n|n), and| jm) the Dicke states. The

lattice is finite in M’ direction, but infinite in the ' direction. For the full Dicke Hamiltonia®pjcke, the
interaction conserves the pariily and states with an even total excitation numbenm + j interact only

with other even states, whereas odd states interact only with odd states. This has the effect of dividing
the total lattice into a motion of the particle on one of the two inter-weaved sub-lattices, which corre-
sponds to the two different parity sectors. On the other hand, the RWA veﬁ@fﬁﬁ, induces an even

more drastic splitting of the total Hilbert space into an (infinite) number of finite-dimensional subspaces
that are characterized by the excitation numietn the lattice picture, this corresponds to independent
clusters joined in the direction,, cf. Fig. 51
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Fig. 51. Left: lattice analogy for Dicke model in (non) rotating wave approximation, the case shown her¢ is forRight:
phase diagram for the Dicke Hamiltoni&fbicke, EQ. (8.1), in the thermodynamic limjt— oo.

8.1.2. Phase transition

The phase transition for the RWA Dicke model, Eq. (8.5), was first rigorously derived in 1973 by
Hepp and Lie344] who used spectral properties of finite matrices derived from the model. At the same
time, Wang and Hioe ga\j845] a more transparent (though less rigorous) proof using bosonic coherent
state. A simple generalisation for the non-RWA version, Eg. (8.1), was soon given by Hepp and Lieb
[346], and by Carmichael, Gardiner, and W4« 7] who started from the canonical partition function
Z(N,T) = Tr exp(—fHpicke), B = 1/ kg T, and traced out the field as [845],

d? y N
ZN.T) = | &2 —ﬂlalZ[Tr exp{—ﬂ (@& —i—\/—v_(oc—}—oc*)& )H
’ - 2 Z N X

121N
% 2r dp 1622r2cog 0
:/ drr/ Z e | 2cosh feo 1422 , (8.8)
0 o T 2 wiN

where the boson frequeney has been set to unity. This integral is evaluated asymptotically using the
method of steepest descents, from which the phase diagram in the thermodynanic-mito follows:
for 2 < Jwmg/2, the system is in the ‘normal’ phase with a free enefgy) per particle given by

— fn(T) = p~1In[2 cosh(3 pwo)] . (8.9)

which is just the free energy of a non-interacting two-level systemzBoy/wwo/2, however, there is a
critical temperatur@, given bywwg /4,2 = tanr(%wo/ ksT,.) below which the system in a ‘superradiant’
state with a free energy per particle given by

;vz 2
— for(T) = p~tIn [2 cosh(4£ /sz>i| —aZ 24 20 v —tanh4piZ)>0.  (8.10)
w w 164

The self-consistent equation fein Eq. (8.10) indicates that this phase transition is of mean-field type.
At the phase boundary in the phase diagr&ig, 51, the system changes discontinuously between the
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normal phase, where the boson occupation per particle is zero, and the superradiant phase that has
macroscopic boson occupan@a45],

Nlinooi(a ajn =0, N'E"OONW a)RS:4Ex - ﬁ ) (8.11)

where agairxis given by the positive solution ofi2= tanh(4p%x). At zero temperaturé — 00), this
solution isx = % and one easily obtains quantities like the ground state energy

2 wwd

En=—wo0/2 Edp=—~ 16/1g

and other quantities & = 0 from the finiteT results in the thermodynamic limN — oo.
As mentioned above, the original derivations of the thermodynamic properties for the ihfiDiteke

model were first made for the RWA model. Hebb and L[&46], and Carmichael et dB47]in fact showed

that in the limitN — oo, the thermodynamic properties of the non-RWA moHg|cke are obtained by

simply using the expressions obtained from the RWA mag@g{: and doubling the coupling constant,

). — 2J. Consequently, the phase transitiorHff\l,, occurs at a critical couplingf"A = /oag that is

twice as large ag. = ,/wwo/2 in the non-RWA modeHpicke. A heuristic argument for the factor two is

the doubling of interacting vertices picke 2s compared to the RWA model. A more recent comparison

between RWA and non-RWA, in particular with respect to the integrability of the Dicke model, is given

in [348].

(8.12)

8.1.3. Effective Hamiltonians and finite-N results

Emary and Brandg843,348]studied the one-mode Dicke mod@&bicke, EQ. (8.1), at arbitraryy =2
but at zero temperaturE = 0 with the aim to relate quantum chaotic behavior as obtained from the
spectrum offHpjcke at finite N to the transition folv — oo. In the terminology of statistical mechanics,
the transition a” = 0 is only driven by quantum (and not thermal) fluctuations and thus is a quantum
phase transition, although one of a special kind: the absence of any intrinsic, physical length scale in the
model makes it exactly solvable. The phase transition in fact can be related to an instaliity-faso of
the quadratic form describing the interaction of two bosonic modes, one of which represents the original
photon mode:™ whereas the other represents the gpifhis is formalized by the Holstein—Primakoff
representation of the angular momentum operators in terms of a single bosoniémode

Jy=b"\/2j —btb, J_=,/2j—blbb, J.=bTb—], (8.13)

which are inserted inté/picke and then expanded for largeHillery and Mlodinow[349] used this method
in their analysis of the RWA forrnl}llg‘i‘(’:"k’fe Eqg. (8.5), in the normal phase. For a general survey on boson
realizations of Lie algebras, cf. the review by Klein and Marsh{ek].

A very suitable method for the case of the Dicke Hamiltonian is to introduce position and momentum
operators for the two bosonic mod&4 8],

- @' +a) i/ 2@~ a) L o' 1n) i [ 2T~ b)
X = a a), x = —a —a), = s ) — A - s
V2w P 2 Y 2m0 Py 2
(8.14)
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which turns out to be particularly useful when discussing properties of the ground state wave function,
and which leads to a Hamiltonian describing ttegmal phase fov — oo,

HO = %{a)zx2 + pf + wcz)yz + p§ + 4 /owoxy — wg — @} — jwg . (8.15)
This is easily diagonalized and leads to
HD = (l)cTcl + sf)c;rcz + 1(8(1) (1) —w—wg) — jog ,
(1) 2 N2 2
[el']°= 2{ + a)O + \/(cuo w?)“ + 16A°wwo} , (8.16)

with two excitation energies for the two new, collective bosonic modes 1 and 2. The excitation €nergy
is real only fori< . = ,/wwo/2 which indicates the transitiold © remains valid in the normal phase
but becomes invalid in the superradiant phase.

