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We investigate the dynamics of the Λ system driven by two resonant laser fields in presence of dissipation for
coupling strengths where the rotating-wave approximation starts to break down. This regime is characterised
by Rabi frequencies being approximately equal or smaller than the field frequencies. A systematic procedure
to obtain an expansion for the solution of the Bloch evolution equations of the system is presented. The
lowest contribution results to be the well-known rotating-wave approximation. The method is based on a
semi-classical treatment of the problem, and its predictions are interpreted fully quantum mechanically. The
theory is illustrated by a detailed study of the disappearance of coherent population trapping as the intensities
of the fields increase.
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1 Introduction

In comparison to the two-level atom, the three-level atom exhibits a much richer variety of effects in its
interaction with the electromagnetic field, with examples such as lasing without inversion, laser cooling,
population transfer and loss-free pulse propagation. This broader range of processes arises as a result of
coherence among the states, as induced by (classical) radiation as well as quantum interference. Typical
examples are Λ systems, in which two closely spaced long-lived levels (“ground states”) are coupled by
two nearly resonant laser fields to a third distant short-lived level (excited state). If the frequency difference
of the laser fields is close to the atomic splitting of the two ground states (Raman resonance), the excited
state spontaneously decays into a coherent superposition of the two closely spaced levels [1]. The system
then cannot be excited by the applied light and remains in this trapped (or dark) state, which in fact is a
stationary state of the dressed atom-plus-field system.

Most of these coherent phenomena can be adequately treated within the limits imposed by the rotating-
wave approximation (RWA) [2]. This approximation gives a good description when the Rabi frequencies
of each field are much smaller than their respective field frequencies, e.g. Ω1, Ω2 � ω1, ω2, the so-called
weak-field regime. In this paper, we explore the response of the Λ system to the two laser fields beyond
the RWA in a relatively strong-field regime defined by the Rabi frequencies being approximately equal or
smaller than the field frequencies, e.g. Ω1, Ω2 � ω1, ω2. We show how the trapping effect gradually loses
its definition up to its disappearance as the intensities of the fields increase.

Our primary motivation for this study is the extension of concepts from quantum optics into mesoscopic
condensed matter physics. To be specific, various authors [3–7] have identified three-level systems as
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2 B. N. Sanchez and T. Brandes: The Λ system driven by two laser fields

promising candidates to utilise coherent control [8] in solid state structures such as semiconductor quantum
dots. In these systems, dark states and coherent population trapping can be combined with the tunnelling of
quasi-particles (electrons, or electrons and holes) which, e.g., leads to the appearance of quantum optical
coherent phenomena in electronic transport. In these situations, it is then not clear a priory that weak
coupling approximations like the RWA always hold. Second, for strong coupling it has been known for a
while that time-dependent fields can lead to coherent suppression of tunnelling, which is usually described
in a (single or multi-mode) Floquet state picture [9]. This has lead to an enormous activity in applications to
systems driven by strong time-dependent fields, such as electron transport and tunnelling in semiconductor
structures under AC radiation [10].

In three-level systems in intense bichromatic fields, non-RWA effects can be interpreted as a breaking
of a Gell-Mann-type SU(3) dynamical symmetry. Ho and Chu [11] have shown how to use the SU(3)
generators and many-mode Floquet theory in order to obtain perturbative results in absence of dissipation.
Matisov, Mazets and Windholz [12] used a direct integration of the Schrödinger equation to discuss the
coherent time-evolution under strong fields. Furthermore, coherent suppression of tunneling in coherent
three-level systems was recently investigated by Unanyan, Guérin, and Jauslin [13].

We have developed a formalism for systematic expansions both around the weak-coupling (RWA) limit,
and the strong-coupling regime of dissipative three-level systems. Since the technical treatment is quite
different for these two cases, in the present paper we will only concentrate on a systematic perturbation
theory in the weak-coupling regime and discuss the strong coupling case in a separate publication. The
matrix perturbation scheme developed here will allow us to solve all stationary quantities and find, e.g.,
systematic corrections to the RWA for the excited state population profile.

The paper is organised as follows. In Sect. 2, we introduce the model and the equations of motion.
In Sect. 3, we re-derive the RWA for the three-level system. In Sect. 4, we present the formalism for the
expansion. Sect. 5 is devoted to the display and explanation of the results, and the extended appendices A-E
contain detailed derivations of the equations.

2 Model and evolution equations

We start from the Hamiltonian

H(t) = H0 + d ·
∑

j=1,2

ejEj cos(ωjt) , (1)

where H0 is the Hamiltonian of the free three-level system {|1〉, |2〉, |0〉} of energies E1, E2, E0, and d
is the dipole moment operator (coupling transition 1–0 by the action of field 1 and transition 2–0 by the
action of field 2). The total electric field containing the two main frequencies ω = (ω1, ω2) is characterised
by the unit vector ej , and real-valued amplitudes E = (E1, E2). We consider a Λ-configuration, Fig. 1,
with relaxation processes due to spontaneous emission at rates Γsp

i (i = 0, 1, 2), where Γ0 ≈ Γsp
0 ,

Γ0→1 ≈ Γ0→2 ≈ Γsp
0 /2 and Γ01 = Γ01 ≈ Γ02 = Γ02 ≈ Γsp

0 /2. The detuning of the two fields (frequencies
ω1 and ω2, Rabi frequencies Ω1 and Ω2) with respect to their respective resonance condition are measured
by the parameter δ1 = ω1 − ω01 and δ2 = ω2 − ω02 where ω0j = (E0 − Ej)/� with j = 1, 2. The Raman
detuning δR from the Raman two photon-resonance condition is defined as the relative detuning of both
fields as δR = δ1 − δ2. Specifically we investigate how the mean value of the occupation of the upper level,
〈ρ00(t → ∞)〉, when the system relaxes at t → ∞, varies when the two field frequencies are scanned
around the Raman resonance value, δR = 0. We devise a perturbative method to estimate this physical
quantity, where the RWA results to be the approximation of order zero.

The evolution of the system is governed by the optical Bloch evolution equations,

dρ(t)
dt

=
1
i�

[H(t), ρ(t)] + Rρ(t) , (2)
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Fig. 1 The parameters involved in the cal-
culation. The two monochromatic fields are
defined by their respective frequencies ω1 and
ω2, and their respective intensities or Rabi
frequencies Ω1 and Ω2. The system is char-
acterised by the three Bohr frequencies ω01,
ω02 and ω21, and the rate of population de-
cay Γ0 from the exited-level and the decay
rate Γ12 = Γ21 for the coherences between
the two lower levels. The optical detuning of
the two fields from their respective optical
resonances is given by δ1 = ω1 − ω01 and
δ2 = ω2 − ω02 and their relative difference is
the Raman detuning δR = δ1 − δ2.

which explicitly read

dρ00

dt
= −Γ0ρ00 + iΩ1 cos(ω1t)ρ01 + iΩ2 cos(ω2t)ρ02 − iΩ1 cos(ω1t)ρ10−iΩ2 cos(ω2t)ρ20,

dρ11

dt
=

Γ0

2
ρ00 − iΩ1 cos(ω1t)ρ01 + iΩ1 cos(ω1t)ρ10

dρ22

dt
=

Γ0

2
ρ00 − iΩ2 cos(ω2t)ρ02 + iΩ2 cos(ω2t)ρ20

dρ01

dt
= −

(
Γ0

2
+ iω01

)
ρ01 + iΩ1 cos(ω1t) (ρ00 − ρ11) − iΩ2 cos(ω2t)ρ21

dρ02

dt
= −

(
Γ0

2
+ iω02

)
ρ02 + iΩ2 cos(ω2t) (ρ00 − ρ22) − iΩ1 cos(ω1t) ρ12

dρ21

dt
= −(Γ21 + iω21)ρ21 + iΩ1 cos(ω1t)ρ20 − iΩ2 cos(ω2t)ρ01 ,

(3)

with ρ∗
ij = ρji and where ωij are the transition frequencies of the system. The Rabi frequencies Ω1 and Ω2,

which are proportional to the intensity of each respective field, are defined as follows

Ω1 =
−d01 · e1 · E1

�
, Ω2 =

−d02 · e2 · E2

�
, (4)

where d0j are the matrix elements 〈0|d|j〉 of the dipole moment operator d = er. There are no diagonal
elements of d because it is a vector operator and thus has odd parity and the states |i〉 are assumed to
have definite parity. A priori the values of these Rabi frequencies are complex numbers. However, if the
eigen-states |i〉 correspond, for example, to three different orbital states of same quantum magnetic number
m, it can be shown that, by adjusting appropriately the phase of these eigen-states, eq. (4) yields real values
for the Rabi frequencies. The consideration of only ∆m = 0 transitions is consistent with the fact that the
system is driven by linear polarised fields in this work.

3 Rotating-wave approximation

Let us first re-derive the Rotating-Wave Approximation (RWA) for the three-level system. Throughout this
section, we assume that both the coupling to the external fields and the damping are small and that we are
close to resonance, i.e.

Ω1, Ω2, Γ0, Γ21, |ω1 − ω01|, |ω2 − ω02| � ω1 ∼ ω2 . (5)
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4 B. N. Sanchez and T. Brandes: The Λ system driven by two laser fields

The RWA consists of neglecting the non-resonant part of the fields and resolving the equations of motion in
the transformed picture. The problem thus being simply the evolution of the free dressed system becomes
stationary and can easily be back-transformed into the original picture (‘Laboratory frame’).

