Entanglement and the Phase Transition in Single Mode Superradiance Tobias Brandes (Manchester)

- Entanglement at Quantum Phase Transitions
- Single Mode Superradiance Model
- Outlook

Coworkers: Neill Lambert (Manchester), Clive Emary (Leiden), Jin-Jun Liang (Manchester)

Entanglement

• Quantum Mechanics: there are states with certain quantum correlations between separated observers. Example: EPR-pair

$$\frac{1}{\sqrt{2}} \left[|\uparrow\rangle_A \otimes |\downarrow\rangle_B + |\downarrow\rangle_A \otimes |\uparrow\rangle_B \right].$$

- How to quantify entanglement?
 - pure states, mixed states; bi-partite, multi-partite.
 - bound states, scattering states; many-body states.
- Entanglement as a tool
 - to generate and control useful quantum correlations.
 - to analyze quantum phase transitions.
 - and the (semi)-classical limit, (quantum) chaos (?)

One-mode Superradiance (Dicke) Model

(C. Emary, TB, Phys. Rev. Lett. 90, 044101 (2003); Phys. Rev. E 67, 066203 (2003); N. Lambert, C. Emary, TB, Phys. Rev. Lett. 92, 073602 (2004); quant-ph/0405109.)

• N atoms coupled to single cavity mode (photon, phonon).

$$\mathcal{H}_{\text{Dicke}} = \frac{\omega_0}{2} \sum_{i=1}^N \sigma_{z,i} + \frac{\lambda}{\sqrt{N}} \sum_{i=1}^N \sigma_{x,i} \left(a^{\dagger} + a \right) + \omega a^{\dagger} a$$
$$= \omega_0 J_z + \frac{\lambda}{\sqrt{2j}} \left(a^{\dagger} + a \right) \left(J_+ + J_- \right) + \omega a^{\dagger} a,$$

- Collective spin operators of length j = N/2, Dicke states $|jm\rangle$.
- For N→∞ mean-field type phase transition from normal to superradiant with order parameter (J_z) or (a[†]a); K. Hepp and E. Lieb, Ann. Phys. 76, 360 (1973); Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973).

MAN

The University of Manchester

- T = 0 quantum phase transition from normal to superradiant at $\lambda = \lambda_c = \sqrt{\omega \omega_0}/2$. Recent CPB-single photon cavity experiments A. Wallraff *et al.*, nature (2004): N = 1 and $\lambda \ll \lambda_c$.
- Zero-d field theory; S_N symmetry, no intrinsic length scale: exactly solvable for $N \to \infty$. Non-integrable **chaotic for** $N < \infty$.

Ground State Wave Function

- Holstein-Primakoff representation $J_z = (b^{\dagger}b j), J_+ = b^{\dagger}\sqrt{2j b^{\dagger}b}.$
- Normal phase $\lambda < \lambda_c$: expand square-roots, effective Hamiltonian

$$\mathcal{H}^{(1)} = \omega_0 b^{\dagger} b + \omega a^{\dagger} a + \lambda \left(a^{\dagger} + a \right) \left(b^{\dagger} + b \right) - j \omega_0, \quad j \to \infty.$$

• Super-radiant phase $\lambda > \lambda_c$: boson displacement with $\sqrt{\alpha}, \sqrt{\beta} \propto j$, two equivalent effective Hamiltonians (broken parity symmetry).

(C. Emary, TB; 2004) Order parameters $\alpha = \langle a^{\dagger}a \rangle$ and $\beta = \langle J_z \rangle + N/2$ for generic large spin-boson Hamiltonians $H_{\theta} = \omega a^{\dagger}a + \Omega(J_x \cos \theta + J_z \sin \theta)$ $+ \frac{2\lambda}{\sqrt{2j}} (a^{\dagger} + a) J_x$

(C. Emary, TB 2003); Left: Ground-state $|\psi(x, y)|$ in x-y representation; $x \equiv \frac{1}{\sqrt{2\omega}} (a^{\dagger} + a)$ (field mode), $y \equiv \frac{1}{\sqrt{2\omega_0}} (b^{\dagger} + b)$ (atom); for j = 5 at $\lambda/\lambda_c = 0.2, 0.5, 0.6, 0.7$. Right: Excitation energies ε_{\pm} for $j \to \infty$. Inset: scaled ground-state energy, E_G/j for $j = 1/2, 1, 3/2, 3, 5, \infty$.

