next up previous contents index
Next: Feynman-Vernon Influence Functional Theories Up: Unravelling and Decomposition into Previous: Decomposition into Histories   Contents   Index

`Monte Carlo' Procedure

The decomposition of histories can now be simulated on a computer in order to actually solve the Master equation. Here, we only describe the simplest version (spontaneous emission, no driving field), starting from a pure state $ \vert\Psi\rangle$ of the total system. For more details, see Carmichael or Plenio/Knight.

Step 1: Fix a time step $ \Delta t$. Calculate the probability $ \Delta P$ of photon emission;

$\displaystyle \Delta P \equiv \gamma \Delta t \langle \Psi \vert a^{\dagger} a \vert \Psi \rangle.$     (147)

Step 2: Compare $ \Delta P$ with a random number $ 0 \le r \le 1$

Step 3: Go back to Step 1.

This procedure (performed with small time-steps $ \Delta t$ up to a final time $ t_{\rm final}$) yields a `curve' of simulated states $ \vert\Psi(t)\rangle$, $ t\in [0,t_{\rm final}]$ in the system Hilbert space $ {\cal H}_S$. The procedure is then repeated many times in order to obtain time-dependent averages $ \langle \Psi\vert \hat{\theta} \vert \Psi \rangle$ of observables $ \hat{\theta}$.

The entire procedure yields a density operator $ \rho(t)=\vert\Psi\rangle \langle \Psi \vert$ that solves the original Master equation, Eq.(7.143): in one time step $ \Delta t$, we have

$\displaystyle \rho (t+\Delta t)$ $\displaystyle =$ $\displaystyle \Delta P \frac{a \vert\Psi(t)\rangle \langle \Psi (t)\vert a^{\da...
...ert (1+i\Delta t H_{\rm eff}^{\dagger}) }{(1-\Delta P)^{1/2}(1-\Delta P)^{1/2}}$  
  $\displaystyle =$ $\displaystyle \gamma \Delta t a \rho(t) a^{\dagger}+
\rho(t) -i \Delta t [H,\rh...
...a t \left( a^{\dagger} a \rho(t) + \rho(t)a^{\dagger} a
\right) + O(\Delta t)^2$  
$\displaystyle \leadsto \frac{d}{dt}\rho(t)$ $\displaystyle =$ $\displaystyle -i [H,\rho(t)]
- \kappa \Big\{ a^{\dagger} a {\rho} + \rho a^{\dagger} a - 2 a \rho a^{\dagger}
\Big\} .$ (150)

Remarks:


next up previous contents index
Next: Feynman-Vernon Influence Functional Theories Up: Unravelling and Decomposition into Previous: Decomposition into Histories   Contents   Index
Tobias Brandes 2004-02-18