3.1 Reference frame transformation

For weak coupling (Ω1 � ω01 and Ω2 � ω02), the representation where the fields can be interpreted as a
relatively weak non-resonant force, corresponds to the unitary operator

U(t) =




1 0 0
0 e−i(ω1−ω2)t 0
0 0 e−iω1 t


 , (6)

which is written with respect to the eigen-state basis {|1〉, |2〉, |0〉}. This yields

dρ̃(t)
dt

=
1
i�

[
H̃(t), ρ̃(t)

]
+ R̃ρ̃(t) , (7)

where we introduced

ρ̃ = U+ρU , H̃(t) = −i�U+ ∂U

∂t
+ U+H(t)U , (8)

and the relaxation operator remains unchanged, R̃ = R. Note that in the case of a two-level system
interacting with one monochromatic field, this transformation has a simple geometrical interpretation in
terms of a ‘rotating frame’. It is now easy to show that the explicit form of the transformed Hamiltonian
H̃(t) is (we set E1 = 0 for convenience)

H̃(t) = �




0 0 Ω1
2 (1 + e−i2ω1t)

0 −δ1 + δ2
Ω2
2 (1 + e−i2ω2t)

Ω1
2 (1 + ei2ω1t) Ω2

2 (1 + ei2ω2t) −δ1


 ,

where δj = ωj − ω0j for j = 1, 2 are the detuning of each field from their respective optical resonances.
In the RWA, one now neglects the oscillating part of this Hamiltonian which is replaced by

H̃rwa = �




0 0 Ω1
2

0 −δ1 + δ2
Ω2
2

Ω1
2

Ω2
2 −δ1


 . (9)

This time-independent Hamiltonian H̃rwa can be interpreted as the mathematical description of the system
as seen from the transformed picture. The approximate evolution is dictated by eq. (7) with H̃(t) replaced
by H̃rwa. Thus, the problem has been reduced to the evolution of the free dressed system with the same
relaxation mechanisms. As a stationary problem, it can easily be solved analytically.

3.2 Validity of the RWA

In the Laboratory frame, the effect of the driving fields cannot be ignored although they constitute a weak
perturbation there (Ω1 � ω01 and Ω2 � ω02). This is because they are at near resonance with the system
(ω1 ∼ ω01 and ω2 ∼ ω02). In other words, the ‘small force’ is in phase with the natural oscillations of the
system and it has an accumulative effect that can considerably change the state of the ‘heavy system’ with
little effort.
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However, this is in contrast with the situation as it is perceived in the transformed picture. There, for
example, the natural oscillations of the dressed system are much slower. For example, at Raman resonance
condition, δR = δ1 −δ2 = 0, a simple diagonalisation of the Hamiltonian H̃rwa shows that the values of the
characteristic frequencies of the dressed system are λ1 =

√
δ2
1 + Ω2

1 + Ω2
2 and λ2,3 = (

√
δ2
1 + Ω2

1 + Ω2
2 ±

δ1)/2, which are much smaller than ω01 or ω02 in situations of near optical resonance (δ1 � ω01 and
δ2 � ω02) and when the coupling is weak (Ω1 � ω01 and Ω2 � ω02). On the other hand, the frequencies
of the varying perturbation discerned in the transformed picture are 2ω1 and 2ω2 as the oscillating part
of the Hamiltonian H̃(t) indicates. These two facts show that the driving force, which is also not too
strong compared with the resistance of the dressed system to alter its own dynamics (the magnitudes of
the oscillating and static parts of H̃(t) are of the same order), is far out of resonance, e.g. λ1,2,3 �
2ω1,2 since ω1,2 ∼ ω01 ∼ ω02 at near optical resonance, and consequently it can be safely neglected in
this approximation.

The stationary state ρ̃asy can be transformed back to the Laboratory frame,

ρ(t → ∞) = U(t → ∞)ρ̃asyU+(t → ∞) , (10)

which is particularly simple if we are interested in the population ρ00(t → ∞). After straightforward
algebra, one obtains

〈ρ00(t → ∞)〉rwa = Ω2 [
Ω2Γ12 + Γ0

(
Γ2

12 + δ2
R

)]
/ {

2Ω2Γ2
0Γ12 + Ω2Γ12

[
3Ω2 + (δ1 + δ2)

2
]

+ Γ3
0
(
Γ2

12 + δ2
R

)
(11)

+ Γ0
[
Ω4 + 3Ω2Γ2

12 + 2Γ2
12

(
δ2
1 + δ2

2
) − 2Ω2δ2

R +
(
3Ω2 + 2δ2

1 + 2δ2
2
)
δ2
R

]}
,

where we have chosen Ω1 = Ω2 = Ω for simplicity.

4 An expansion scheme for the RWA

In this section, we present a systematic expansion, which yields the rotating-wave approximation as the
lowest order contribution. We notice that ρ00 = 1 − ρ11 − ρ22, and perform the following manipulations
explicitly only for ρ11, ρ01, and ρ21. The other matrix elements are easily obtained by similar operations
and change of indices.

We now consider ρij(t) in eqs. (3) as functions depending on t in an indirect way through two intermediate
time variables t1(t) and t2(t), e.g. ρij(t) = ρij [t1(t), t2(t)]. If we choose t1 and t2 as t1 = t1(t) = t and
t2 = t2(t) = t, we find that the rate of change of a generic matrix element can be written as

dρij

dt
=

(
∂ρij

∂t1
+

∂ρij

∂t2

)
t1=t2=t

, (12)

where we have applied the chain rule and used the fact that ∂t1/∂t = ∂t2/∂t = 1.
This means, e.g.,

∂ρ11

∂t1
+

∂ρ11

∂t2
=

Γ0

2
(1 − ρ11 − ρ22) − iΩ1 cos(ω1t1)ρ01 + iΩ1 cos(ω1t1)ρ10 (13)

and similar for the other matrix elements. Equivalence to the original equations is achieved if and only if
the constraint

t1 = t2 = t (14)
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6 B. N. Sanchez and T. Brandes: The Λ system driven by two laser fields

holds. In the following, we consider the variables t1 and t2 as two independent variables, thus obtaining a
set of partial differential equations, and only set t1 = t2 = t at the end. Expanding each cosine, we find

Dρ11 = − iΩ1

2
e−iω1t1ρ01 +

iΩ1

2
eiω1t1ρ10 +

Γo

2
− Γo

2
ρ11 − Γo

2
ρ22 − iΩ1

2
eiω1t1ρ01

+
iΩ1

2
e−iω1t1ρ10 ,

Dρ01 = −iΩ1eiω1t1ρ11 − iΩ1

2
eiω1t1ρ22 − iΩ2

2
eiω2t2ρ21 +

iΩ1

2
eiω1t1 −

(
Γo

2
+ iω01

)
ρ01

− iΩ1e−iω1t1ρ11 − iΩ1

2
e−iω1t1ρ22 − iΩ2

2
e−iω2t2ρ21 +

iΩ1

2
e−iω1t1 ,

Dρ21 =
iΩ1

2
eiω1t1ρ20 − iΩ2

2
e−iω2t2ρ01 − (Γ21 + iω21) ρ21 +

iΩ1

2
e−iω1t1ρ20

− iΩ2

2
eiω2t2ρ01 ,

(15)

where the underlined terms are those neglected in the RWA and similar equations hold for the remaining
matrix elements. The operator D is the differential operator D = ∂/∂t1 + ∂/∂t2.

4.1 Double Laplace transform

We now transform the partial differential eqs. (15) into ordinary algebraic equations by using the double
Laplace transform,

ρij(z1, z2) =

∞∫
0

dt1

∞∫
0

dt2e−z1t1−z2t2ρij(t1, t2) , (16)

where we have distinguished the direct from the transformed functions by the use of the independent variables
as their arguments. Let us abbreviate this double integral by using the symbol L, and write ρij(z1, z2) =
Lρij(t1, t2). On the left-hand side, the expression to transform is always of the form Dρij = ∂ρij/∂t1 +
∂ρij/∂t2. Thus, recalling the relations between the Laplace transforms of derivatives of functions, we have

LDρij(t1, t2) = z1ρij(z1, z2) + z2ρij(z1, z2) − ρij(t1 = 0, z2) − ρij(z1, t2 = 0) (17)

where, for example, ρij(t1 = 0, z2) is the normal Laplace transform of the function ρij(t1 = 0, t2). This
expression can be further simplified if the boundary conditions ρij(t1 = 0, t2) = 0 and ρij(t1, t2 = 0) = 0
are chosen. In that case, we have

LDρij = z1ρij(z1, z2) + z2ρij(z1, z2) . (18)

We mention that there remains an arbitrariness in the choice of the boundary conditions when one is not
interested in the transient behaviour of the system as is the case in this work. This is due to the fact that we
are not interested in the function ρij(t1, t2) for all the values of t1 and t2. The asymptotic behaviour of the
system as t → ∞, however, does not depend on this choice.

After shifting the independent variables z1 and z2, we finally obtain the following equations,

iΩ1

2
ρ̃01 (z1 + i2ω1, z2) − iΩ1

2
ρ̃10 (z1 − i2ω1, z2) +

(
z1 + z2 +

Γo

2

)
ρ̃11 (z1, z2)

+
Γo

2
ρ̃22 (z1, z2) +

iΩ1

2
ρ̃01 (z1, z2) − iΩ1

2
ρ̃10 (z1, z2) =

Γo

2z1z2
,

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Ann. Phys. (Leipzig) (2004) / www.ann-phys.org 7

iΩ1ρ̃11 (z1 − i2ω1, z2) +
iΩ1

2
ρ̃22 (z1 − i2ω1, z2) +

iΩ2

2
ρ̃21 (z1, z2 − i2ω2)

+
(

z1 + z2 +
Γo

2
− iδ1

)
ρ̃01 (z1, z2) (19)

+ iΩ1ρ̃11 (z1, z2) +
iΩ1

2
ρ̃22 (z1, z2) +

iΩ2

2
ρ̃21 (z1, z2) =

iΩ1

2z2

1
(z1 − i2ω1)

+
iΩ1

2z2z2
,

− iΩ1

2
ρ̃20 (z1 − i2ω1, z2) +

iΩ2

2
ρ̃01 (z1, z2 + i2ω2)

+ (z1 + z2 + Γ21 − iδR) ρ̃21 (z1, z2) − iΩ1

2
ρ̃20 (z1, z2) +

iΩ2

2
ρ̃01 (z1, z2) = 0 ,

where we have also re-defined the dependent variables as ρ̃jj(z1, z2) = ρjj(z1, z2), ρ̃01(z1, z2) = ρ01(z1 −
iω1, z2), ρ̃10(z1, z2) = ρ10(z1 + iω1, z2), ρ̃21(z1, z2) = ρ21(z1 − iω1, z2 + iω2) and ρ̃20(z1, z2) =
ρ20(z1, z2 + iω2). The parameter δ1 = ω1 − ω01 is the detuning of the laser 1 from its resonance, and
δR = δ1 − δ2 = ω1 − ω2 − ω01 + ω02 is the Raman detuning from the two-photon resonance. Note that
we have also arranged the unknowns to be on the left-hand side.