The ground-state wave function &®, Eq. (8.15), is a simple product of two harmonic oscillator
wave functions which in thg-y representation reads

Y’(Gl) (x,y) = G_(xcosy — ysiny)G(x siny + y cosy)

1 4)../ a
)= Zarctan—Y2? G (g) = (L Yie a2 (8.17)
2 a)(z) — w?
Close below the critical point., the excitation energy_ = — ¢Y vanishes as
el o |4 — Ac]¥, (8.18)

with the dynamical exponent=2 and the ‘localization length’ exponent 1/4 describing the divergence
of the characteristic length = ¢_ e |2 — A:]7" in the oscillator wave functiois _, and the same
exponents when approaching from abayeAt the critical point of the coupling constant= /., ¢
becomes infinite and the Gaussian wave function, Eq. (8.17), is infinitely stretched alang-they
line in thex-y plane. This is consistent with the results for the ground state wave function as obtained
from a numerical diagonalization for the finife= N /2 Dicke HamiltonianHpjcke, EQ. (8.1), as shown
in the x-y representation ifrig. 52for j = 5: the wave function starts as a single lobe centered at the
origin for low coupling. As the coupling increases, the two modes start mixing, leading to a stretching
of the single-peaked wave function, which treglitsinto two lobes as the coupling is increased above
approximatelyl.. The two lobes move away from each other in their respective quadrants efthe
plane when further increasinigabove/,..

For large but finitg, the ground-state withh > /. is a coherent superposition of two wave function
lobes that are macroscopically separated intheplane. Forj — oo, i.e. in the thermodynamic limit,
the macroscopic separation becomes so large that this Schrédinger cat is ‘split into two halves'. It was
shown in[348] that this superradiant regime is describedvsy equivalent effective Hamiltoniang @,
each describing the low-energy excitations in the frame of reference of one of the lobes. For any finite
j, the ground-state obeys the parity symmdiryEq. (8.7), meaning that the wave function is always
invariant under a rotation of in thex-y plane. Forj — oo, the ground-state is two-fold degenerate, the
system chooses to sit in one of the lobes that is ‘super-selected’ whereby the parity symnifsjyof
is spontaneously broken. Recently, Fraf8%i] discussed the Schrddinger cat and she> oo limit of
the Dicke model in the context of decoherence.
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Fig. 52. Left: modulus of the ground-state wave functigi, y) of the Dicke Hamiltonian in the abstraety representation
for finite j = 5, at couplings ofi/i, =0.2, 0.5, 0.6, 0.7. Black corresponds to Maxand white corresponds to zero. The
Hamiltonian is resonanb = wg = 1; 2. = 0.5. From[348]. Right: excitation energiest. in the thermodynamic limit. Inset:
scaled ground-state enerdyg; /j, in the thermodynamic limit (solid line) and at various finite valueg ef 1/2,1, 3/2,3,5
(dashed lines). Froif843].

The effective Hamiltonian& @ for the superradiant phase are obtained by using the Holstein—Primakoff
transformation, Eq. (8.13), and a canonical transformation that displaces the two bosonic modes, thereby
taking into account the macroscopic displacement and occupation of thefipith@ the field4T) mode,

aT—>cT:|:\/&, bT—>dT:|:\/B.

Here, the upper and lower signs refer to the two equivalent Hamiltonians that describe the system for
j — oo, with « and 8 to be determined by expanding the canonically transformed Dicke Hamiltonian
for largej, retaining only up to quadratic terms in the new bosonic operatbrandd ™. Elimination

of linear terms in these operators then leads to two equaf®4),

2j — 4,2
2)»,/ﬁ(12—jﬁ)—wﬁ=0, [w—j(j—ﬁ)—wo}\/_ﬂ=0,

with trivial solutionse = = 0 that recover the normal phase (the Hamiltontat), and non-trivial
solutions determining the superradidgiit?, which after some further transformations is brought into
diagonal form,

(8.19)

(8.20)

2,2 wiw
H® = s(_z)elrel + sf)e;rez - {— + _832 }

102 . @ o 2,2
+§<8+ 4 & —Z—M(l—l—,u)—a)—?(l—,u)
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Solid lines denote results in the thermodynamic limit, whereas dashed lines correspond to the results for various finite values of
Jj= % 1, % 3, 5. The Hamiltonian is resonant:= wg = 1, /. = 0.5. From[348].
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The values of andp as determined from Eq. (8.20) are the same for both signs in Eq. (8.19) and related
to the atomic inversion and the mean photon number

(J)i=Bli—1, t(a'a)/j=0a/j, (8.22)

where the brackets refer to ground state expectation values. One thereby obtains two exactly equivalent
HamiltoniansH @, which are valid for.> /. such that the excitation energ@ remains real.
As the HamiltoniangZ @ and H @ are in diagonal form, they present the exact analytical solution for
the Dicke one-mode model at arbitrary coupling strength in the Iljmit+ oo and allow one to derive
exact results for the spectrum, expectation values, wave function properties, entanglement etc. that can be
compared to their respective finifeounter-parts as obtained from numerical diagonalizations. Examples
of such a comparison are shown for the ground state ernfegggnd the excitation energies, Fig. 52
and for the atomic inversiofv,) and the photon numbeéaTa) in Fig. 53

8.1.4. Level statistics

The nearest-neighbor level spacing distributii$) for level spacings, = E, 11 — E, at finitej was
obtained if348] by direct numerical diagonalization &picke, EQ. (8.1). Signatures of tH#eé=0 normal-
superradiant phase transition for> oo can be related to a cross-over from the Poissonian distribution,
Pp(S)=exp(—S) at/ < /., to the Wigner—Dyson distributioiy (S) =S /2 exp(—nS2/4), in the finitej
level statistics, cf. Figh4. At low j <3, however, it should be noted that tR€S) do not correspond to
any of the universal random matrix theory ensembles but are rather non-generic distributions, an example
being the ‘picket-fence’ character 8f(S) for the Rabi Hamiltoniary =1/2, Eq. (8.4). The cross-over as
a function ofA becomes sharper for larggand one might regard any deviations from a sharp transition
as ‘finite-size’ effects, i.e., deviations from thie—> oo limit. This interpretation, however, is somewhat
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Fig. 54. Left: nearest-neighbor distributio®$S) for the Dicke Hamiltonian, for different couplingsand pseudo-spij and
comparison with the universal Poissonian (dots) to Wigner (dashes) distributions. Right: nearest-neighbaS;spdting — E,,
vs. eigenvalue numbaer plot for j = 5 with 2 = 4. Horizontal crosses: results for the integrable> co Hamiltonian. Inset:
Jj =5 results with = 2 andZ = 3. Results shown are fos = wg = 1, 2. = 0.5. From[343].

misleading because in this limit the system, although going through a phase transitieri gtremains
integrable.

The cross-over in the level statistics of the Dicke model is also consistent with the bifurcation of the
ground wave function into a macroscopic superpositioigt.54 left. This can be regarded as atransition
from a localized, quasi-integrable regime fox /. (corresponding to Poissonian level statistics), to a
delocalized, chaotic regime far> /. (corresponding to Wigner—Dyson statistics).

Another peculiarity of the spectrum is the close co-existence of very regular and very irregular parts
at fixed, finitej and 4 as a function of the level inder, cf. Fig. 54, right. The regular part of the
nearest-neighbor spacin§s can be compared with the integralstgong coupling limiti — oo of the
model Hpjcke, in Which the termwgJ, becomes a negligible perturbation and the system corresponds to a
shifted harmonic oscillator. Fdrs> 4., the spectrum becomes very regular and close to the éxacto
limit at low energies, whereas outside this region the spectrum is very irregular and described by the
Wigner—Dyson distribution.

