Next: Final Form of Master
Up: Master Equation II: the
Previous: Thermal Bath Correlation Functions
  Contents
  Index
Let us have a closer look at the expressions
![$\displaystyle \hat{C}_{12}(z)=\int_0^{\infty}
d\omega {\rho(\omega) [1+n_B(\omega)}]
\int_{0}^{\infty}dt e^{-(z+i\omega)t}.$](img169.png) |
|
|
(41) |
The Laplace transform exists for Im
to
ensure convergence of the integral, but in the
expressions above we need
etc., i.e. purely imaginary arguments!
The limit
, if explicitely written, reads
![$\displaystyle \hat{C}_{12}(z=-i\Omega)=\lim_{t\to \infty}\int_0^{\infty}
d\omega {\rho(\omega) [1+n_B(\omega)}]
\int_{0}^{t}dt' e^{i(\Omega-\omega)t'}.$](img173.png) |
|
|
(42) |
Now,
![$\displaystyle \lim_{t\to \infty} \int_{0}^{t}dt' e^{i x t'}=\lim_{t\to\infty}
\...
...t}{x} + i \frac{1-\cos xt}{x}\right]=\pi \delta(x) +iP\left(\frac{1}{x}\right),$](img174.png) |
|
|
(43) |
where
denotes the principal value.
For the first term, we used a very useful
Theorem:
For any integrable, normalised function
with
,
 |
|
|
(44) |
Since
, this yields the
Delta function above.
We split the two bath correlation functions into real and imaginary parts,
Remarks:
- Real and imaginary parts of the correlation functions are
related to each other: Kramers-Kronig relations.
- Note the minus-sign in the definition of
.
Next: Final Form of Master
Up: Master Equation II: the
Previous: Thermal Bath Correlation Functions
  Contents
  Index
Tobias Brandes
2004-02-18