This shift in the Laplace domain corresponds to the transformed picture introduced in the previous section
when working in real space. In fact, eqs. (19) are just the double Laplace transform of the matrix elements
of the operator eq. (7) after introducing the times t1 and t2. Thus the dependent variables in eqs. (19) are
simply ρ̃(z1, z2) = Lρ̃(t1, t2) where ρ̃(t) = ρ̃(t1 = t, t2 = t).

4.2 Matrix perturbation theory

The full set of equations for the density operator in the Laplace domain can be written as

¯̄α1ρ̄(z1 − i2ω1, z2) + ¯̄α2ρ̄(z1, z2 − i2ω2))

+ ¯̄π(z1, z2)ρ̄(z1, z2 + ¯̄β1ρ̄(z1 + i2ω1, z2) + ¯̄β2ρ̄(z1, z2 + i2ω2) = χ̄(z1, z2) , (20)

where ¯̄α1, ¯̄α2, ¯̄β1, ¯̄β2, ρ̄(z1, z2) and χ̄(z1, z2) are the matrices defined in Appendix A, and ¯̄π(z1, z2) is the
square matrix in eq. (21) below. Eq. (20) is our main result; in fact it is a short-hand notation for an infinite
number of coupled equations for the Laplace components of the density operator.

4.2.1 Lowest order truncation: RWA

The two first terms and the last two on the left-hand side of (20) are made up solely of the underlined terms of
eqs. (19), which are neglected in the RWA. Therefore, since the matrices ¯̄αj , ¯̄βj and ¯̄π(z1, z2) are of the same
order of magnitude, the RWA neglects ρ̄(z1±i2ω1, z2) and ρ̄(z1, z2±i2ω2) when compared with ρ̄(z1, z2)
so that eq. (20) becomes immediately solvable. This suggests that the function |ρ̄(z1, z2)| is centred around
the point (z1 = 0, z2 = 0). Note that we are only interested in ρ̄(z1, z2) for z1 → 0 and z2 → 0 for the
stationary behaviour of the system. Then, in this zeroth-order approximation, we consider |ρ̄(z1±i2ω1, z2)|,
|ρ̄(z1, z2 ± i2ω2)| � |ρ̄(z1, z2)|, and assumed that ρ̄(z1 ± i2ω1, z2) ∼ ρ̄(z1, z2 ± i2ω2) ∼ 0. With these
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8 B. N. Sanchez and T. Brandes: The Λ system driven by two laser fields

simplifications, the equation to solve becomes




(z1+z2+
Γo
2 ) Γ0

2
iΩ1
2 0 0 −iΩ1

2 0 0
Γo

2 (z1+z2+
Γo
2 ) 0 iΩ2

2 0 0 −iΩ2
2 0

iΩ1
iΩ1
2

(
z1+z2+

Γ0
2 −iδ1

)
0 iΩ2

2 0 0 0
iΩ
2 iΩ2 0 (z1+z2+

Γo
2 −iδR) 0 0 0 iΩ1

2
0 0 iΩ2

2 0 (z1+z2+Γ21−iδR) 0 −iΩ1
2 0

−iΩ1 − iΩ1
2 0 0 0 (z1+z2+

Γo
2 +iδ1) 0 − iΩ2

2
− iΩ2

2 −iΩ2 0 0 − iΩ1
2 0 (z1+z2+

Γo
2 +iδ2) 0

0 0 0 iΩ1
2 0 − iΩ2

2 0 (z1+z2+Γ21+iδR)




×




ρ̃11(z1, z2)
ρ̃22(z1, z2)
ρ̃01(z1, z2)
ρ̃02(z1, z2)
ρ̃21(z1, z2)
ρ̃10(z1, z2)
ρ̃20(z1, z2)
ρ̃12(z1, z2)




=
1

z1z2




Γo

2
Γo

2
iΩ1
2

iΩ2
2
0

− iΩ1
2

− iΩ2
2

0




. (21)

which is the RWA equation in Laplace space.

4.2.2 Beyond the RWA

We now can go beyond the RWA in a systematic truncation scheme which we explain in the following. For
example, in the first order approximation beyond RWA, we will not longer neglect ρ̄(z1 ± i2ω1, z2) and
ρ̄(z1, z2 ± i2ω2) when compared with ρ̄(z1, z2) in eq. (20). We can obtain the additional equations for these
variables by shifting the independent variables z1 → z1 ± i2ω1 and z2 → z2 ± i2ω2 in the main eq. (20).
For example, the shift z1 → z1 − i2ω1, z2 → z2 yields the following additional equation

¯̄α1ρ̄(z1 − i4ω1, z2) + ¯̄α2ρ̄(z1 − i2ω1, z2 − i2ω2) + ¯̄π(z1 − i2ω1, z2)ρ̄(z1 − i2ω1, z2)

+ ¯̄β1ρ̄(z1, z2) + ¯̄β2ρ̄(z1 − i2ω1, z2 + i2ω2) = χ̄(z1 − i2ω1, z2) . (22)

We see that the price paid is the introduction of new unknowns such as ρ̄(z1 − i4ω1, z2), ρ̄(z1 − i2ω1, z2 −
i2ω2) and ρ̄(z1 −i2ω1, z2 +i2ω2). The last two new unknowns should be of the same order of magnitude as
the old unknowns ρ̄(z1 ± i2ω1, z2) and ρ̄(z1, z2 ± i2ω2). However, ρ̄(z1 − i4ω1, z2) should be considered
an order of magnitude smaller under the assumption of the function |ρ̄(z1, z2)| having a bell-like shape.
Therefore, we can neglect the term containing ρ̄(z1 − i4ω1, z2) in eq. (22) quite in the same way as we
did before for the terms containing the variables ρ̄(z1 ± i2ω1, z2) and ρ̄(z1, z2 ± i2ω2) in eq. (20) when
compared to the variable ρ̄(z1, z2) in the RWA. Thus eq. (22) becomes

¯̄α2ρ̄(z1 − i2ω1, z2 − i2ω2) + ¯̄π(z1 − i2ω1, z2)ρ̄(z1 − i2ω1, z2)

+ ¯̄β1ρ̄(z1, z2) + ¯̄β2ρ̄(z1 − i2ω1, z2 + i2ω2) = χ̄(z1 − i2ω1, z2) . (23)

Having two equations whose unknowns have the same order of magnitude, we still require additional
equations: we choose shifts of the form z1 → z1 + i2pω1, z2 → z2 + i2qω2 with p, q = {−1, 0, 1}
and repeat the process above, again neglecting ρ̄(z1 ± i4ω1, z2) or ρ̄(z1, z2 ± i4ω2) when compared with
ρ̄(z1 ± i2ω1, z2) or ρ̄(z1, z2 ± i2ω2).
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The general scheme for the nth-order approximation therefore is as follows. The variables to be neglected
are ρ̄(z1 ± i2(n+1)ω1, z2) and ρ̄(z1, z2 ± i2(n+1)ω2), with the set of (2n+1)2 shifts of the independent
variables z1 and z2 necessary to yield a complete set of equations from the main eq. (20) given by z1 →
z1 + i2pω1, z2 → z2 + i2qω2 with p, q = {−n, −n + 1, . . . , 0, . . . , n − 1, n}.

Since we are only interested in average quantities in our approximation scheme here, one can furthermore
neglect all terms like

1
z1 ± ip2ω1

or
1

z2 ± iq2ω2
, (24)

with p, q = {−n, . . . ,−1, 1, . . . , n} and p, q �= 0 in the nth-order approximation. These terms appear in
the shifted functions χ̄(z1 + i2pω1, z2 + i2pω2) and generate oscillating contributions around the average.

As a result, we end up with (2n + 1)2 matrix equations of the type of eq. (20) or eq. (23) for (2n + 1)2

unknowns of the form ρ̄(z1+i2pω1, z2+i2qω2). Equivalently, recalling that each of these matrix equations
represents actually a set of eight elementary equations, the ultimate set of equations to be solved consists of
8(2n + 1)2 elementary equations in the nth-order approximation. This can be written symbolically, again
using matrix notation, as

�
�������

����� ��� � ����� ���

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
��

�
��

�
�
�
��

�
��

�
�������

�
�������
�

��

��

��

�
�������
�

�

����

�
�������
�

��

��

��

�
�������
� (25)

where the 8(2n+1)2 × 8(2n+1)2 matrix can be thought of being made up of sub-blocks consisting of the
8 × 8 matrices ¯̄αi, ¯̄βj and ¯̄π(z1 + i2pω1, z2 + i2qω2) with i, j = {1, 2} and p, q = {−n, . . . , 0, . . . , n}.
Thus the solution of eq. (25) is essentially the nth-order approximation. Note the similarity between eq. (25)
and eq. (21) for the RWA. In Appendix A-C, we give a systematic and straight-forward procedure to form
the matrices of eq. (25) from the main eq. (20).