8.1.5. Semi-classical model and chaos

Emary and Brandef348] derived a classical Hamiltonian from the Dicke modglicke in bosonic
form, using the Holstein—Primakoff transformation, Eq. (8.13), and a subsequent replacement of position
and momentum operatoxy, p.,py, EQ. (8.14), by classical variables. The resulting classical model,

Hchke— %(pf + Pi) +U(x,y, py),

1 . ) w3y2 + p2 — wg
Ux,y, py) = é(@2);2 + w%yz —w— wg) — joo + ZA./cuwoxy\/l — 4}(;0

(8.23)
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Fig. 55. Top: Poincaré sections for the classical Dicke Model for a sequence of increasing couplingss\BitndE = —3.
From[348]. Bottom: Poincaré sections as calculated by Hou an398]. From[352].

described the motion of a single particle in atwo-dimensionamentum-dependegpttentiall (x, y, py).

Inthe limit j — oo, the square-root non-linearity in Eq. (8.23) vanishes, and by diagonalization one finds

the same symmetry-breaking phase transition as for the quantum #Hpgdg!. For finitej, a stability

analysis of Hamilton’s equations fromg'icke yields a fixed poink =y = p, = p, =0 in phase space that

is stable in the ‘localized regime’< i.//1+ /4j, where agairi. = ,/owo/2 is the critical coupling

found in the quantum model. Two other fixed points with= p, = 0 exist in the ‘delocalized regime’

in the x-y plane at pointg+xg, Fyo) which are stable foi > i.//1 + /4j and correspond to the two

lobes of the Schrodinger cat ground state superposition in the superradiant regime of the quantum model.
Poincaré sections fong'icke with p, = 0 and p, >0 fixed by the total energ§ are shown in

Fig. 55, left. At low 4, the Poincaré sections consist of a series of regular, periodic orbits. Approach-

ing the critical coupling, the character of the periodic orbits changes and a number of chaotic trajectories

emerges. Increasing the coupling further results in the break up of the remaining periodic orbits and the



448 T. Brandes / Physics Reports 408 (2005) 315-474

Table 1

Special cases of the generic spin-boson Hamiltonian, Eq. (8.24). The three-dimensional unit veetoes=are, y, z

Model Q A

Rabi (j = 1/2), Dicke (j >1/2) wQe; ey
Jaynes—Cummings & 1/2), RWA-Dicke (j >1/2) ®0€; (ex —iey)
abelian (‘one mode dephasing’) &, e, 0=x,y,2
one mode (large) spin-boson e€; + 2Tcey Je;

whole phase space becomes chaotic. This transition to chaos in the classical system mirrors very closely
the transition in the quantum system. Hou ano[BﬂQ] recently confirmed these findings in a calculation
of Poincaré sections through titep, plane for#g.,, with x = 0 fixed, cf. Fig.55.

8.2. Phase transitions in generalized Dicke models

A generalized form of the one-mode Dicke model was considered in a 868 that shed further
light on the instability of large-spin boson Hamiltonians in the thermodynamic fimit oo. The generic
model

H=wa'a+Q+a'4+aa"J, (8.24)

describes the simplest coupling between the Heisenberg—Weyl (harmonic oscillator) algebes Y1
and the algebra of the angular momentum (§poperators/, = %(J+ +Jo), Jy= %(JJr —J), J;, with
J = (Jx, Jy, J;) and the three-dimensional coupling constant vedasnd 4, the latter being in general
complex. This generic form contains a number of special, well-known casdsté 1

The class of models discussed[#53] was for real coupling vectord = AT and€2, simplifying the
most general case Eq. (8.24) which in general has three real, linearly independent three-dimensional
coupling constant vectors. In tlxez plane, the generalized one-mode Dicke models then are defined as

2
Hp=wa'a + Q(J, cos0 + J,sin0) + ——(a" +a)J, 8.25

0 + Q( + J;sin0) + «/2_1'( +a) (8.25)
which for fixed frequencies, Q, and coupling constaritare characterized by the angléhat can be
restricted to @ 0 <x. Again employing the Holstein—Primakoff representation of the angular momentum
operators, Eq. (8.13), shifting the oscillator modes> a + ./« andb — b F /B (cf. Eq. (8.19) with
« andp of O(j)), and proceeding to the thermodynamic liit> oo yields an effective Hamiltonian
with terms up to quadratic order in the bosonic operators. As before in the treatniéstief the linear
terms can be eliminated, which yields an equatiorsfor

4 J_ﬁf Qs.ne\/'+gcosf)¢% 0, (8.26)

and/a= (24/w)[(2j — p) /212, leading to a Hamiltonian that can be diagonalized after a Bogoliubov
transformation of the bosonic operators.

Again, the parameters and § are related to the atomic inversion and mean field occupation,
Eq. (8.22), although not all solutions of Eq. (8.26) are physically vi8&B]. In particular, it turns
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Fig. 56. Left: the two displacement parametefs and./f as a function of the coupling for various different angleg in the
class of Hamiltoniangiy, Eq. (8.25). Right: excitation energies 8f. From[353].

out that a co-existence ofvo physically valid solutions, corresponding to both the upper and the lower
sign in the shifted bosonic operators, Eq. (8.19), appears only for the speciétcase, which is exactly

the original Dicke HamiltoniarHpicke, EQ. (8.1). This is illustrated ifig. 56 where the bifurcation at

the critical pointi. of the Dicke model al = n/2 separates the modédls< =/2 and> =/2, which have
shifts corresponding to either the upper or the lower sign in> a &+ /o andb — b F /p for all
coupling constants. This indicates that a phase transition in the spin-boson models, Eq. (8.25), occurs
only for ‘orthogonal’ coupling® = =/2, which shows that the Dicke model is unique within the whole
class of Hamiltonian#Zy. These findings are corroborated by a calculation of the excitation energy pairs
¢+ corresponding to the two collective modes of the diagonalized Hamiltoniars-feroo, cf. Fig. 56

left, where critical behavior (the vanishing «f) only occurs att = /2. Furthermore, non-analyticities

in the ground-state energy, atomic inversion and mean photon number of the ground-staté. atf.

Fig. 57are observed only @t= =/2 in agreement with these results.

8.3. Quantum phase transitions and entanglement

Zero-temperature quantum phase transitions occur in models both from Quantum Optics and Con-
densed Matter Physics, and the relation between quantum entanglement and the singularities associate!
with the transition have been addressed in quite a large number of works recently. As the question of
meaningful entanglement measures is non-trivial (in particular when it comes to, e.g., mixed states, in-
finite dimensional Hilbert spaces, or multi-partite systems), most of the research done so far deals with
the entanglement entropy for bi-partite systems, or the pairwise entanglement (concurrence) between
two spin 1/2s. One common feature of many of these works is the study of models that are exactly
solvable in some limit, for exampl&Y models in one dimension and large-spin (boson) models, with
some of the key topics being the role that entanglement in quantum phase transitions plays with respect
to critical correlation$354,355] in renormalization group theof856], in conformal field theory357],
in finite-size scaling354,358] or in quantum chao852,359-362]
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Fig. 57. From left: ground-state energy, atomic inversion and mean photon number of the ground state as a function of the
coupling for various different angleg. The Hamiltonian is on scaled resonanoes Q =1, i, = 0.5. From[353].