MANCHEST

The University of Manchester

Entanglement between Atoms and Field

- Von-Neumann entropy $S \equiv -\text{tr}\hat{\rho}\log_2\hat{\rho}$ of reduced density matrix (RDM) $\hat{\rho}$ of field-mode.
- RDM in the *x*-representation,

$$\rho_L(x, x') = c_L \int_{-\infty}^{\infty} dy f_L(y) \Psi^*(x, y) \Psi(x', y), \quad f_L(y) \equiv e^{-y^2/L^2}.$$

 ρ_L is density matrix of single harmonic oscillator with frequency Ω_L at temperature $T \equiv 1/\beta$ (N. Lambert, C. Emary, TB, 2004),

$$\cosh \beta \Omega_L = 1 + 2 \frac{\varepsilon_- \varepsilon_+ + 4(\varepsilon_- c^2 + \varepsilon_+ s^2)/L^2}{(\varepsilon_- - \varepsilon_+)^2 c^2 s^2}$$
$$S_{L=\infty} = \log_2 \xi + const$$
$$\xi \equiv \varepsilon_-^{-1/2} \propto |\lambda - \lambda_c|^{-z\nu/2}, \nu = \frac{1}{4}, z = 2$$

T. Brandes

RESULTS:

- Entropy S_{∞} (cut-off $L = \infty$) diverges for $\lambda \to \lambda_c$, $S_{\infty} \propto -\nu \log_2 |\lambda - \lambda_c| = \log_2 \xi, \quad \nu = 1/4.$
- exponent $\nu = 1/4$ describes divergence of characteristic length $\xi \equiv \varepsilon_{-}^{-1/2}$.
- For $\lambda \to \lambda_c$, fictitious thermal oscillator parameter $\zeta = \hbar \Omega_{\infty} / k_B T \to 0$: classical limit of the field RDM (temperature $T \to \infty$ or frequency $\Omega_{\infty} \to 0$.
- Trace over finite *y*-region of size *L* only: Entropy $S_L(\zeta) = [\zeta \coth \zeta - \ln(2 \sinh \zeta)] / \ln 2, \quad \zeta \equiv \beta \Omega_L / 2.$

$$S_L \propto -(1/2)\log_2(2\varepsilon_L) = \log_2 L, \quad L \to \infty,$$

similar to entanglement of blocks of L spins in one-dimensional interacting XY and XXZ spin-chain models: $S_L \approx (c + \bar{c})/6 \log L + const$ in 1 + 1 conformal field theories with central charges c and \bar{c} . (G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. **90**, 227902 (2003)).

MANCHESTER

The University of Manchester

Pairwise Entanglement in Dissipative Dicke Model R. H. Dicke, Phys. Rev. **93**, 99 (1954)

Schneider and Milburn; Phys. Rev. A 65, 042107 (2002): driven, dissipative large pseudo-spin model

$$\frac{\partial \rho}{\partial t} = -i\frac{\omega_0}{2}[J_+ + J_-, \rho] + \frac{\gamma_A}{2}\left(2J_-\rho J_+ - J_+ J_-\rho - \rho J_+ J_-\right)$$

- Steady state.
- Entanglement maxima on the weak coupling side of the transition in *unscaled* two-atom concurrence.