4.3 Analytical solutions from determinants

4.3.1 RWA

The population ρ̃11(z1, z2) in the RWA can be written as

ρ̃11(z1, z2) = ρ11(z1, z2) =
1

z1z2

||¯̄π1(z1, z2)||
||¯̄π(z1, z2)|| , (26)

where ¯̄π(z1, z2) is the eight-by-eight matrix of eq. (21) and ¯̄π1(z1, z2) is the matrix obtained from ¯̄π(z1, z2)
by replacing its first column by the matrix column on the right-hand side of eq. (21). Here, double bars
indicate the determinant of the matrix. Again, in the stationary limit this simplifies to

〈ρ11(t → ∞)〉 = L−1
(

1
z1z2

||¯̄π1(0, 0)||
||¯̄π(0, 0)||

)
=

||¯̄π1(0, 0)||
||¯̄π(0, 0)|| , (27)

a rigorous proof for the case of the two-level system is given in Appendix D.
Using ρ00 = 1 − ρ11 − ρ22, Eq. (27), and the corresponding relation for the population ρ22, one

furthermore finds

〈ρ00(t → ∞)〉 =
||¯̄π(0, 0) − ¯̄π1(0, 0) − ¯̄π2(0, 0)||

||¯̄π(0, 0)|| . (28)
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The three terms in the numerator can be combined into a single determinant by using the property of the
determinant of being a multi-linear function of its columns. Thus we have

〈ρ00(t → ∞)〉 =
||¯̄π12(0, 0)||
||¯̄π(0, 0)|| , (29)

where ¯̄π12(0, 0) results to be the matrix obtained from ¯̄π(0, 0) by subtracting the matrix column on the
right-hand side of eq. (21) from the first column and subtracting the first column from the second column.
Note that eqs. (27) to (29) again correspond to average values of the asymptotic approximate solution. For
the special case of Ω1 = Ω2 = Ω, this calculation yields exactly the result already found in eq. (11).

4.3.2 n-th order truncation

For the nth-order approximation, the columns corresponding to the unknowns ρ̃11(z1, z2) and ρ̃22(z1, z2)
of the 8(2n + 1)2 × 8(2n + 1)2 matrix of the eq. (25) are no longer, in general, respectively the first and
second columns as in the RWA. As shown in Appendix A-C, after re-arranging the variables one finds

〈ρ00(t → ∞)〉 =
||

n+1︷ ︸︸ ︷
¯̄π . . . π16n(n+1)+1,16n(n+1)+2(0, 0)||

|| ¯̄π . . . π︸ ︷︷ ︸
n+1

(0, 0)|| , (30)

where ¯̄π . . . π(0, 0) is now the 8(2n + 1)2 × 8(2n + 1)2 matrix of eq. (25) with z1 = z2 = 0 and
¯̄π . . . π16n(n+1)+1−16n(n+1)+2(0, 0) results to be the matrix obtained from ¯̄π . . . π(0, 0) by subtracting

the matrix column on the right-hand side of eq. (25) from its 16n(n + 1) + 1-th column and subtracting
its 16n(n + 1) + 1-th column from its 16n(n + 1) + 2-th column. Here, the derivation of the nth-order
approximation of eq. (30) has been based on the symbolic eq. (25). This matrix eq. (25) represents actually
a set of (2n+1) equations of the form of, for example, eq. (20) or eq. (23). There are many ways to arrange
these shifted equations in a single matrix equation which, however, all describe the same physics within a
given order of approximation.

In Appendix A-C, we present a complete derivation of eq. (25) or eq. (30) for the case of the first order
approximation, n = 1, and a straight-forward procedure to obtain the relevant matrices from the sub-blocks
consisting of the more elementary matrices ¯̄αi, ¯̄βi, ¯̄π(z1 + i2pω1, z2 + i2qω2), χ̄(z1 + i2pω1, z2 + i2qω2)
and ρ̄(z1 + i2pω1, z2 + i2qω2) for any order of approximation. Analytical results to any given order n are
then easily obtained by using standard algebraic software packages.

4.4 Physical interpretation

As indicated before, the main eq. (20) of this theory is the double Laplace transform of the equation of the
density matrix operator in the transformed picture, where the values of the field frequencies are perceived as
2ω1 and 2ω2 rather than ω1 and ω2, e.g ρ̃ij(z1, z2) = Lρ̃ij(t1, t2). We can therefore call this a mathematical
description of a new three-level system, the dressed system, interacting with two (fictitious) photonic fields
of frequency 2ω1 and 2ω2.

On the other hand, we have seen that the exact solution of (20) corresponding to the state of the system
in steady-state situation as t → ∞, requires the knowledge of all the density matrix elements ρ̃ij(z1 +
ipω1, z2 + iqω2) with p, q = {−∞, . . . ,+∞} for z1 → 0 and z2 → 0. Therefore, before giving any
interpretation to this variables, let us write them again using a different notation as ρ̃ij(p, q), where the
integers p = 0,±1, . . . and q = 0,±1, . . . are now an abbreviated way to indicate actually the values ip2ω1
and iq2ω2 respectively. Then this extended density matrix operator ρ̃ij(n, m) can be interpreted as the
density matrix operator describing the state of the system plus the state of the two photonic fields. In this
interpretation, the indices i, j are the quantum numbers of the different states of the system whereas the
indices p, q become the quantum numbers corresponding to the different states of the two photonic fields.
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Then, for example, ρ̃ij(−1, 2) indicates, regarding only to the state of the fields, the probability that the
field 1 has one photon of frequency 2ω1 less and the field 2 has two photons of frequency 2ω2 more than
the photon averages of the respective field.

In this interpretation, the RWA describes processes without exchange of photons with the dressed system.
The n = 1 truncation then describes processes involving the exchange of one photon of frequency 2ω1 and
one of frequency 2ω2 with the dressed system. In general, the n-th truncation describes processes involving
the exchange of n photons from each field with the dressed system.

Now we have to consider that the dressed system is actually the bare system exchanging one real photon
of frequency ω1 or ω2 from each real field, and that the ‘fictitious’ photons of frequencies 2ω1 and 2ω2
used in the discussion above manifest in reality as two real photons of frequency ω1 and ω2, respectively.
Then, the physical interpretation in the Laboratory frame is as follows: the solution of order zero (RWA)
describes processes involving the exchange of one real photon of frequencies ω1 or ω2 from each field with
the bare system. In general, the solution of order n describes processes involving the exchange of 2n + 1
real photons from each real field with the real system.

5 Results

Before we apply and evaluate our method for three-level systems, we present results for two-level sys-
tems [14] both as a consistency check and as a test of the method itself. In this case, the physical inter-
pretation remains essentially the same. The only difference is that now there is only one photonic field of
frequency ω and one transition frequency ω0.

5.1 Check: results for two-level systems

Here, the standard quantity plotted is the mean value of the inversion, 〈w(t)〉 = 〈ρ22(t) − ρ11(t)〉, when
the system relaxes ideally at t → ∞, as a function of the field frequency ω. The coupling of the field is
given as usual by the only Rabi frequency Ω, and the relaxation coefficients are the population decay, Γ0,
from the upper-level and the dephasing rate of the two levels, Γ12 = Γ0/2.

In Fig. 2, we compare the numerical solution with the RWA and the first-order approximation. The first-
order approximation and the numerical solution practically coincide, and their values start to differ from
those predicted by the RWA. Also one recognises that the maximum in the inversion, is achieved not exactly
at ω = ω0 = 1, as the RWA predicts, indicating a shift in the true resonance frequency. This is the famous
Bloch-Siegert shift [15,16]. Overall, the physics here is dominated by processes involving the exchange of
one photon of frequency ω = ω0 = 1 (peak at ω = 1).

Furthermore, there is a new, although less pronounced, peak at field frequency ω = ω0/3 = 1/3, which
indicates processes involving the exchange of three photons of frequency ω = 1/3. A fact that passes totally
unnoticed in the RWA but not in the first-order approximation where a peak also appear there. Again, this
shows the correctness of the physical interpretation of the perturbative method.

5.1.1 Strong field limit

In Fig. 3, we compare the numerical solution with the first, second, third and fourth order of approximation
for an intensity of the field equal to Ω = 0.99. Apart from the main resonance at ω = ω0 = 1, the numerical
solution shows four extra peaks. On the other hand, the first-order approximation has only one extra peak,
the second-order approximation has two extra peaks, the third-order approximation has three extra peaks
and the fourth-order approximation has fourth extra peaks. Under our previous physical interpretation of
each order of approximation, this means that these four extra peaks of the numerical solution are simply
three-photon, five-photon, seven-photon and nine-photon resonances. The fact that they are not centred
exactly at ω = 1/3, ω = 1/5, ω = 1/7 and ω = 1/9 is due to the anti-resonant terms that have a large
effect at this high intensity of the field. This selection rule of odd number of photons for the multi-photon
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0

〈(ρ22−ρ11)(t→∞)〉

RWA solution
First order approximation
Numerical solution

Fig. 2 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, RWA
indicated by the dotted line and first order approximation indicated by the plus signs for the steady-state
inversion 〈ρ22(t → ∞) − ρ11(t → ∞)〉 for the two-level system as a function of the field frequency ω.
The intensity of the field is so strong that there also appears a second peak in the numerical solution near
ω = 1/3 indicating a three-photon resonance as well. Parameters: Ω = 0.3, Γ0 = 0.1, Γ12 = Γ0/2.
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〈(ρ22−ρ11)(t→∞)〉 First order approximation
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Third order app.
Fourth order app.
Numerical solution

Fig. 3 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, first order
approximation indicated by the dotted line, second order approximation indicated by the plus signs, third
order approximation indicated by the circles and fourth order approximation indicated by the crosses for
the steady-state inversion 〈ρ22(t → ∞) − ρ11(t → ∞)〉 for the two-level system as a function of the field
frequency ω. The intensity of the field has been increased even more so that there now appear four extra peaks
in the numerical solution indicating a three-photon, five-photon, seven-photon and nine-photon resonances
as well. Parameters: Ω = 0.99, Γ0 = 0.1, Γ12 = Γ0/2.
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resonances of the two-level system has already been deduced by Shirley [9] in his seminal paper on Floquet
theory in an undamped system, which is reassuring again since it agrees perfectly well with the interpretation
of the theory here.