8.3.1. Atom-field entanglement in the Dicke model

Lambert et al[359] used the one-mode Dicke modébicke, EQ. (8.1), for a study of quantum entan-
glement across a quantum phase transition, again combining analytical resplts-for with numerical
diagonalizations at finitg Definingp = Trspind G) (G| as the reduced density matrix of the field )
mode for the initially pure ground-sta€) of the total system, a measure for the entanglement between
the atoms (i.e., the collection dfidentical two-level systems or spins, cf. Eq. (8.1)) and the field is given
by the von Neumann entropyy = —Tr plog, p. A peculiarity occurs in the superradiant phase with its
two degenerate ground-states due to the broken parity symmieteading toS = () + 1 with p,
the reduced density matrix of either of the two macroscopically separated solutions.

The calculation is most easily done in tkey representation, where in the normal phase the reduced
density matrix is given by

/’L(x»x/):CL/ dyf L (MP*(x, NP, y) . (8.27)

wherec; is a normalization constant af@d(y) = e*/L? g cut-off functionfy (v) = e*/L%introduced

in order to discuss the effect of a partial trace over the atoyhimodes. The density matrix Eq. (8.27) is
identical to the density matrix of a single harmonic oscillator with frequé&ncin a canonical ensemble
at an effective temperatufe = 1/ and can be obtained by simple Gaussian integration, yielding

e_ey + 4(e_ cosy? + &4 siny?)/L?
(e~ — &4)? cosy? siny2

coshpQr =1+2 , (8.28)

where the angle and the excitation energies were defined in Egs. (8.17) and (8.16), respectively.
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Fig. 58. Left: entanglement of formatidh, between atoms and field for both — oo and finiteN. Inset: Scaling of the value
of the entanglement maximum as a function ofJag Right: scaled pairwise concurren€g; = NC between two spins for
both N — oo and finiteN. Inset: Scaling of the valueK) and position &) of the concurrence maximum, and the position of
the entropy maximums) as functions ofN. The Hamiltonian is on scaled resonance- wg = 1. From[359].

This leads to a simple expression for the entropy (depending on the cut-off length parameter
S.(O) =[¢coth — In(2sinh))]/In2, (= pQL/2. (8.29)

For L = oo, the entropy undergoes a divergence at the critical point for the approdghrtom either
side which is due to the vanishing of « |1 — 4.2, Eq. (8.18), cfFig. 58 Together withS,, ({) = [1 —
In(20) + £2/6]/ In 2 + 0 (&%), this yields the logarithmic divergence 8%,

Soe 0 —v10Qyl7 — Je| =l0gy &, v=1/4, (8.30)

demonstrating that the entanglement between the atoms and field diverges with the same critical exponent
as the characteristic length. For~ /., the parametef =7%Q.,/kgT of the fictitious thermal oscillator
approaches zero, indicating thatlassicallimit is being approached, that can be interpreted either as
the temperatur@ going to infinity, or the frequenc,, approaching zero. An alternative is to ke@p
fixed and compensate by introducing a squeezing paramébat tends to O at the critical poif263].
In terms of the original parameters of the system, however, the dependence of the entropy is through the
ratio of energies_ /¢ only. Although the entanglement is a genuine quantum property of the combined
atom-field system, this highlights that in the limitf — oo atoms, the exact mapping ljcke to two
coupled oscillators is strongly connected to the corresponding (cusp) singularity and the vanishing of one
of the eigenvalues of a quadratic form in the classical model.

As pointed out by SrednickB64] in his discussion of entropy and area, the mapping onto a single
harmonic oscillator density matrix is in general no longer possibl&/fer2 coupled oscillator modes, but
the entropy of a sub-system of oscillators can still be expressed as a sum over single oscillator entropies
S0, EQ. (8.29), with the argumentsletermined by eigenvalues of matrices. The Dicke modéVfes oo
is in fact equivalent to a zero-dimensional field theory (there are only two degrees of freedom). However,
the atomic ¥) mode has an ‘internal structure’ as it represents a collection of atoms (or pseudg2pin 1
). Similar to Srednicky’s tracing out of oscillator degrees of freedoms inside a finite volume, one can ask
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what happens if the trace over the (atomig)oordinate is performed over only a finite region of size
L for the atomic wave function. Scaling of the entanglernarthe transition/ = /. is then calculated
by keeping the parameterin Eq. (8.29) finite. At the transition. = 0, and the relevant dimensionless
energy scale is now;, = 2/(L%:,c?) such that the entanglement entropy diverges as

Sp o« —(1/2)log,(2¢1) =log, L, L — oo . (8.31)

The logarithmic divergence at the transition resembles the entropy of a sub-region of leisgth~
(c+¢)/6log, L + kin 1+ 1 conformal field theories with holomorphic and anti-holomorphic central
charges andc, as discussed by Vidal et §857] in an analysis of entanglement in sp}m—hains.

8.3.2. Pairwise entanglement and squeezing in the Dicke model

As shown by Wooter§365], the entanglement between any two sé'ﬁnm a mixed state,, can be
calculated from the concurrenGawhich in the Dicke model, Eq. (8.1) should be scaled by a fadtior
order to compensate for théIN in the coupling energy,

Cy=NC, C=maxXo0, i1 —i2—/l3— A4}, (8.32)
where thel; are the square roots of the eigenvalues (in descending ordgp(ef, ® o2,)p1, (01, ® a2y).
Wang and Msiimer calculated the concurrence of pure Dicke states N /2, m), Eq. (3.12),

C— 1

2NN -1

using theSy permutation symmetry of the Dicke Hamiltonid&picke. Similarly, the mixed state,, as
obtained from the ground state Hbjcke has the form

(N? — 4M? — \/ (N2 — AM?)[(N — 2)% — 4aM?]} , (8.33)

vie 0 0 u
0O w w O

P12 = 0 wow 0 ’ (834)
u 0 O wv_

wherev, u, andw can be expressed by the expectation values of the collective ope(a(g(»ryzz), and
(Jf). For small coupling., perturbation theory yields axtindependent behavior @y,

Cn(— 0) ~242/(L+ %), a=i/(w~+ wo) . (8.35)

At finite N, Wang and Sande{866] proved a quantitative relation betwesgpin squeezingnd pairwise
entanglement valid for symmetric multi-qubit states for Hamiltonians with spin permutation symmetry.
They considered a collective spin operdipe= Z,N:lo-w/z, a=(x, y, z) and calculated the spin squeezing
parametet that was first introduced by Kitawaga and U48&7],

(i ® 7))l 1]

4 ..
2= N(ASn)Zzl—Z(N—l) [|(0i+®0j+>| +

2 2 (8.36)

where the unit vectot is perpendicular to the mean smi_ﬁ) and defines the direction of minimal variance
(AS)Z, and the spin correlation functions can be evaluated fori gayj. Messikh, Ficek, and Wahiddin
[368] compared the Kitawaga—Ueda definition to another definition of spin squeezing by Wineland and
co-workerg[369] for the two-atom Dicke model. They showed that the former is a better definition of
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entanglement. Wang and Sandg&80] discussed how both definitions coincide with bosonic squeezing
for N — oo and calculated the transfer of squeezing between the two modes in the RWA version of the
Dicke HamiltonianHJ\A, Eq. (8.5).

