next up previous contents index
Next: Eigenvectors Up: Example: Two-Level System Previous: Example: Two-Level System   Contents   Index

Power Series

Use
$\displaystyle H$ $\displaystyle =$ $\displaystyle T_c \sigma_x,\quad \sigma_x \equiv\left(\begin{array}{cc}
0 & 1 \\
1 & 0 \\
\end{array}\right)$  
$\displaystyle \sigma_x^0$ $\displaystyle =$ $\displaystyle \hat{1},\quad \sigma_x^1 = \sigma_x,\quad \sigma_x^2 = \hat{1}$  
  $\displaystyle \leadsto$ $\displaystyle e^{\alpha \sigma_x} =
\hat{1} + \frac{\alpha}{1!}\sigma_x + \frac...
...a^2}{2!}\hat{1} + \frac{\alpha^3}{3!}\sigma_x + \frac{\alpha^4}{4!}\hat{1} +...$  
  $\displaystyle =$ $\displaystyle \cosh(\alpha) \hat{1} + \sinh (\alpha) \sigma_x$  
$\displaystyle \leadsto U(t,t_0)$ $\displaystyle \equiv$ $\displaystyle e^{-i H (t-t_0)}=
\cosh(-i(t-t_0)T_c) \hat{1} + \sinh (-i(t-t_0)T_c) \sigma_x$  
  $\displaystyle =$ $\displaystyle \cos [(t-t_0)T_c] \hat{1} -i \sin [(t-t_0)T_c] \sigma_x.$ (1.12)



Tobias Brandes 2005-04-26