5.1.2 Bloch-Siegert shift

Another check of the validity of the perturbative method is to re-derive the Bloch-Siegert shift: The cor-
responding maximum of the inversion is not centred exactly at ω = ω0 = 1. The Bloch-Siegert shift for
this frequency, δB−S = ωB−S − ω0, can be estimated by calculating the position of this maximum in an
analytical solution. Here, the RWA (which predicts a maximum at ωmax = ω0) predicts δB−S = 0. Setting
the relaxation parameter Γo → 0 and solving a simple extreme value problem for the analytical solution of
order four, we find

ωB−S = ω0 + δB−S = ω0 +
Ω2

4ω0
+

Ω4

64ω3
0

− 53
2048

Ω6

ω5
0

+
103

32768
Ω8

ω7
0

+ . . . , (31)

which agrees perfectly with the expression obtained by Shirley [9] if we take into account that the definition
of his Rabi frequency differs from ours just in a factor of 2, e.g, b = Ω/2. He obtained this expansion by
using the Floquet theory of an isolated system.

5.2 Results: three-level system

In our numerical results, we have chosen ω21 = 176 × 2−12ω01 for numerical convenience (see appendix
E).

Fig. 4 shows a comparison between the RWA, the n = 1, and the exact solution for the occupation of
the upper level. All the parameters are measured in units of the transition frequency ω01, which has here
been chosen to be equal to ω01 = 1. Therefore, the condition Ω1, Ω2 � ω01 ∼ ω02 for the RWA to be a
good approximation does not apply now, for these large values of the Rabi frequencies, Ω1 = Ω2 = ω01/4.
This is effectively corroborated in Fig. 4. The dotted curve, representing the values assumed by the RWA,
passes approximately 10% above the continuous curve (the numerical result), on the left of δ1 = 0 around
δ1 = −2Γ0 and 10% below on the right around δ1 = 2Γ0, showing a considerable discrepancy.

The other important aspect is the fact that coherent population trapping is distorted for these large values
of the Rabi frequencies. The usually very narrow dip in the occupation of the |0〉 upper level around the
two-photon Raman resonance condition now broadens drastically. Furthermore, the splitting of the two
maxima away from each other is also accompanied by a gradual loss of definition of the Raman resonance
trapped state, which corresponds to the rise of the minimum as the intensities of the fields are increased.
Another feature is the loss of symmetry around δR = 0, as compared with the RWA solution.

5.2.1 Beyond the RWA

Fig. 4 also demonstrates that the n = 1st order approximation of our scheme works already nearly perfect
at Ω1 = Ω2 = 0.25.

In Figs. 5 to 9, we compare the different truncation levels of our scheme for Rabi frequencies as increased
from Ω = Ω1 = Ω2 = 0.3 to Ω = Ω1 = Ω2 = 0.8. In Fig. 5, one recognises that at Ω = 0.3, the first-order
approximation starts to fail slightly. The second-order approximation is very good upto Rabi frequency
Ω = 0.4, and only at Ω = 0.5 there is a very slight difference between this curve and the numerical
solution, as Fig. 6 and 7 corroborate. Fig. 8 shows that, if the Rabi frequency is increased even more upto
Ω = 0.6, the third-order approximation performs well. The threshold beyond which this approximation
start to fail is around Ω = 0.8, cf. Fig. 9.
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Fig. 4 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, RWA
indicated by the dotted line and first order approximation indicated by the blue plus signs for the steady-
state excited-state population 〈ρ00(t → ∞)〉 for Λ system as a function of the Raman detuning δR = δ1.
Parameters: δ2 = 0, Ω1 = Ω2 = 0.25, Γ0 = 0.1, Γ12 = 0.0001.
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Fig. 5 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, RWA
indicated by the dotted line and first order approximation indicated by the plus signs for the steady-state
excited-state population 〈ρ00(t → ∞)〉 for Λ system as a function of the Raman detuning δR = δ1.
Parameters: δ2 = 0, Ω1 = Ω2 = 0.3, Γ0 = 0.1, Γ12 = 0.0001.
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Fig. 6 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, RWA
indicated by the dotted line, first order approximation indicated by the plus signs and second order approxi-
mation indicated by the circles for the steady-state excited-state population 〈ρ00(t → ∞)〉 for Λ system as
a function of the Raman detuning δR = δ1. Parameters: δ2 = 0, Ω1 = Ω2 = 0.4, Γ0 = 0.1, Γ12 = 0.0001.
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Fig. 7 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, RWA
indicated by the dotted line, first order approximation indicated by the plus signs and second order approxi-
mation indicated by the circles for the steady-state excited-state population 〈ρ00(t → ∞)〉 for Λ system as
a function of the Raman detuning δR = δ1. Parameters: δ2 = 0, Ω1 = Ω2 = 0.5, Γ0 = 0.1, Γ12 = 0.0001.
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Fig. 8 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, RWA
indicated by the dotted line, first order approximation indicated by the plus signs, second order approximation
indicated by the circles and third order approximation indicated by the crosses for the steady-state excited-
state population 〈ρ00(t → ∞)〉 for Λ system as a function of the Raman detuning δR = δ1. Parameters:
δ2 = 0, Ω1 = Ω2 = 0.6, Γ0 = 0.1, Γ12 = 0.0001.
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Fig. 9 (online colour at: www.ann-phys.org) Numerical solution indicated by the continuous line, RWA
indicated by the dotted line, first order approximation indicated by the plus signs, second order approximation
indicated by the circles and third order approximation indicated by the crosses for the steady-state excited-
state population 〈ρ00(t → ∞)〉 for Λ system as a function of the Raman detuning δR = δ1. Parameters:
δ2 = 0, Ω1 = Ω2 = 0.8, Γ0 = 0.1, Γ12 = 0.0001.
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5.2.2 Efficiency of the method

Figs. 4 to 9 also reveal the rapid convergence of the perturbative method. When the dimensionless coupling
constant g = Ω/ω01 = Ω, is as large as Ω = 0.8, the analytical solution of third order is already a good
approximation. This, combined with the speed of the actual calculation, makes this theory an efficient
method to estimate physical quantities, in this case the occupation of the excited-level.

The first-order approximation, which is essentially the solution of the matrix eq. (38), is much faster
to calculate than the numerical solution in normal practical situations. Indeed, the mathematical operation
to perform is the ratio of two 72 × 72 determinants for this case. We calculated this determinant quotient
160 times (once for each value of the Raman detuning (δR = δ1) plotted in any of Figs. 4 to 9), using
Mathematica, which yields the whole curve for this order of approximation in 8 seconds. For the curves
corresponding to the second and third order of approximation, these times increase to 1:55 minutes and
13:10 minutes, respectively while the sizes of the determinants involved in the operation become 200×200
for one case and 392×392 for the other. The ratios of these times of calculation of one order to the previous
one (1:55/0:08 = 14.375, 13:10/1:55 = 6.87) show that this length of time increases but with smaller
proportion as superior order are considered. A tendency that is also followed in the size of the determinants
involved in each order of calculation.

The essential point here is that the calculation times in each order of approximation are fixed and do not
depend on the actual values of the parameters introduced in Fig. 1. By contrast, the numerical calculation of
the solution in Figs. 4 to 9 are proportional to the relaxation time of the system 1/Γ0. This is because each
point of these curves are obtained essentially by giving an arbitrary initial condition to the evolution eqs. (3)
at t = 0 and propagating the solution far beyond the relaxation time 1/Γ0. The actual specific desired
value in each propagation is the mean value of the excited-level occupation when the system relaxes,
〈ρ00(t → ∞)〉 ideally at t → ∞. We performed this propagation by using a Runge-Kutta method with
adaptive step-size control. The actual routine used yields the whole numerical curves in Figs. 4 to 9 in
only 14:17 minutes because the relaxation coefficient Γ0 has been chosen here unrealistically large, e.g.
Γ0 = 0.1, for convenience.

6 Discussion

In real experimental situations, the value of the excited state lifetime (1/Γ0) is much longer than we
assumed in our model calculations here. This makes the duration of standard numerical calculations increase
proportional to 1/Γ0. As an example in optical resonance, sodium vapour possesses the well-known D lines
at ω01 = 3198770GHz (5890 Å) and ω02 = 3195520GHz (5896 Å) with an absorption line-width of δωI ∼
10GHz at ordinary temperature and pressure [17,18]. In this case, the relaxation parameter Γ0 measured in
units of the transition frequency ω01 or ω02 can be estimated to be Γop

0 ∼ δωI/ω01 ∼ δωI/ω02 ∼ 0.000003.
This makes the numerical calculation based on the Runge-Kutta method very inconvenient.

In the case of the photon-assisted-tunnelling problem mentioned before, this superiority in calculation
speed of the perturbative method is crucial because of the need to consider analytical solutions of order
superior to the RWA. In this practical application the inelastic rate Γ0 at which the quantum dots in GaAs
emit phonons was estimated to be between Γ0 = 7.8 × 10−4 to Γ0 = 1.3 × 10−3 times the characteristic
transition frequencies ω0 = 7.6×102 GHz and ω0 = 1.52×103 GHz respectively [6]. These longer values
of the excited-state lifetime 1/Γ0 makes the numerical calculation, which before lasted 14:17 minutes for
Γ0 = 0.1, now last 18:19:49 hours for the most favourable case of Γ0 = 1.3 × 10−3.