In the thermodynamic limilv — oo, the scaled concurrence in the Dicke model is expressed as

Coo = L+ wl(@H? — @'ay+3a-w, (8.37)

wherey =1 andd’ =" in the normal phasei(< i.), whereas.= (i./2)? andd" =bT + /NI = p)/2

in the superradiant phase# Z.). Recallingb’ = /wo/2(y — ipy/wo), one can transform Eq. (8.37)
to establish a relation between the scaled concurrence amddheentum squeezitigat occurs if the
variance(Apy)2 = (p%) — <py)2 is less than 12. Expressed in terms Qﬁpy)z, one obtains

Coo = (L+ (3 — (Apy)?/wol + 31— p) | (8.38)

where again, setting = (../4)? gives the superradiant phase equivalent. The two quadrature variances
(Ax)?, (Apy)?, (Ay)?, and (Ap,)? were calculated by Emary and Brandeg348]. For i — /., the
position variancesAx)? and(Ay)? diverge whereas the momentum varianges, )2, and(Apy)2 show
squeezing.

Explicit analytical expressions for the concurreidi:g, Eq. (8.38), were derived i{359] by using the
mapping to the density matrix of a thermal oscillator as

Coo =1— (uQ/wp) coth(fQ/2), coshpQ=1+2¢_¢y/D ,
D =[cs(e— —e)?,  2Q/SINBR = D/(e_c? + c45?) . (8.39)
Due to symmetry, these are the same parameters as for the reduced)fedmgity matrixp,, with

s = siny andc¢ = cosy interchanged, and one obtains the simple reSylt= 1 — pu(e_s? + ¢4¢?)/wo
which at resonancex= wg) reads

Cis 1——[\/1+x+«/1—x] x =1/l (8.40)

cx2l=1- f S L(sin y)\/l+x —JA=x%%2+4
+ (cog y)\/l + x4+ A —x%H2+4], 2y=arctan2/(x*>—1)]. (8.41)

The explicit expressions Eq. (8.40) reveal the square-root non-analyticity of the scaled concurrence in
the Dicke model near the critical poiat. Note that the concurrence assumes its finite maximum,

Coolle) =1— g (8.42)

at the critical pointi = A..

8.3.3. Entanglement in other spin models
Osterloh et al[354] presented a detailestaling analysi®f the concurrenc€ (i) between two sites
with distance in a spin% ferromagnetic chain in a magnetic field (set to unity) with nearest-neighbor
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interactions XY models),

N

N N
H:—/1(1+V)Zo“f0'f+l—/l(l—y)Za?’aL_l—Zaf , (8.43)
i=1 i=1 i=1

which for anisotropy parameters<Qy <1 belong to the Ising universality class with a quantum phase
transition atl, = 1 for N — oo. They obtained” (i) for the case = 1 using correlation functions of the
Ising model. Folv — oo, the maximum of” (1) does not coincide with the expected non-analyticity of
C(1) at1= /.. The logarithmic divergence in the first derivativ&; (1) /d . = (8/372) In | . — .| + const
for N — oo, can be related with its precursors/at /4, for finite N (with 4,, — 4. o« N~186) by
using a single-parameter scaling functipav/"(2 — 4,,)) in order to analyze the data at differdhit
This analysis confirms the critical exponent 1 known from the Ising model and demonstrates that
scaling, as well as universality (by repeating the analysis frl) works for the concurrence. Another
interesting feature of this model is the fact that although the correlation length diverges at the critical
point, all concurrence§ (i) with i > 2 vanish.

Inan earlier calculation, Schneider and Milb{8i1] considered a driven, dissipative large pseudo-spin
model described by the equation of motion for the atomic density operator
which is in an interaction picture within Markov and rotating wave approximation, wiesehe Rabi
frequency and , the Einstein A coefficient (damping rate) of each atom. The model exhibits a (non-
equilibrium) phase transition fa?/j =y, andQ, j — oo. Schneider and Milburn calculated the unscaled
two-atom concurrence fof = N/2 = 1 and found entanglement in the steady state, as well as entan-
glement maxima on the weak coupling side of the transition that moved closer to the critical point with
increasing.

Vidal et al.[372] considered the Hamiltonian that was first introduced by Lipkin ¢8&B] in Nuclear
Physics,

A . o , 2) 1
= - 2o +10y0) = ) 0l = =TI+ = 2+ 514 (8.45)

i<j i

which displays a second-order, mean-field type quantum phase transitjica Afrom a non-degenerate
ground state to a doubly degenerate ground state for any anisotropy paragaetei hey calculated the
re-scaled concurren@@y 1, Eq. (8.32), for various & y<1. Cy_1 develops a singularity at the critical
point and for finiteN andy £ 1 scales like

1= Cy_1(iy) ~ N7O3300L 5 ) \—066+£001 (8.46)

where/,, is the value of/. for which Cy_1 is maximum. As a further interesting feature, they found
a vanishing of the concurrence fors= 0 at a special valugg(y) that lead to a phase diagram in the
J-y-plane separating ground states with_1 # O but zero spin squeezing(= 1, cf. Eq. (8.36)) for
4> Jg from ground states with spin squeezii§=1— Cy_1 < 1 for / < 4g. Fory =0, the ground state

is always spin squeezed which is surprising since th® model belongs to the same universality class
as they # 0 models.
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Dusuel and Vida[374] used Wegner’s continuous unitary transformation method in order to obtain
finite-size scaling exponents, i.e., the\Lcorrections to théV =oo results for the Lipkin—-Meshkov-Glick
model. This allowed them to obtain analytical results for the exponeri%s ghd 23 in Eq. (8.46)).
Furthermore, Latorre et gl375] studied the entanglement entropy in this model and found a surprising
similarity to the one-dimension&Y-model.

Reslen etal358]used a second-order cumulant expansion to derive an effective temperature-dependent
Hamiltonian for the one-mode Dicke mod#bicke, EQ. (8.1),

| [ o)
VN porB)+1)
which they used to calculate thermodynamic equilibrium expectation values at tempeyadoe the
atomicdegrees of freedom. For zero temperature, this corresponds to the an-isotropic Lipkin model, Eq.
(8.45), withy =0, wp = —2, and 4% — 2) (dropping the constant term). They found excellent agreement
between the results(=15) for the ground-state enerdy; and the inversiofJ,) calculated withHpjcke
and withHeg (8 — o0). Furthermore, they analyzed the dependendg ofthe critical’. andCy, Z,, — A¢
andCs (4.) — Cn(4n), cf. EQ. (8.42), and confirmed their respective scaling with the same exponents as
for the Lipkin model, Eqg. (8.46), cf. however the discussiof3ird].

