next up previous contents index
Next: Properties of Up: Thermal Bath Correlation Function Previous: Definition   Contents   Index

Bosonic Spectral Density $ \rho (\omega )$

All the dependence on the coupling constants $ \gamma_Q$ is encapsulated within the spectral density $ \rho (\omega )$. The latter is often parametrised as
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\rho(\omega) = {2}\alpha \omega_c^{1-s} \omega^{s}e^{-{\omega}/{\omega_c}},
\end{array}$\ }$     (54)

where $ \alpha$ is the dimensionless coupling parameter and $ \omega_c$ is the cutoff frequency. Note that $ \rho (\omega )$ has the dimension $ [\omega]$ which is the reason for the pre-factor $ \omega_c^{1-s}$. The parameter $ s$ determines the low-frequency behaviour of $ \rho (\omega )$, and one calls couplings with
$\displaystyle s<1$ $\displaystyle :$    sub-ohmic  
$\displaystyle s=1$ $\displaystyle :$    ohmic  
$\displaystyle s>1$ $\displaystyle :$    super-ohmic$\displaystyle .$ (55)

This classification has its origin in the analysis of the dissipative two-level (spin-boson) system which we will discuss below.

The case $ s=1,\omega_c\to \infty$

$\displaystyle \rho(\omega) = {2}\alpha \omega$     (56)

is called scaling limit of the ohmic bath and has the special property of homogeneity $ \rho(k \omega) = k \rho(\omega)$.


next up previous contents index
Next: Properties of Up: Thermal Bath Correlation Function Previous: Definition   Contents   Index
Tobias Brandes 2004-02-18