In conclusion, the perturbative method presented in this paper is an elegant theory, easy to use and
constitutes a powerful tool to estimate physical quantities where the RWA is a poor approximation, e.g.
Ω1 ≤ ω01 and Ω2 ≤ ω02. Although in this paper, we have only discussed the ‘isolated’ three-level system
physics, in principle the method is applicable to more general situations (collisions, other decay channels)
and where the optical system is combined with, e.g., transport of electrons in semiconductor structures [6,7].
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A The expression for the first order approximation

In this Appendix, we review the procedure outlined around the explanation of eqs. (22) to (25) leading to
the expression of the nth-order approximation of eq. (30). Let us re-write (20) as

¯̄α1ρ̄(z1 − i2ω1, z2) + ¯̄α2ρ̄(z1, z2 − i2ω2)

+ ¯̄π(z1, z2)ρ̄(z1, z2) + ¯̄β1ρ̄(z1 + i2ω1, z2) + ¯̄β2ρ̄(z1, z2 + i2ω2) = χ̄(z1, z2) , (32)

where

¯̄α1 =




0 0 0 0 0 − iΩ1
2 0 0

0 0 0 0 0 0 0 0
iΩ1

iΩ1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 iΩ1
2

0 0 0 0 0 0 − iΩ1
2 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, ¯̄α2 =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 − iΩ2

2 0
0 0 0 0 iΩ2

2 0 0 0
iΩ2
2 iΩ2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 − iΩ2

2 0 0




,

¯̄β1 =




0 0 iΩ1
2 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−iΩ1− iΩ1
2 0 0 0 0 0 0

0 0 0 0 − iΩ1
2 0 0 0

0 0 0 iΩ1
2 0 0 0 0




, ¯̄β2 =




0 0 0 0 0 0 0 0
0 0 0 iΩ2

2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 iΩ2

2 0 0 0 0 0
0 0 0 0 0 0 0 − iΩ2

2

− iΩ2
2 −iΩ2 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, (33)

ρ̄(z1, z2) =




ρ̃11(z1, z2)
ρ̃22(z1, z2)
ρ̃01(z1, z2)
ρ̃02(z1, z2)
ρ̃21(z1, z2)
ρ̃10(z1, z2)
ρ̃20(z1, z2)
ρ̃12(z1, z2)




, χ̄(z1, z2) =




Γo

2z1z2
Γo

2z1z2
iΩ1
2z2

1
z1−i2ω1

+ iΩ1
2z1z2

iΩ2
2z1

1
z2−i2ω2

+ iΩ2
2z1z2

0
− iΩ1

2z2

1
z1+i2ω1

− iΩ1
2z1z2

− iΩ2
2z1

1
z2+i2ω2

− iΩ2
2z1z2

0




and ¯̄π(z1, z2) being the eight-by-eight matrix in eq. (21).
In the RWA, we neglect ρ̄(z1±i2ω1, z2) and ρ̄(z1, z2±i2ω2) when compared to ρ̄(z1, z2) so that eq. (32)

becomes immediately solvable. This neglect is based on the assumption that |ρ̄(z1, z2)| has a bell-like shape
centred around the point (z1 = 0, z2 = 0) as explained before. To obtain better approximations, we need
more equation, for example in the first order approximation, for the variables ρ̄(z1+i2pω1, z2+i2qω2) with
p, q = {−1, 0, 1}. These equations are obtained from eq. (32) by just performing the shifts z1 → z1+i2pω1,
z2 → z2+i2qω2 with p, q = {−1, 0, 1} in the independent variables z1 and z2, and neglecting the generated
terms containing the variables ρ̄(z1 ± i4ω1, z2) and ρ̄(z1, z2 ± i4ω2), which appear as by-products of this
operation. For example, eq. (23) is obtained by replacing z1 → z1 − i2ω1 and z2 → z2 in eq. (32), and
neglecting the term containing the variable ρ̄(z1 − i4ω1, z2). In synthesis, arranging together all the shifted
equations, we end up with the following complete set of nine equations in this order of approximation
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


¯̄π
(

z−1
1 , z−1

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄0

¯̄α2 ¯̄π
(

z−1
1 , z0

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0 ¯̄0 ¯̄0

¯̄0 ¯̄α2 ¯̄π
(

z−1
1 , z+1

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0 ¯̄0

¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z0
1 , z−1

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0

¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z0
1 , z0

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0

¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z0
1 , z+1

2

)
¯̄β2

¯̄0 ¯̄β1

¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z+1
1 , z−1

2

)
¯̄β2

¯̄0

¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z+1
1 , z0

2

)
¯̄β2

¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z+1
1 , z+1

2

)







ρ̄
(

z−1
1 , z−1

2

)

ρ̄
(

z−1
1 , z0

2

)

ρ̄
(

z−1
1 , z+1

2

)

ρ̄
(

z0
1 , z−1

2

)

ρ̄
(

z0
1 , z0

2

)

ρ̄
(

z0
1 , z+1

2

)

ρ̄
(

z+1
1 , z−1

2

)

ρ̄
(

z+1
1 , z0

2

)

ρ̄
(

z+1
1 , z+1

2

)




=




χ̄
(

z−1
1 , z−1

2

)

χ̄
(

z−1
1 , z0

2

)

χ̄
(

z−1
1 , z+1

2

)

χ̄
(

z0
1 , z−1

2

)

χ̄
(

z0
1 , z0

2

)

χ̄
(

z0
1 , z+1

2

)

χ̄
(

z+1
1 , z−1

2

)

χ̄
(

z+1
1 , z0

2

)

χ̄
(

z+1
1 , z+1

2

)




,

(34)

where zp
1 and zq

2 with p, q = {−1, 0, 1} are an abbreviated way to express actually z1+i2pω1 and z2+i2qω2

and ¯̄0 is the eight-by-eight matrix zero. Note that we have again used matrix notation to express this new set
of equations. Let us label each row or column of the square matrix in eq. (34) with the number 3p+ q where
p and q are the superscripts of the arguments of the function ¯̄π(zp

1 , zq
2) in the row or column considered.

Then we see that the main eq. (32) is represented by the row number zero, the central row, of this square
matrix. The other rows represent the other shifted equations. For example, the row number −3 = 3(−1)+0,
the row located three rows above the central row, corresponds to the shift z1 → z1 − i2ω1, z2 → z2. This
set of nine equations for the nine vector unknowns ρ̄(z1 + i2pω1, z2 + i2qω2) with p, q = {−1, 0, 1}
is actually a set of 72 equations for the 72 elementary unknowns since each element of the nine-by-nine
matrix in eq. (34) represents, in turn, an eight-by-eight sub-matrix.

Note also that the set of equations represented by the single matrix eq. (34) is arranged so that one row
of the square matrix there is just the previous row shifted one matrix element. This happens only when
the ordering of the unknown quantities in the column matrix is the one chosen in eq. (34). In general, the
arrangement of the shifted equations for the nth-order approximation that yields the same simplification
is such that the unknown quantities ρ̄(zp

1 , zq
2) with zp

1 = z1 + i2pω1 and zq
2 = z2 + i2qω2 have the same

ordering as the integer o = (2n+1)p+q with the integers p, q = {−n, −n+1, . . . , n−1, n}. For example,
in the case of the second order of approximation where n = 2, the minimum value of this ordering variable
is o = −12 corresponding to the values p = −2 and q = −2, the next value is o = −11 corresponding to
the values p = −2 and q = −1 and so on. This means, for example, that, for this order of approximation,
ρ̄(z−2

1 , z−2
2 ) is the first unknown in the unknown column, ρ̄(z−2

1 , z−1
2 ), the second and so on. Thus with

this arrangement of the shifted equations, the only row that we have to remember is the one corresponding
to the main eq. (32), which, for example, in the first order of approximation looks like this

¯̄o ; ¯̄α1 ; ¯̄o ; ¯̄α2 ; ¯̄π(z1, z2) ; ¯̄β2 ; ¯̄o ; ¯̄β1 ; ¯̄o . (35)

Then the main matrix is obtained by shifting this row to the left and to the right and discarding the ma-
trix elements that fall outside the square frame as appears, for example, in eq. (34) for the first order
of approximation.