Pairwise Entanglement in Single-Mode Dicke Model

• Scaled concurrence $C_N \equiv NC$ as a measure (W. K. Wootters, Phys. Rev. Lett **80**, 2245 (1998)) for pairwise entanglement between 2 atoms (mixed state, boson traced out).

$$C \equiv \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}, \lambda_j^2 = \text{EV of } \rho_{12}(\sigma_{1y} \otimes \sigma_{2y})\rho_{12}^*(\sigma_{1y} \otimes \sigma_{2y})$$

- S_N symmetry helps (X. Wang and K. Mølmer, Eur. Phys. J. D 18, 385 (2002).): need reduced density matrix ρ_{12} for any two atoms.
- Always $C_N < 2 =$ (maximum pairwise concurrence of any Dicke state).
- Perturbation theory: $C_N(\lambda \to 0) \sim 2\alpha^2/(1 + \alpha^2), \quad \alpha \equiv \lambda/(\omega + \omega_0).$
- Relation between scaled concurrence and momentum squeezing, $C_{\infty} = (1 + \mu) \left[\frac{1}{2} - (\Delta p_y)^2 / \omega_0\right] + \frac{1}{2}(1 - \mu), \ \mu = 1$ in normal phase and $\mu = (\lambda_c / \lambda)^2$ in SR phase. Kitagawa-Ueda (Phys. Rev. A **47**, 5138 (1993)) spin squeezing for $\xi^2 \equiv \frac{4}{N} (\Delta \vec{S} \vec{n})^2 < 1$. (X. Wang and B. C. Sanders, Phys. Rev. A **68**, 012101 (2003).).

N. Lambert, C. Emary, TB, Phys. Rev. Lett. **92**, 073602 (2004); quant-ph/0405109, (2004).

MANCHESTER 1824 The University of Manchester

Lipkin-Meshkov-Glick Model Nucl. Phys. 62, 188 (1965)

• J. Vidal, G. Palacios, and R. Mosseri; Phys. Rev. A 69, 022107 (2004).

$$H \equiv -\frac{\lambda}{N} \sum_{i < j}^{N} \left(\sigma_x^i \sigma_y^j + \gamma \sigma_y^i \sigma_y^j \right) - \sum_{i=1}^{N} \sigma_z^i$$
$$= -\frac{2\lambda}{N} \left(J_x^2 + \gamma J_y^2 \right) - 2J_z + \frac{\lambda}{2} (1+\gamma), \quad J_\alpha \equiv \frac{1}{2} \sum_{i=1}^{N} \sigma_\alpha^i, \quad \alpha = x, y, z.$$

- 2nd order, mean-field type QPT from nondegenerate to doubly degenerate ground state at $\lambda_c = 1$ for any anisotropy parameter $\gamma \neq 1$.
- Rescaled concurrence $C_N \equiv NC$;

$$1 - C_{N-1}(\lambda_m) \sim N^{-0.33 \pm 0.01}, \quad \lambda_m - \lambda_c \sim N^{-0.66 \pm 0.01}, \quad \gamma \neq 1.$$

- Vanishing of the concurrence for γ ≠ 0 at a special value λ₀(γ). Note C ≡ max{0, λ₁ - λ₂ - λ₃ - λ₄}. Therefore, non-analyticity in C does not neccessarily indicate QPT (M.-F. Yang, quant-ph/0407226).
- Kitagawa-Ueda spin squeezing for $\xi^2 \equiv \frac{4}{N} (\Delta \vec{S} \vec{n})^2 < 1.$
- For $\gamma = 0$ ground state always spin squeezed although in same universality class as $\gamma \neq 0$.
- Lipkin model is infinitely coupled *XY-model in magnetic field*.