Levine and MuthukumgB76] calculated the entanglement entropy for the s})hnason Hamiltonian,

Heff (f) = woJ; — [ np)=" -, (8.47)

N 2mw

which is canonically equivalent to the Rabi Hamiltonian, Eq. (8.4). They found a transition from zero to
finite entropy ab = 12/mw?4 = 1 in the limit4/w — oo. The corresponding bifurcation in the ground
state was illustrated by Hines et [l877], who analyzed a corresponding classical model (with a spinning
top replacing the spin) and also confirmed the existence of the pitchfork bifurcation for the Dicke model,
cf. Fig. 56

Finally, Verstraete et a]378] found the divergence of entanglemarithouta quantum phase transition
in gapped quantum spin systems. They studied spin-1 Hamiltonians with Haldane gap such as the exactly
solvable Affleck—Kennedy—-Lieb—Tasaki model and calculated the so-called localizable entanglement.
Remarkably, they proved that the associated entanglement lIépgthn diverge, with the correlation
length¢ - remaining finite.

H=Ac, + (a + aJr)o'Z +wa'a , (8.48)

9. Conclusion

One of the motivations of this Review has been to establish connections between Quantum Optics and
Condensed-Matter Physics, primarily in the area of electronic properties of mesoscopic systems. Activities
at the interface between these fields, both theoretically and experimentally, have already started to grow
rapidly, also driven by the search for elementary, scalable physical systems in which quantum mechanical
operations (e.g., superposition and entanglement) can be controlled from the outside. As shown in the
examples of (single or multiple) artificial two-level systems, the coupling to additional bosonic modes,
to electronic reservoirs, or to dissipative environments very soon gives rise to an enormous complexity.

Many theoretical problems still remain open, and many new problems will appear in the future. The
description of the combined effects of many-body interactions, non-equilibrium physics, and quantum
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coherence is a great challenge for a microsctnaigsport theory For example, with regard to transport
through single boson-mode models, a next step would be to fully understand the influence of non-linear
oscillator-couplings and Kondo-type correlations on transport, frequency-dependent quantum noise and
Full Counting Statistics.

A further example is the understanding eritanglemenin situations that go beyond the relatively
simple models presented in the last section of this Review. Very little (if at all) is known about its role
in many-body systems with quantum phase transitions such as, e.g., in disordered electronic systems.
Another question is whether the relation between quantum chaos, entanglement, and the classical limit
is in actual fact much deeper than it appears from the study of the single-mode Dicke or similar models.
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Appendix A. Polaron-transformed master equation

This appendix provides details of the derivation of the ‘POL Master equation Eqgs. (2.16)—(2.19).

A.l. Interaction picture
The interaction picture for arbitrary operat@sand theX operators, Eq. (2.15), is defined by
O(t) = " pe ol X, = ol xe W0l (A.1)
In particular, one hag; (t) = ny, ng(t) = ng, and
p0)=peuX,, pl)y=ple X!, c=a —ox. (A.2)
Furthermore, for the total density matrik) = ey, _o€”' one defines
7(t) = 79 (e o ) = e 1y, _gd (A.3)
The expectation value of any opera@®@is given by

(0), =Tr(x()0) =Tr(7(H O () , (A.4)
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for which equations of motions are derived from the equation of motiof,for
d . e ~ - e . -
a 1t)= —1[A@)+ Ay (@), 7(O]=—I[A7T@), 1 ()] —[A v (), 10]

t
- /0 dr'[ Ay (), (A7 () + Ay (), 7] (A.5)
One defines the effective density operator of the system ‘dot+bosons’,

p(t) = Trreg(t) (A.6)

as the trace over the electron reservoirs (res) and assumes the second order Born approximation with
respect to#’y,

2(t) ~ Ro®p(t), >0, (A.7)

whereRy is the density matrix of the electron reservoirs. Then, terms line#fjnvanish and it remains

d . t s 3
p p(t) =—i[A7(), p(1)] — Trres fo dt'[ Ay (1), [#v ('), Ro® p()]] . (A.8)

Performing the commutators and using the free time evolution of the electron reservoir operators,
one finds

&30 = i 0. 50
- ; /O t de’'gi, (1 — 1) ELOF] )P = 5.() pHFL (1))
_ kZ /O g, (' — 0L ORLER) — LA )
. ; /O t de’gr, (¢ — O{PE)SL(ENST (1) — 5] (5L}
- ; /0 t dt’ g, (¢t — ) {5, (3L (1) — SL()p(e")5, (1)}
gk (®) = Vi f (o) €57, g (o) = Vi1 — f(a)1E%", i=L/R, (A.9)

with the Fermi distributionsf’ (ex;,) = Trres(ROC;:riCk,-)- The sums ovek; can be written as integrals,
introducing the tunneling density of statgege) in leadi,

D IV F (e €% 0 = / " de () IO, (o) = SOWViPse—a) . (AL0)
k; - ki

A.2. Markov approximation

In the infinite source—drain voltage limit — oo andur — —oo introduced by Gurvitz and Prager
[54,55] and Stoof and Nazard®6], the left Fermi function is one and the right Fermi function is zero. An
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additional simplification is obtained by assumzanstant tunneling densities of statese) =v; =I'; /2r,
with constant tunnel ratdg = ZEZki |V} |25(s—ski),i=L/R, cf. Eq. (2.12). This leads to Delta functions
like

Z |VkL|2fL(8kL)ei8kL(t—z/) — FL&(I _ t/) ’ (All)
kr

and correspondingly for the other terms. In tMarkov limit, the Master equation Eq. (A.9) becomes
t
B0 =so~1 [ A0, 50)
0
ry (' Ppm =t N~ ~ o NT N~
) 5 dr'{sL(t)s; (t)p(t") — 25.(t") 'p(t)sL (1)}
r ! I~ N N~ / r ! Iy~ N IN® 4]
- [ arasastan - F [ sheseaie)
0 0
r ! ~ IN~ I\ / ~ o IN nNT /
- 7R/O de' (=25 (t)p(1)3 (") 4 p(t)5x (1)5R(1))} (A.12)
where one integration from 0 tovas performed angg di’o(r —t') f(t') = %f(t) was used.

A.3. Equations of motions

It is now convenient to derive the equations of motions for the expectation values of the dot variables
directly from the Master equation Eq. (A.12). One first calculates the commutators

(L), #7(t)] = —[ig(t), #7(t)] = T.(p(t") — p (1))

[p(), #7()] = T Na X, X, — figX] X:)

[51(0), 7)) = Toe ™~ X X0 — i X X)) (A.13)
and uses the completeness relation

1=10)(0| +7ig + 7L (A.14)

in the three-dimensional Hilbert space of the double dot to exgf&89s, (') = 0)(0| =1 —ng —iy.

Multiplying Eq. (A.12) withn;, iz, p, and pT and performing the trace with the three dot states, one
obtains

t t
(i) — (AL)o = —iT, /O o' () — (A1) + I /0 d'(L— (L) — (Ar))
t t
(NR); — (MR)o = ich() dr'((p)y — (P} — FR/O dr’ (iR,
A ~\0 g (! ! pe(t—t") T~
Py — ()= — 7[{) dr'e (Xe X, p(t))y

t ) ,
—iT, / de' €O AL X Xy — (ARXT X o)) (A.15)
0
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(BN — (pN2= - = f dr'e = (5T X x]),
|T/ dr'e O Xp XY, — (irX] X))

Here, expectation values are defined as the trace over ttadtie boson system, and
(P = Tr(o(pe” XN D) . (A.16)

The time evolution of the expectation valu(q,%”)? describes the decay of an initial polarization of the
system and can be calculated exactly. This decay, however, plays no role for the stationary current, and
one can safely assume zero initial expectation valueié*cbfwhence(ﬁ(“)? =O0forallz> 0.

