
Quantum Confinement in one Direction

• Confinement by effective potential V (z) in z (growth) direction, free

motion in x-y plane.

• Single particle states described by Schrödinger equation

− h̄2

2m

[

d2

dx2
+

d2

dy2
+

d2

dz2

]

Ψ(x, y, z) + V (z)Ψ(x, y, z) = EΨ(x, y, z) (1)

(isotropic band-mass m).

• Solutions: plane waves with momentum k‖ in x-y direction, x‖ = (x, y),

normalised to total area A. ‘Standing waves’ φl(z) in z-direction,

Ψl,k‖
(x‖, z) =

1√
A
eik‖x‖φl(z), (2)

where φl(z) fulfills
[

− h̄2

2m

d2

dz2
+ V (z) −El

]

φl(z) = 0 (3)
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with some given boundary conditions, e.g. φl(z = 0) = φl(z = L) = 0.

Examples:

– Infinitely high quantum well: φl(z) =
√

2/L sin(lπz/L), l = 1, 2, 3, ....

– Triangular quantum well.

– Fang-Howard wave function φ0(z) = 2a3/2z exp(−az), a > 0 for more

complicated V (z) [F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16,

797 (1966).]

– Detailed form of φl(z) can be important when it comes to calculating

scattering rates for electrons etc.

• Quantum number l labels different quantum well subbands.

• Parabolic dispersion relation in each subband l, two-dimensional wave

vector k‖,

El,k‖
= El +

h̄2
k2
‖

2m
(4)

• Note: so far this only describes free, non-interacting electrons.
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Additional Literature: D. K. Ferry, S. M. Goodnick, ‘Transport in

Nanostructures’, Cambridge University Press, Cambridge (UK), 1997;

Chapter 2 on ‘Quantum confined systems’.
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Quantum Confinement in two Directions

• Confinement by effective potential V (z) in z (growth) direction and

effective lateral potential W (y) in y direction, free motion in x-direction.

• Single particle states described by Schrödinger equation

− h̄2

2m

[

d2

dx2
+

d2

dy2
+

d2

dz2

]

Ψ(x, y, z) + [W (y) + V (z)]Ψ(x, y, z) = EΨ(x, y, z) (5)

(isotropic band-mass m).

• Solutions: plane waves with momentum k in x-direction, normalised to

total length L. Standing waves in z- and y-direction

Ψl,n,k‖
(x‖, z) =

1√
L
eikxψn(y)φl(z). (6)

• Quantum number l labels different quantum well subbands. Quantum

number n labels different quantum wire subbands.
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• Parabolic dispersion relation in each subband n,

El,n,k ≡ El + εnk; εnk ≡ εn +
h̄2k2

2m
. (7)

• The resulting system of electrons is called a ‘quasi-one-dimensional

system’ (quantum wire).

• Note: so far this only describes free, non-interacting electrons.

$ +ORWTKV[

P��

P��

P��

ε(

εPM

M

+PVGT�UWDDCPF�
UECVVGTKPI

T. Brandes, ‘Electrons and Photons in Low Dimensions, Part I’



Density of States

• ‘States’ refers to stationary, single particle eigenstates |Ψα〉 of a given

quantum system. States are characterised by a quantum number α (single

or multiple/vector index) and the corresponding eigenenergy Eα.

• The set {Eα} of all the eigenenergies is called the single-particle spectrum.

• The density of states ρ(E) is defined as

ρ(E) ≡ 1

V

∑

α

δ(E −Eα) (8)

and represents the number of eigenstates per volume V = Ld and per

energy E. Here, d is the dimension of the system: L3 is a cube, L2 is an

area, and L a line. This is always understood in the limit of L→ ∞
where it is assumed that the shape of the volume (e.g., sphere or cube in

d = 3) does not play any role any longer.

Example 1: harmonic oscillator of angular frequency ω, discrete spectrum
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Eα ≡ En = h̄ω(n+ 1
2 ),

ρosc(E) = V −1
∞
∑

n=0

δ

(

E − h̄ω(n+
1

2
)

)

. (9)

Example 2: spinless particle of mass m in three dimensions, continuous

spectrum Eα ≡ Ek = h̄2|k|2/2m for V = L3 → ∞,

ρ3d(E) = lim
L→∞

L−3
∑

k

δ(E − Ek) (10)

=
1

(2π)3

∫

d3k δ(E −Ek) (11)

=
1

(2π)3

∫ ∞

0

dkk2

∫ 2π

0

dφ

∫ π

0

sin θdθ δ(E −Ek) (12)

=
1

(2π)3
4π

∫ ∞

0

dkk2δ(E − h̄2k2/2m) (13)

In order to calculate the integral over the Dirac Delta function, we need the
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property

δ(f(x)) =
∑

xi

δ(x− xi)

|f ′(xi)|
, (14)

for functions f(x) with simple real zeroes xi.

Here, x = k and

0 = f(k) = E − h̄2k2/2m, k1 =

√

2mE/h̄2, k2 = −
√

2mE/h̄2 (15)

if E > 0. For E < 0 there is no real solution to E − h̄2k2/2m = 0. In that

case, δ(f(k)) = 0. We indicate these two cases by the step-function θ(E),

where θ(E > 0) = 1 and θ(E < 0) = 0:

ρ3d(E) =
1

(2π)3
4π

∫ ∞

0

dkk2





δ(k −
√

2mE/h̄2)

|h̄2k/m|
+
δ(k +

√

2mE/h̄2)

|h̄2k/m|



 θ(E)
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=
1

(2π)3
4π

∫ ∞

0

dkk2
δ(k −

√

2mE/h̄2)

|h̄2k/m|
θ(E) (16)

=
1

(2π)3
4π

√

2mE/h̄2

h̄2/m
θ(E) =

m3/2

√
2π2h̄3

√
Eθ(E). (17)

Exercise: We consider the density of states ρQW(E) of a quantum well system

with El,k‖
= El +

h̄2
k

2

‖

2m , Eq. (4). Here, the quantum number α = (l,k‖)

consists of the subband index l = 0, 1, 2, ... and the in-plane, two-dimensional

wave vector k‖.

a) Show how to write the
∑

α ... =
∑

(l,k‖) ... in Eq. (8) as a sum over l and a

two-dimensional integral over the wave vector.

b) Calculate ρQW(E) explicitly. Take care to properly take into account the

role of the step functions θ(..) when you evaluate Eq. (8).
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