next up previous contents index
Next: Time-dependent Hamiltonians Up: Example: Two-Level System Previous: Eigenvectors   Contents   Index


Quantum Oscillations in Two-Level Systems

We can now easily calculate these: use an initial condition
$\displaystyle \vert\Psi\rangle_0$ $\displaystyle =$ $\displaystyle \alpha_L \vert L\rangle + \alpha_R \vert R\rangle =
\left(\begin{array}{c} \alpha_L  \alpha_R \end{array}\right)$  
$\displaystyle \leadsto \vert\Psi(t)\rangle$ $\displaystyle =$ $\displaystyle U(t,t_0) \vert\Psi\rangle_0=
\left\{ \cos [(t-t_0)T_c]\hat{1} -i \sin [(t-t_0)T_c] \sigma_x\right\} \vert\Psi\rangle_0$  
  $\displaystyle =$ $\displaystyle \left\{ \alpha_L \cos [(t-t_0)T_c] - i \alpha_R \sin [(t-t_0)T_c] \right\} \vert L\rangle$  
  $\displaystyle +$ $\displaystyle \left\{ \alpha_R \cos [(t-t_0)T_c] - i \alpha_L \sin [(t-t_0)T_c] \right\} \vert R\rangle.$ (1.17)

Check out a few examples:

\bgroup\color{col1}$ \alpha_L=1,\alpha_R=0$\egroup (particle initially in left well): in this case, the probabilities for the particle to be in the left (right) well at time \bgroup\color{col1}$ t\ge t_0$\egroup are

$\displaystyle \vert\langle L \vert\Psi(t)\rangle \vert^2$ $\displaystyle =$ $\displaystyle \cos ^2[(t-t_0)T_c]$ (1.18)
$\displaystyle \vert\langle R \vert\Psi(t)\rangle \vert^2$ $\displaystyle =$ $\displaystyle \sin ^2[(t-t_0)T_c]$   quantum-mechanical oscillations$\displaystyle .$  


next up previous contents index
Next: Time-dependent Hamiltonians Up: Example: Two-Level System Previous: Eigenvectors   Contents   Index
Tobias Brandes 2005-04-26