As can be recognized from Eq. (A.15), the system of equations for the dot expectation values is not
closed since terms Iike%LX,X;r/)t/ contain products of dot and bosaoX) (operators. At this point, one
invokes a physical argument to decouple the equations: if one is not interested in the backaction of
the electron onto the boson system, the latter can be assumed to be in thermal equilibrium all times,
in particular when dealing with a continuum of infinitely many bosonic magde®nedecoupleghe
reduced density matrix(z") according to

p(t") ~ pp ® byor(t),  Paort) = Trep(t’) (A.17)
cf. the discussion after Eq. (2.24). This directly leads to Eq. (2.16).

Appendix B. Calculation of the boson correlation functionC,

Here, some explicit expressions for the Laplace transform of the bosonic correlation fufiction
Eqg. (2.21),

Cz) = / - dre ¥ C (1) (B.1)
Ct)= exp{/ dow J( ) [(1— coswt) coth(ﬂ;> +1isin wt“ (B.2)
are derived.

B.1. Zero temperature Ohmic case

For Ohmic dissipation with=1, Eq. (2.52), one has a boson spectral dengity) =2xw exp(—w /o).
At zero temperature (B =T =0), C(t) = (1 + iw.r)~%*, and one find§66]

o0 .
C(7) = / dre ¥ (1 + iwet) ™% = (iw,)~%72* e /o p(1 — 24, —iz/we) (B.3)
0

where Gradstein—Ryshik 3.382.4 was used@igd ) denotes the incomplete Gamma function. Measuring
w in units of the cut-offw, (settingw, = 1) simplifies the notation and one obtains

C(—ie) = —i(—e)> Le™*r (1 — 20, —¢) . (B.4)
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Note that: must have a small positive imaginary partfe0 in the definition of the Laplace transfor-
mation since the incomplete Gamma functiofl — 2«, z) has a branch point at= 0. However, one
can use the series expansibil — 2o, x) = I'(1 — 2z) — Y02 o(=1)"x¥=2%" /[n!(1 — 20 + n)] for
1—-20#0,—-1 -2,...to obtain

o0 g”

Cl—ie) = —i(—e)® et r(1—2 ety — T 24£1,23,....
(=le) = —=1(=¢) (=20 +i gon!(l—ZoH-n) “7

The second term is an analytic function:oNow one writes

Ha 20—
. _ —ile e<0,
—i(—e)® = { 2:x|—2|le 7i(1/24-20— D .20, (B.5)

Recalling the reflection formula for the Gamma functidil — z) = n/I'(z) Sinnz, this yields

A ; n 20—1.—¢ ; T 20— &'
C(—lg) = ——¢ e —_— e fcot2n e _— >0 s
(719 = T2 + |:F(25x)g i Zn'(l 2<x—|—n)j| ¢
é(—ig):ie_s —+|8|21_1+Z L e<0 (B.6)
I'(2%) sin 2na = n(l—20+n)|’ ’ '

From this, one reads off the real and the imaginary paé@fic),

ReC(—ie) = 7P (c) = % 2~ 1em20(s) (B.7)
AL . > " 7le|? -1, e<0
ImC(—ie) = e {; ni—zm F Tensnoa {Cosm 8>0” : (B.8)

B.2. ‘Structured bath’with oscillatory ()

In the case of more complicated spectral densities it is advantageous td(splinto an Ohmic and
a non-Ohmic part, e.g. for the piezo-acoustic case, Eq. (2.56),
J((,O) = Johm((O) + Josc((l)), Johm(w) = ZOCOJeiw/wC, JOSC(U)) = —2.'Xa)d Sin (ﬂ) eﬁw/wc N
W
(B.9)

wherew, is the high-frequency cut-off and; = ¢/d the additional frequency scale of the bosonic bath,
cf. Eqg. (2.56). One writes

ct=e20 0@ =0I3%0 + 010 + 01700 + 0120 | (B.10)
QT=0(t) = / dw J’(Z)[l — coswt + i sin wt] , (B.11)

T>0(t) /

— coswt)(coth(fw/2) — 1)], i =ohm, osc, (B.12)
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thus separating the zero temperature contribution from the finite temperature contribution. Eq. (B.10) is
convenient for a numerical evaluation of the Laplace transform, Eqg. (B.1), where oneansites: + 6
and uses & = e%(coser + i sin &) which is useful to take advantage of special routines for integrals
over the semi-infinite, positive real axis with weight functiongsand cos).

The zero temperature parts in Eq. (B.10) are

OL(0) =22 +iwmen), 01 () =—2222 [2f (W, w—) +ig (wct, w—)}
. oy, g

C

1 1+ @ +0H A+ (x —»)?) 1+ (x +y)?
= — | In| —~—
fx,y) S{yn[ 1122 }+x n[1+(x_y)2

+2 arctanix + y) + 2arctarfy —x) — 4 arctamy)}

2

11 [ 14 &+ y)?
= — | _
g(x,y) 2{ n|:1+(x—y)2

} + (x + y) arctanix 4+ y) — (y — x) arctan(y — x)} . (B.13)

Furthermore, the Ohmic finite temperature contribution is expressed in terms of Gamma functions of
complex argument,
r(1+ ! +it)‘ In r(1+ 1)“ (B.14)
Bawe B Bawe ' .

Appendix C. Memory function formalism for quantum wire in magnetic field

0I=0(t) = —44 {In

The memory function formalisrii237] starts from the observation that it is more advantageous to
perform an expansion of the inverse conductivity* rather than of itself. The reason is that ~ r,
the transport time which (to lowest order) in turririgerselyproportional to the square of the scattering
potential matrix element. Therefore, one introduces a memory function which in the multichannel case
becomes a matrix,

M) = z2)° — 217" (C.1)
Solving for the matrix

1) = [z + M@ My° (C.2)
and inserting into Eq. (4.37), with Eq. (4.38) one obtains

o) =ie? Y [z + M1 O - (C.3)

nm

Note thatM and ;° are matrices so that in the multichannel case a matrix inversion is required. The
calculation is started by expanding Eq. (C.2) in terms of the memory mairixs M° + --- . By
calculatingM rather thery, a partial summation in the scattering potential (ladder diagrams) is already
performed.
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C.1. Conductivity in a multi-channel system

The equation of motion

Z((jn§jm>>z:Ls<[jn’jm]>+<<An§jm>>za An =1, H], (C-4)
together with[ j,,, j,»] = 0 is used twicg237] to obtain an expression fof,
M = um (@ = (0, $ (D) = (A Ap)), - (C.5)