XY model for spin- $\frac{1}{2}$ s on ferromagnetic chain

• A. Osterloh, L. Amico, G. Falci, R. Fazio; nature **416**, 608 (2002). Independent analysis by T. Osborne, M. A. Nielsen, Phys. Rev. A **66**, 032110 (2002).

$$H = -\lambda(1+\gamma)\sum_{i=1}^{N}\sigma_i^x\sigma_{i+1}^x - \lambda(1-\gamma)\sum_{i=1}^{N}\sigma_i^y\sigma_{i+1}^y - \sum_{i=1}^{N}\sigma_i^z,$$

- Concurrence C(i) as entanglement measure between two sites with distance i,
- Correlation length diverges at the critical point, but C(i > 2) vanish.
- Non-analyticity of C(1) at $\lambda = \lambda_c$ for $N \to \infty$ in Ising model $\gamma = 1$;

$$dC(1)/d\lambda = (8/3\pi^2)\ln|\lambda - \lambda_c| + \text{const}, \quad N \to \infty,$$

related with precursors at $\lambda = \lambda_m$ for finite N (with $\lambda_m - \lambda_c \propto N^{-1.86}$): single-parameter scaling function $f(N^{1/\nu}(\lambda - \lambda_m))$.

MAN

The University of Manchester

Finite-Size Scaling in Single-Mode Dicke Model

• Position of entropy maximum $\lambda^{\rm M} - \lambda_c \propto N^{-0.75 \pm 0.1}$, concurrence maximum $\lambda^{\rm M} - \lambda_c \propto N^{-0.68 \pm 0.1}$, $C_N^{\rm M}(\lambda_c) - C_N \propto N^{-0.25 \pm 0.01}$.

More detailed analysis by J. Reslen, L. Quiroga, and N. F. Johnson, cond-mat/0406674

One-parameter scaling analysis

$$C_{\infty}(\lambda_c) - C_N(\lambda) = |\lambda - \lambda_c|^a f(N|\lambda - \lambda_c|^b)$$

$f(N) \sim N^b$	Dicke	Lipkin
$C_{\infty}(\lambda_c) - C_N(\lambda_c)$	-0.26 ± 0.01	-0.30 ± 0.01
$C_{\infty}^M - C_N^M$	-0.28 ± 0.03	-0.30 ± 0.03
$\lambda_N^M - \lambda_c$	-0.65 ± 0.03	-0.66 ± 0.03

 \rightsquigarrow same universality class.

QPT, QChaos, Entanglement

- Level spacing distributions P(S) for H_{Dicke} at finite N = j/2, C. Emary, TB, Phys. Rev. E 67, 066203 (2003).
- Poincaré sections for the *classical* Dicke Model, cf. also (X.-W. Hou and B. Hu, Phys. Rev. A 69, 042110 (2004)).
- How to gain more insight?

Further Insight

entanglement

quantum phase transitions

quantum chaos and classical limit

 $\langle Quantum kicked rotor \mathcal{H} = \alpha J_z^2 + \beta J_y \sum_n \delta(t - n\tau)$: X. Wang, S. Ghose, B. C. Sanders, and B. Hu, PRE **70**, 016217 (2004); H. Fujisaki, T. Miyadera, and A. Tanaka, Phys. Rev. E **67**, 066201 (2003).

 \leftrightarrow B. Georgeot and D. L. Shepelyansky, PRL **81**, 5129 (1998); PRE **62**, 3504 (2000); C. Emary, TB, Phys. Rev. Lett. **90**, 044101 (2003).

 Entanglement and bifurcations: A. P. Hines, C. M. Dawson, R. H. McKenzie, and G. J. Milburn , Phys. Rev. A 70, 022303 (2004). n-level p-mode Dicke superradiance (J.-J. Liang, 2003): additional symmetries.

Summary, Outlook

• Entropy of formation and scaled concurrence for single-mode superradiance model, analytical results for $N \to \infty$.

• OPEN:

- Scaling exponents for maxima.
- Multi-partite entanglement.
- Relation between entanglement and quantum chaos/ level statistics.
- How 'classical' is the limit $N \to \infty$? Classical limit of entanglement?
- More models, in particular $d \ge 2$ needed.

