next up previous contents index
Next: Remark on Dipole-Dipole Interaction Up: Effective Potentials Previous: Effective Potentials   Contents   Index

Electrostatics: multipole expansions

This is the simplest case: each of the \bgroup\color{col1}$ N$\egroup subsystems (molecules) is considered as a distribution of charges with charge density \bgroup\color{col1}$ \rho_n({\bf x})$\egroup. The total charging energy is
$\displaystyle E$ $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{nn'}\int \int d{\bf x}d{\bf x}' \frac{\rho_n({\bf x})\rho_{n'}({\bf x}')}{\vert{\bf x}-{\bf x}'\vert}.$ (2.1)

We assume the molecules well separated with their center of mass at \bgroup\color{col1}$ {\bf R}_n$\egroup. We first consider the contribution from two different molecules, \bgroup\color{col1}$ n\ne n'$\egroup, and thus write
$\displaystyle {\bf x} = {\bf R}_n + {\bf\xi},\quad {\bf x}' = {\bf R}_{n'} + {\bf\xi}'$     (2.2)

and expand \bgroup\color{col1}$ \frac{1}{\vert{\bf x}-{\bf x}'\vert}$\egroup for each pair \bgroup\color{col1}$ n,n'$\egroup, using the Taylor expansion
$\displaystyle \frac{1}{\vert{\bf R}+{\bf a}\vert}$ $\displaystyle =$ $\displaystyle \frac{1}{R}\left(1 + \frac{{\bf a}^2+2{\bf R}{\bf a} }{R^2}\right)^{-1/2}$ (2.3)
  $\displaystyle =$ $\displaystyle \frac{1}{R}\left(1 - \frac{1}{2R^2}({\bf a}^2+ 2 {\bf R}{\bf a}) +
\frac{3}{8R^4}({\bf a}^2+ 2 {\bf R}{\bf a})^2 + ...\right)$  

with \bgroup\color{col1}$ {\bf R}= {\bf R}_{nn'}\equiv {\bf R}_{n}-{\bf R}_{n'}$\egroup and \bgroup\color{col1}$ {\bf a} = {\bf\xi}-{\bf\xi}'$\egroup. We assume uncharged molecules, i.e.
$\displaystyle \int d{\bf x} \rho_n({\bf x}) =0.$     (2.4)

This yields
    $\displaystyle \int \int d{\bf x}d{\bf x}' \frac{\rho_n({\bf x})\rho_{n'}({\bf x}')}{\vert{\bf x}-{\bf x}'\vert} =$  
  $\displaystyle =$ $\displaystyle \int \int d{\bf\xi}d{\bf\xi}'\rho_n({\bf\xi})\rho_{n'}({\bf\xi}')
\frac{1}{R}\big(1 - \frac{1}{2R^2}([{\bf\xi-\xi'}]^2+ 2 {\bf R}[{\bf\xi-\xi'}])$  
  $\displaystyle +$ $\displaystyle \frac{3}{8R^4}([{\bf\xi-\xi'}]^2+ 2 {\bf R}[{\bf\xi-\xi'}])^2 + ...\big)$  
  $\displaystyle =$ $\displaystyle \int \int d{\bf\xi}d{\bf\xi}'\rho_n({\bf\xi})\rho_{n'}({\bf\xi}')...
... \frac{3}{8R^4} 4 ({\bf R}[{\bf\xi-\xi'}] )
({\bf R}[{\bf\xi-\xi'}] )+ ...\big)$  
  $\displaystyle =$ $\displaystyle \int d{\bf\xi}d{\bf\xi}'\rho_n({\bf\xi})\rho_{n'}({\bf\xi}')\frac...
...^2}{\bf\xi \xi'} - \frac{3}{R^4} ({\bf R}{\bf\xi}) ({\bf R}{\bf\xi}') +...\big)$  
  $\displaystyle =$ $\displaystyle \frac{{\bf d}_n {\bf d}_{n'}}{\vert{\bf R}_{nn'}\vert^3}-3
\frac{...
...rt{\bf R}_{nn'}\vert^5}+ ...,\quad
{\bf R}_{nn'}\equiv {\bf R}_{n}-{\bf R}_{n'}$ (2.5)

Here, the dipole moments are defined as
$\displaystyle {\bf d}_n$ $\displaystyle =$ $\displaystyle \int d{\bf x} {\bf x} \rho_n( {\bf x}),$ (2.6)

and the remaining terms are dipole-quadrupole, quadrupole-quadrupole etc interaction energies which decay faster with increasing \bgroup\color{col1}$ R$\egroup. Usually the dipole-dipole interaction terms are dominant over the higher multipoles for the interaction between molecules.

Summarizing, we have

$\displaystyle E$ $\displaystyle =$ $\displaystyle \frac{1}{2} \sum_n E_n^{\rm self} + \frac{1}{2} \sum_{nn'} \left( E_{nn'}^{\rm d-d}
+ E_{nn'}^{\mbox{\rm higher multipoles}}\right)$ (2.7)
$\displaystyle E_n^{\rm self}$ $\displaystyle =$ $\displaystyle \int \int d{\bf x}d{\bf x}' \frac{\rho_n({\bf x})\rho_n({\bf x}')}{\vert{\bf x}-{\bf x}'\vert}$  
$\displaystyle E_{nn'}^{\rm d-d}({\bf R}_{nn'})$ $\displaystyle =$ $\displaystyle \frac{{\bf d}_n {\bf d}_{n'}}{\vert{\bf R}_{nn'}\vert^3}-3
\frac{...
...{\vert{\bf R}_{nn'}\vert^5},\quad
{\bf R}_{nn'}\equiv {\bf R}_{n}-{\bf R}_{n'}.$  

Exercise: Derive the expression for \bgroup\color{col1}$ E_{nn'}^{\rm d-d}$\egroup



Subsections
next up previous contents index
Next: Remark on Dipole-Dipole Interaction Up: Effective Potentials Previous: Effective Potentials   Contents   Index
Tobias Brandes 2005-04-26