The matrix M (z) has a spectral representation and can be decomposed into real and imaginary part,
M(w+10) =M'(w) +1M" (w) with real matriced’ (w) = —M'(w) andM” (w) = M" (—w). Forw — 0,

the real part\/’(0) = 0. Consequently, in the dc-limit=w + i0 — 0+ i0,

0_ 9@ — (0

<

0
M)y — ilm — ¢(w) =iL . (C.6)
aCO =0
An expression for the ac conductivity can be obtained in the limit of frequerzcsessmall that the
dependence a¥/ (z) onzcan be neglected. In the limit 66 < ¢, the energy dependence of the scattering
rates around the Fermi energy is assumed to be negligible. In terms of thenatrix, ¢(z) can then be

written as
o(x) =ie? Y (Oler® +iL1™ ) - (C.7)

The commutaton,, is easily obtained as

1
An= L2 Z (Vi (&, @)k Cuirg — Vrn (ks @) Vnktq €l Crkg] - (C.8)
S k,q,n/

Calculation of the matrix elementgM (z2);°),.,» Eq. (C.5), requires the correlation function matrix
elements which we denote by

. — + .
<n’ I’l/, m» m,> - <<ancl’l/k+q9 karcm/k/—i-q/))z 9 (Cg)

suppressing the indexésk’, ¢, ¢ which remain the same. This leads to

bum (2) = % Y Waw (k@) Vi K g vuivype (n, ' m, m'y
S wm'kk'qq’

— Vit (ks @) Vo K@ YotV 1, 1 ', m)

= Vrn (ks @) Ve (K' @) Ot g (', s m, m)

+ Virn (&, @) Vi (K @Y onkeq Vi g (', iy m' m)1 (C.10)

The above equations constitute the general framework for the calculation of the conductivity in a mul-
tichannel system. To second order in the potential scattering, they are still completely general. For non-
interacting electrons, one has

S Cent) — [ (Emktq)

(I’l, l/l/; n, m/> = 5q,—q/5k’,k+q5nm’5n/mLs(pnm (Z)’ DPnm (Z) = ’ (Cll)
zZ+ Enk — 8mk+q
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where we again suppressed the inddxaeadk + g. One obtains from Egs. (C.11) and (C.10)
1
Dum (@) = T3 D 1 Vam @) P[00k Ok P (@) + Uk Uk P (2)]
S kq

1
- 5"’"3 Z Vi (@) P[0k Uik @ (2) + Vg Umkg @i (2] - (C.12)
) kqn/

In the limit of temperaturegg T, 7iwo < ¢, One has

—Im g, () = v”";’m [5(k — k) {6(q + kn — k) + 3(q + kn + k)
+ 0k + k) {0(q — kn — k) + 3(q — kn + kn)}] - (C.13)
This leads to
—Im ¢,y (@) =5 4”—;”(|Vnm(kn — k) 1? = [ Vium Gk + k) %)
(2n)°L,
G 305 1y — K (Vi G + o)) (C.14)

(2n)%Ly vy

n/

wheres = 1 or 2 is the spin degeneracy. Using Egs. (4.38) and (C.6), the nhattixs is

S
Lm = ——(Vam + k)2 = Vi Ckn — k) |?), 1 #m

N

v
D WV Gk = k)| + Vi (i + k) 1?) + 20 Van k) 2 | (C.15)

L v
s n'n n

C.2. Potential scattering matrix elements

The momentum matrix element
(nk|e™ ¥y = g g, M (gy) (C.16)

reflects momentum conservationxfdirection. The matrix elementd can be calculated exactly, their
explicit expressions fat = 0, 1 are

_ 22,2 _ 22,2
| MGo(ay) P = e V2T M (g, = e VAT S 4 )
_ 2, .2
\ME (g P =e V2O - S3(E+ )2, E=lpage, n=lpqy (C.17)

where we introduced the effective magnetic lengththe cyclotron frequency g, and the parameter
according to

, p= a)o—f—wcz., Ip = . (C.18)
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The matrix elements Eq. (4.41) can be evaluated explicitly for Delta-scatterersgitindependent of
g. In this case,

lu@=k —k,g,)*= V¢, (C.19)

The remaining sun(ll/LS)qu |M3”‘,(qy)|2 can be transformed into an integral and yields the result

n

— _ w V2L, 2 1
|Voo(q)12 = L;e Y2sea)® yio(q))2 = [Voo(q)I? SI1 + (Ipoq)?]
27l
B

IV11(@) 12 = | Voo(@) P13 — 3 pog)? + 3 (Ugag)™. (C.20)

C.3. Explicit expression faf(z)

The energy band-structure of a quantum wire with parabolic confinement potential of stieggth
a perpendicular magnetic fieklis

1 #2 wo \? 1
e = (n+ = ) hiwp +1 K2, :(—) = c.21
= (3 ) h0s 1 e 2 1= (22) = (.21

i.e. a set of equidistant parabolas, labeled by the Landau bandrnééxng the Fermi energy between
the subbands = 1 andn = 2, i.e.er = 2fiwpg, the two subband Fermi wave vectors become

2m* 1 3/ wp\¥?
ko= | —=(er — Sfiwp) =/ | — ] kro,
il mQ

B 2 2

2m* 3 1/wp\%? 2m*wg
k1= — —h =./=| — kro, kpo= . C.22
1 \/VBhZ(SF HfoB) 2<w0) Fo.  kro p (C.22)

Recognizing thatl o) (o /00)3k2 = 2(we/w0)?, the argumentssog in the matrix elements become

BIV3+1. g =ko+ki ,
BIVB—11%, q=ko—ki ﬁ=<wc)

BI21%, g=2ko =~ 7
BI2V31%, g =2k

for the four cases of intra-band backscattering 2ko, 2k1, inter-band backwardg(= ko — k1) and
inter-band forward scattering (= ko + k1). The dependence on the magnetic field can be completely
absorbed into the paramefeiVe express the scattering matrix elements by the scatteringratéthout
magnetic field,

wo

(Ipoug)® = (C.23)

2Dy;2 2. %
4 'V
=M MiYo™ (C.24)

- 3
J2nlBup? AT
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with v, = fikpo/m* andlp = /fi/m*wo. Then, one hak =Io(1 + f)~Y/4, and the conductivity can be

written as
34 /Y 4Bl + Ligo—2L
zt(y/5 +4/3) +il 11+ 5Loo 01l
(zx+i/3Loollze +iy/3Lasl + 1

Loo= 1+ { 3@+ [L+ ov/BPpe 2FIHoV3P) 4 2 6ﬁ}

o==+1

o(2) =ie?vpor (L + p)~ YA (C.25)
T

b= { Y A+ [1+0V3Ppe zﬁ”””}}”v“ <“2ﬁ+4ﬂ>

fa +1
Lor= 1+ ﬂ% > e+ [1+4 ov/32p)e 2HHoV3Ry (C.26)
o==%1

where we used Eq. (4.40),(C.23),
VE I

ni Vo — UFofil ‘o

\/ 2711129 I

and dimensionless functiodso = nLoo/(stOr_l) etc. The Fermi velocitiesy andv; can be expressed
by the Fermi velocity g, as

=gt HA+ YA, (C.27)

v = v 30+ BV vi= vy /B A+ L (C.28)
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