Finally it is worth mentioning that this straight-forward way to obtain the square matrix in eq. (34), or
in general in eq. (30), from the main eq. (32), facilitates enormously the task to enter this matrix in, for
example, the commercial software Mathematica when trying to calculate its determinant. This is because
the problem has now been reduced essentially to enter only one row. Furthermore the blocks represented by
the sub-matrices ¯̄α1, ¯̄α2, ¯̄β1, ¯̄β2 and ¯̄π(z1, z2) can be entered only once in Mathematica, and then treated
as single objects there when forming the square matrix.
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B Analytical solution

We can neglect the terms containing the factors

1
z1 ± ip2ω1

or
1

z2 ± iq2ω2
, (36)

with p, q = {−1, 1}, in the matrix column on the right-hand side of eq. (34). This terms generate oscillatory
contributions around the average. Then, for example, the vector χ̄(z1, z2) becomes

χ̄(z1, z2) → 1
z1z2




Γo
2

Γo
2

i
Ω1
2

i
Ω2
2

0
−i

Ω1
2

−i
Ω2
2

0
0




. (37)

If we perform the same simplification to the other elements of the matrix column on the right-hand side
of eq. (34), these set of 72 equations for 72 unknowns becomes




¯̄π
(
z−1
1 , z−1

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄0

¯̄α2 ¯̄π
(
z−1
1 , z0

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0 ¯̄0 ¯̄0

¯̄0 ¯̄α2 ¯̄π
(
z−1
1 , z+1

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0 ¯̄0

¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z0
1 , z−1

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0

¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z0
1 , z0

2

)
¯̄β2

¯̄0 ¯̄β1
¯̄0

¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z0
1 , z+1

2

)
¯̄β2

¯̄0 ¯̄β1

¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z+1
1 , z−1

2

)
¯̄β2

¯̄0

¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z+1
1 , z0

2

)
¯̄β2

¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π

(
z+1
1 , z+1

2

)







ρ̄
(
z−1
1 , z−1

2

)

ρ̄
(
z−1
1 , z0

2

)

ρ̄
(
z−1
1 , z+1

2

)

ρ̄
(
z0
1 , z−1

2

)

ρ̄
(
z0
1 , z0

2

)

ρ̄
(
z0
1 , z+1

2

)

ρ̄
(
z+1
1 , z−1

2

)

ρ̄
(
z+1
1 , z0

2

)

ρ̄
(
z+1
1 , z+1

2

)




=
1

z1z2




χ̄1

χ̄2

χ̄3

χ̄4

χ̄5

χ̄6

χ̄7

χ̄8

χ̄9




,

(38)

where the constant vectors χ̄1, χ̄2, . . . , χ̄9, on the right-hand side, are

χ̄1 =




0
0
0
0
0
0
0
0
0




, χ̄2 =




0
0
0
0
0
0

− iΩ1
2

0
0




, χ̄3 =




0
0
0
0
0
0
0
0
0




, χ̄4 =




0
0
0
0
0
0
0

− iΩ2
2

0




, χ̄5 =




Γo

2
Γo

2
i Ω1

2
i Ω2

2
0

−i Ω1
2

−i Ω2
2

0
0




,
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χ̄6 =




0
0
0

iΩ2
2
0
0
0
0
0




, χ̄7 =




0
0
0
0
0
0
0
0
0




, χ̄8 =




0
0

iΩ1
2
0
0
0
0
0
0




, χ̄9 =




0
0
0
0
0
0
0
0
0




. (39)

Note the similarity between eq. (38) and eq. (21). The major difference is that we now have to resolve a set
of 72 equations rather than the set of eight equations of the RWA. Another difference is that now the column
related to the unknowns ρ̃11(z1, z2) and ρ̃22(z1, z2) are column 33 and column 34 respectively. Therefore,
for example, the value of the population ρ̃11(z1, z2) can be written, in this order of approximation, as

ρ̃11(z1, z2) =
1

z1z2

|| ¯̄ππ33(z1, z2)||
|| ¯̄ππ(z1, z2)|| , (40)

where ¯̄ππ(z1, z2) is now the 72 × 72 matrix of eq. (38) and ¯̄ππ33(z1, z2) is the matrix obtained from
¯̄ππ(z1, z2) by replacing its 33th column by the column matrix on the right-hand side of eq. (38). The

double bars indicate, as usual, the determinant of the matrix standing between them.
To obtain the inverse-Laplace transform of eq. (40) when z1 → 0, z2 → 0, we proceed in the same way

as we did before from eq. (26). Thus we find

〈ρ11(t → ∞)〉 =
|| ¯̄ππ33(0, 0)||
|| ¯̄ππ(0, 0)|| , (41)

where now this inverse-Laplace transform gives directly the mean value of the asymptotic solution for
the population ρ11(t → ∞). Remember that we have neglected the oscillatory contribution indicated in
eq. (36).

To find the mean asymptotic value of the population of the upper level ρ00, we essentially repeat the
same reasoning yielding eq. (29) from eq. (27). Thus we find a similar formula

〈ρ00(t → ∞)〉 =
|| ¯̄ππ33−34(0, 0)||

|| ¯̄ππ(0, 0)|| , (42)

where ¯̄ππ33−34(0, 0) results to be the matrix obtained from ¯̄ππ(0, 0) by subtracting the matrix column on
the right-hand side of eq. (38) from its 33th column and subtracting its 33th column from its 34th column.

The generalisation of this procedure to obtain better and better approximations is straight-forward.
For example, for the nth-order approximation, we end up resolving the set of 8(2n + 1)2 equations for
8(2n + 1)2 unknowns already introduced in eq. (25). This set of equations are obtained from eq. (32) by
performing the (2n+1)2 possible pairs of combinations of the following shifts of the independent variables
z1 → z1 + i2pω1, z2 → z2 + i2qω2 with p, q = {−n, −n + 1, . . . , n − 1, n} and neglecting the terms of
these equations that contain the unknowns ρ̄(z1 ± i(n+1)2ω1, z2) or ρ̄(z1, z2 ± i(n+1)2ω2) as indicated
before. And the expression for the the mean value of the asymptotic solution of the population of the upper
level ρ00 for this order of approximation has already been given in eq. (30).

C Final simplification

Finally it is important to mention that the procedure described above for obtaining the matrix
n+1︷ ︸︸ ︷
¯̄π . . . π16n(n+1)+1,16n(n+1)+2(0, 0) in the numerator in eq. (30) yields systematically a matrix that has
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exactly the same structure as the one in the denominator, i.e., ¯̄π . . . π︸ ︷︷ ︸
n+1

(0, 0), irrespective of the order of

approximation considered. For example, for the analytical solution of order one in eq. (42), the matrix in
the numerator is equal to

¯̄ππ33−34(0, 0) =




¯̄π(z1−, z2−) ¯̄β2
¯̄0 ¯̄β1

¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄0
¯̄α2 ¯̄π(z1−, z2) ¯̄β2

¯̄0 ¯̄β
∗
1

¯̄0 ¯̄0 ¯̄0 ¯̄0
¯̄0 ¯̄α2 ¯̄π(z1−, z2+) ¯̄β2

¯̄0 ¯̄β1
¯̄0 ¯̄0 ¯̄0

¯̄α1
¯̄0 ¯̄α2 ¯̄π(z1, z2−) ¯̄β

∗
2

¯̄0 ¯̄β1
¯̄0 ¯̄0

¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π∗(z1, z2) ¯̄β2

¯̄0 ¯̄β1
¯̄0

¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α∗

2 ¯̄π(z1, z2−) ¯̄β2
¯̄0 ¯̄β1

¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π(z1+, z2−) ¯̄β2

¯̄0
¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄α∗

1
¯̄0 ¯̄α2 ¯̄π(z1+, z2) ¯̄β2

¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄0 ¯̄α1
¯̄0 ¯̄α2 ¯̄π(z1+, z2+)


z1 = 0

z2 = 0

(43)

which looks exactly the same as the square matrix in eq. (38) with the only difference that the sub-blocks
¯̄α1, ¯̄α2, ¯̄β1, ¯̄β2 and ¯̄π(z1, z2) in the central column have been replaced respectively by the following
new sub-blocks

¯̄α∗
1 =




0 0 0 0 0 − iΩ1
2 0 0

0 0 0 0 0 0 0 0
iΩ1
2 − iΩ1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 iΩ1

2
0 0 0 0 0 0 − iΩ1

2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, ¯̄α∗
2 =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 − iΩ2

2 0
0 0 0 0 iΩ2

2 0 0 0
0 iΩ2

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 − iΩ2

2 0 0




,

¯̄β
∗
1 =




0 0 iΩ1
2 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

− iΩ1
2

iΩ1
2 0 0 0 0 0 0

0 0 0 0 − iΩ1
2 0 0 0

0 0 0 iΩ1
2 0 0 0 0




, ¯̄β
∗
2 =




0 0 0 0 0 0 0 0
0 0 0 iΩ2

2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 iΩ2

2 0 0 0 0 0
0 0 0 0 0 0 0 − iΩ2

2
0 − iΩ2

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, (44)

¯̄π∗(z1, z2) =




0 0 0 0 0 −iΩ1
2 0 0

0 0 0 iΩ
2 0 0 −iΩ2

2 0
iΩ1
2 − iΩ1

2 (z1+z2+
Γo
2 −iδ1) 0 iΩ2

2 0 0 0
0 iΩ2

2 0 (z1+z2+
Γo
2 −iδR) 0 0 0 iΩ1

2
0 0 iΩ2

2 0 (z1+z2+Γ21−iδR) 0 −iΩ1
2 0

− iΩ1
2

iΩ1
2 0 0 0 (z1+z2+

Γo
2 +iδ1) 0 − iΩ2

2
0 − iΩ2

2 0 0 − iΩ1
2 0 (z1+z2+

Γo
2 +iδ2) 0

0 0 0 iΩ1
2 0 − iΩ2

2 0 (z1+z2+Γ21+iδR)




.
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The generalisation of this method to obtain the matrix in the numerator from the one in the denominator in
eq. (30) to the nth-order approximation is straight-forward.We only have to break the 8(2n+1)2×8(2n+1)2

matrix of the eq. (25) into its more elementary 8 × 8 sub-blocks ¯̄αj , ¯̄βj and ¯̄π(z1 + ip2ω1, z2 + iq2ω2)

and perform the replacement ¯̄αj → ¯̄α∗
j , ¯̄βj → ¯̄β

∗
j and ¯̄π(z1, z2) → ¯̄π(z1, z2)∗ only in its central column.

The result of this operation is just the desired matrix

n+1︷ ︸︸ ︷
¯̄π . . . π16n(n+1)+1−16n(n+1)+2(0, 0). This represents

a further great simplification since the obtainment of the expression of nth-order analytical solution is thus
reduced essentially to the determination of a single matrix, i.e., ¯̄π . . . π︸ ︷︷ ︸

n+1

(0, 0), rather than two.

