next up previous contents index
Next: Interaction with Light Up: States Previous: States   Contents   Index

Successive Interation

We can obtain the time-evolution operator \bgroup\color{col1}$ \tilde{U}(t,t_0)$\egroup in the interaction picture by successive iteration:
$\displaystyle i\partial_t \tilde{U}(t,t_0)$ $\displaystyle =$ $\displaystyle \tilde{V}(t) \tilde{U}(t,t_0)$ (3.25)
$\displaystyle \leadsto \tilde{U}(t,t_0)$ $\displaystyle =$ $\displaystyle 1-i \int_{t_0}^t dt_1 \tilde{V}(t_1) \tilde{U}(t_1,t_0)$  
  $\displaystyle =$ $\displaystyle 1-i \int_{t_0}^t dt_1 \tilde{V}(t_1) + (-i)^2 \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \tilde{V}(t_1)
\tilde{V}(t_2)+...$  
  $\displaystyle =$ $\displaystyle 1 + \sum_{n=1}^{\infty} (-i)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 ...\int_{t_0}^{t_{n-1}} dt_n
\tilde{V}(t_1)...\tilde{V}(t_n).$  

There is a compact notation that slightly simplifies things here: time-ordered products of operators are defined with the time-ordering operator \bgroup\color{col1}$ T$\egroup which orders a product of operators \bgroup\color{col1}$ \tilde{V}(t_1)...\tilde{V}(t_n)$\egroup with arbitrary times \bgroup\color{col1}$ t_1$\egroup,..., \bgroup\color{col1}$ t_n$\egroup such that the `earliest' operator is left and the `latest' operator is right. For example,
$\displaystyle T[ \tilde{V}(t_1)\tilde{V}(t_2)] = \theta(t_1-t_2) \tilde{V}(t_1)\tilde{V}(t_2)
+ \theta(t_2-t_1) \tilde{V}(t_2)\tilde{V}(t_1),$     (3.26)

where
$\displaystyle \theta(t\ge 0)=1,\quad \theta(t< 0) = 0.$     (3.27)

Using the time-ordering operator, one can then show
$\displaystyle \tilde{U}(t,t_0)$ $\displaystyle =$ $\displaystyle 1 + \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t dt_1 \int_{t_0}^{t} dt_2 ...\int_{t_0}^{t} dt_nT[\tilde{V}(t_1)...\tilde{V}(t_n)]$  
  $\displaystyle \equiv$ $\displaystyle T \exp \left[-i \int_{t_0}^t dt' \tilde{V}(t') \right].$ (3.28)

Note that now the upper limit of all integrals is the same \bgroup\color{col1}$ t$\egroup and that there is the additional \bgroup\color{col1}$ 1/n!$\egroup in front of each term.


next up previous contents index
Next: Interaction with Light Up: States Previous: States   Contents   Index
Tobias Brandes 2005-04-26