D The mean value of the asymptotic solution for the two-level system

The perturbative method introduced in this paper to analyse the response to the three-level system driven
by two laser fields has a straight-forward generalisation to the case of a system of n + 1 levels driven by n
laser fields. The main difference being, apart from the fact that the Bloch evolution equations are different
for each case, the need to introduce n time variables, e.g. t1, t2, . . . , tn, each for each laser field, and the
use of a multiple-Laplace transform with n Laplace independent variables, e.g. z1, z2, . . . , zn. The main
equation of this generic case will thus have the following form

¯̄α1ρ̄(z1 − i2ω1, z2, . . . , zn) + . . . + ¯̄αnρ̄(z1, z2, . . . , zn − i2ωn) + ¯̄π(z1, z2, . . . , zn)ρ̄(z1, z2, . . . , zn)

+ ¯̄β1ρ̄(z1 + i2ω1, z2, . . . , zn) + . . . + ¯̄βnρ̄(z1, z2, . . . , zn + i2ω2) = χ̄(z1, z2, . . . , zn) , (45)

where ω1, ω2, . . . , ωn are the angular frequencies of each respective laser field driving each corresponding
transition. From this point on, the theory will follow similar steps.

A most interesting case to study for its simplicity is the two-level system driven by one laser field. This
system has already been thoroughly studied in the literature and can also been used to check old results.
For this case, there is no need to introduce extra time variables rather than the real time t. And the main
equation obtained after performing a simple Laplace transform L has the following form

¯̄αρ̄(z − i2ω) + ¯̄π(z)ρ̄(z) + ¯̄βρ̄(z + i2ω) = χ̄(z) , (46)

where ω is the angular frequency of the laser field. Thus, for example, in the RWA, the equation to solve is

¯̄π(z)ρ̄(z) = χ̄(z) , (47)

or considering the explicit form of these matrices for this case


(z + Γ) iΩ/2 −iΩ/2
iΩ (z + γ − iδ) 0

−iΩ 0 (z + γ + iδ)







ρ̃11(z)
ρ̃21(z)
ρ̃12(z)


 =




Γ
z

+i Ω
2

1
z + i Ω

2
1

z−i2ω

−i Ω
2

1
z − i Ω

2
1

z+i2ω


 , (48)

where the relaxation parameters Γ and γ = Γ/2 are the population decay of the upper level |2〉 and the decay
rate of the coherence between the two levels |2〉 and |1〉. The parameters δ = ω −ω0 and Ω are respectively
the detuning of the laser field from its resonance and its Rabi frequency. Also note that ρ̃ij(z) = Lρ̃ij(t),
where ρ̃ij(t) are the matrix elements of the density operator expressed in the “rotating frame”. In the
Laboratory frame the corresponding matrix elements of this operator are ρij(t).

Then let us use this simple case of the two-level system in its lowest order of approximation, and whose
mathematical description is given by eq. (48), to show that, for example, terms containing the factors

1
z ± i2ω

(49)
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in the column matrix on the right-hand side of eq. (48) generate oscillatory contribution to the solution
around the average. Let us start by showing, for example, how to equate and inverse-transform the unknown
ρ̃11(z) of this set of simultaneous equations. Essentially, we solve a ratio of two determinants. In the
denominator of this quotient, we have ||¯̄π(z)||, where the double bars indicate, as usual, determinant of the
matrix standing between them. The matrix to use in the numerator is obtained from ¯̄π(z) by replacing its
first column by the column matrix on the right-hand side of eq. (48). Thus expanding the determinant in the
numerator in a linear combination of the coefficients of its first column, we have

ρ̃11(z) = . . . +
(

iΩ
2

1
z

+
iΩ
2

1
z − i2ω

)
∣∣∣∣∣
∣∣∣∣∣ iΩ/2 −iΩ/2

0 z + γ + iδ

∣∣∣∣∣
∣∣∣∣∣

||¯̄π(z)|| + . . . , (50)

where the factor between parenthesis is one of the coefficients of the column matrix on the right-hand side
of eq. (48). The other terms missing in this expression have the same form as the one shown there, and thus
their explicit consideration would result redundant in this analysis.

On the other hand, we have that the inverse-Laplace transform function of ρ̃11(z) is

ρ11(t) = L−1{ρ11(z)} =
1

2πi

+i∞+τo∫
−i∞+τo

ρ̃11(z)eztdz , (51)

where τo is a positive real number such that ρ̃(z) with z = x+ iy is analytical in the strip 0 < x < τo. This
integral may be evaluated by the calculus of residues. For t > 0, we may chose the contour by a semicircle
in the left half of the complex plane. Thus we can write

ρ11(t) =
∑
poles

Res
{
ρ̃11(z)ezt

}
, (52)

where the only poles considered in this sum are those with their real part not positive, e.g. Re(zp) ≤ 0.
Now, if we substitute eq. (50) into eq. (52), we find

ρ11(t) = . . . +
∑
poles

Res
{

iΩ
2

ezt

z

||¯̄a(z)||
||¯̄π(z)||

}
+

∑
poles

Res
{

iΩ
2

ezt

z − i2ω

||¯̄a(z)||
||¯̄π(z)||

}
+ . . . , (53)

where we have also distributed ||¯̄a(z)||/||¯̄π(z)|| inside the terms between parenthesis in eq. (50). The matrix
¯̄a(z) is the one between double bars in the numerator in the only term shown in eq. (50).

Now we proceed to show that the mean value 〈ρ11(t → ∞)〉 of the asymptotic solution is obtained from
eq. (53) by only considering the poles zp = 0 in each calculation of residue there. This is readily apparent
by a simple inspection of this equation. It is evident that poles zp �= 0 and with its real part equal to zero,
for example zp = i2ω in the second term of eq. (53), generate oscillatory contributions that disappear
when averaging over a cycle. On the other hand, the poles located in the left part of the complex plane, e.g.
Re(zp) < 0, yield oscillatory contribution that decay to zero as t → ∞. The other poles remain outside the
integration contour. Thus remaining with only the poles at zp = 0, we write

〈ρ11(t → ∞)〉 = . . . +
∑
zp=0

Res
{

iΩ
2

ezt

z

||¯̄a(z)||
||¯̄π(z)||

}

+
∑
zp=0

Res
{

iΩ
2

ezt

z − i2ω

||¯̄a(z)||
||¯̄π(z)||

}
+ . . . . (54)
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But since the determinant

||¯̄π(z)|| = (z + Γ)
(
(z + γ)2 + δ2) + (z + γ)Ω2 , (55)

where the parameters Γ, γ, Ω > 0, has not any zero with value zp = 0, the second calculation of residue in
eq. (54) vanishes for not having poles to evaluate. Thus we finally find

〈ρ11(t → ∞)〉 =
∑
zp=0

Res
{
ρ̃11(z)ezt

}
= . . . +

iΩ
2

||¯̄a(0)||
||¯̄π(0)|| + . . . , (56)

where we have also computed the residue left.
This analysis shows that the consideration of only the poles at zp = 0 in the calculation of the residues

of the function ρ̃ij(z)ezt is equivalent to evaluate the matrix ¯̄π(z) at z = 0 and neglect terms containing
the factor

1
z ± i2ω

(57)

in the column matrix on the right-hand side of eq. (48). Thus with this simplification, the equation to
solve becomes


(z + Γ) iΩ/2 −iΩ/2

iΩ (z + γ − iδ) 0
−iΩ 0 (z + γ + iδ)




z=0




ρ̃11(z)
ρ̃21(z)
ρ̃12(z)


 =

1
2z




2Γ
+iΩ
−iΩ


 . (58)

The solution of this matrix equation gives directly, as its inverse-Laplace transform, the mean value of the
state of the system as t → ∞ in the RWA. For example, the population 〈ρ11(t → ∞)〉 can be written as

〈ρ11(t → ∞)〉 = L−1(
1
z

||¯̄π1(0)||
||¯̄π(0)|| ) =

||¯̄π(0)||
||¯̄π(0)|| , (59)

where the matrix ¯̄π(0) is the three-by-three matrix of eq. (58) with z = 0 and ¯̄π1(0) is the matrix obtained
from ¯̄π1(0) by replacing its first column by the column matrix on the right-hand side of eq. (58). Note the
similarity between eq. (59) for this case and eq. (27) for the case of the three-level system.

E Choice of ω21

In Sect. 5.2, the reason for the specific choice of 0.04296875 = 176 × 2−12 for the difference of Bohr
frequencies is merely a computational question. The number 2−12 is the step increment in a for-loop used to
change the frequency of laser 1, e.g. ω1. Computationally, the number 2−12, together with its multiples, can
be represented exactly in base 2 by a finite number of digits, e.g. (2−12)10 = 0.0000000000012. This means
that they can be exactly stored in a double-precision variable, and consequently the variation of ω1 can be
realised in precise increments in the for-loop. This is essential to ensure that the whole signal generated by
both lasers together remains always a periodic function for each iteration of the for-loop. For example, at
optical resonance condition ω1 = ω01 = 1 = n 2−12 and ω2 = ω02 = 1 − 0.4296875 = m 2−12 where n
and m are respectively the following integers n = 212 = 4096 and m = 3920. Therefore the ratio of the
laser frequencies in this case is a rational number, e.g. ω1/ω2 = n/m, guaranteeing the periodicity of the
whole signal. This property is preserved as long as the frequencies of the laser fields are varied in multiples
of 2−12. The need for a periodic signal is relat ed to the fact that the ultimate information needed is the
mean value of the asymptotic solution.
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[13] R. G. Unanyan, S. Guérin, and H. R. Jauslin, Phys. Rev. A 62, 043407 (2000).
[14] L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
[15] F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
[16] C. Wei, A. S. M. Winsor, and N. B. Manson, J. Phys. B, At. Mol. Opt. Phys. 30, 4877 (1997).
[17] G. K. Woodgate, Elementary Atomic Structure (McGraw-Hill, New York, 1970).
[18] H. G. Kuhn, Atomic Spectra, second ed. (Longmans, London, 1971).

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


